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Abstract

Reduced magnetohydrodynamics (RMHD) has become a principal tool for
understanding nonlinear  processes, including disruptions, in tokamak
plasmas. Although analytical studies of RMHD turbulence have been useful,
the modgl's impressive ability to simulate tokamak fluid behaviour has been
revealed primarily by numerical solution. The present work describes a new
analytical approach, not restricted to turbulent regimes, based on
Hamiltonian field theory. It is shown that fhe nonlinear (ideal) RMHD
system, in both dits high-beta and low-beta versions, can be expressed in

Hamiltonian form. Thus a Poisson bracket, { , }, 'is constructed such that

each RMHD field quantitity, Ei, evolves according to &; = {Ei,H}, where H is

the total field energy. The new formulation makes RMHD accessible to the
methodology of Hamiltonian mechanics; it has lead, in particular, to the
recognition of new BMHD invariants and even exact, nonlinear RMHD solutions.
A canonical version of the Poisson bracket, which requires the introduction
of additional fields, leads to a nonlinear variational principle for

time-dependent RMHD.

*Also the Department of Physics, University of Texas, Austin, Texas 78712.
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I. Introduction .

A. Reduced Magnetohydrodynamics

The term "reduced magnetohydrodynamics" (RMHD) refers to a number of
simplified approximations to ordinary magnetohydrodynamics (MHD). The
original versions of RMHD, with which this work is concerned, were
constructed to describe nonlinear plasma dynamics in large aspect-ratio
tokamak geometry.1’2’3 Thus the oédering parameter, €, is the inverse aspect
ratio; one assumes the following ratiog, in partigulaf, to be of order e:

l. Scale length transverse to the magnetic field, B: scale length along B.

\

2. Poloidal component of B: toroidal component of B.

3. Time for compressional equilibration (compressional Alfven time): time

scale of interest (shear Alfven time).

In addition, the plasma pressure, p, is assumed small, either p~ezB2 ("low
beta RMHD") or p~€B2 ("high beta RMHD"). The RMHD set is presented in
Sec. II; for a detailed derivation we refer the reader to the original work
by Strauss.2s3

.As a model for high-temperature tokamak plasma behaviour, RMHD is crude
in several respects., O0f course its MHD origin precludes any treatment of
potentially important, non-ideal or kinetic effects, a circumstance which is

inadequately remedied by resistive versions of RMHD. Even within the ideal
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context, RMHD omits, for example, density gradient terms and ion acoustic
propagation. Perhaps most seriously, the RMHD simplification of tokamak
geometry can yield misleading results in certain lineaf contexts (e.g.,

interchange stability); it provides a qualitatively inaccurate version of

tokamak magnetic field curvature .

To be weighed against such drawbacks are the four main advantages of
RMHD:
i
1. It is numerically  tractable. The ideal version, being
parameter—free, involves only a single temporal scale. Furthermore, only

two or three scalar fields need to be advanced in time.

2. It is conceptually simple. The significance of the field quantities
(magnetic flux, electrostatic potential, pressure) is transparent and the

physical content of the equations is clear.

3. 1Its derivation is internally consistent. The equations result from

a systematic neglect of 0(83) terms, with few additional simplifications.

4., Most dimportantly, the RMHD system simulates, with remarkable
precision, - the actual nénlinear behaviour of tokamak discharges.5 Its
predictions - concerning nonlinear kink deformations, flux surface
destruction and plasma disruétion, for example - have a qualitative and even
quantitative reliability which few tokamak theoretic constructs can equal.

4
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For these reasons (especially the last), RMHD has become a principal

tool in the interpretation and control of tokamak experiments. Most major
tokamak facilities routinely use computer solutions to some version of RMHD,
and several research teams are devoted to uncovering its implications. It
is significant, if unsurprising, that the great bulk of this theoretical
effort has  been strictly numerical. The relatively few analytical
investigations of RMHD have been devoted either to improving the system
itself (for eiample, by the inclusion of various non-ideal effects) or to

examining its comnsequences in certain turbulent regimes.

The present work is motivated by the belief that RMHD deserves more
extensive  analytical study. Our central theme 1is the Hamiltonian

description of RMHD, in both its low-beta and high-beta versions.

B. Hamiltonian Dynamics

In this subsection we briefly review what is meant by a Hamiltonian
system of equations, Contrary~ to conventional textbook treatments, we
emphasize the algebraic properties of the Poisson bracket. This emphasis
frees one from the requirement of canonical variables and thus is a more
general setting.6—8 In recent times there has been a wealth of work for both
finite and infinite degrees of freedom systems that is related to this point
of view.9"14 por simplicity of exposition we describe finite systems prior

to the field formulation that is our concern.
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The standard route to a Hamiltonian description is to
Legendre-transform the Lagrangian, which is constructed on physical bases.
This yields the Hamiltonian and the following 2N first order ordinary

differential equations:
ax = [ax,Hl 5 pg = [pk,H] k=1,2...8N .
Here the Poisson bracket has the form

(Bf 9g _ 9of 9gy _ 9of Ji3 Sg. . (1)

[f’g] = <
1 99 3P Iy dg” 5,1 9z]

I o~

The last equality of Eq. (1) follows from the substitutions,

qk i=k=l,2,o-oN

i
Z =
pk 1=N+k=N+1,N+2’0002N
and
.. 0 I '
(3t = ( ) (2)
_In 0

where I, is the N x N unit matrix. (Repeated index convention is used.) The
matrix J1J is called the cosymplectic form and it can be shown to transform
as a contravariant tensor under a change of coordinates. Recall those

transformations that preserve its form are canonical.

The approach taken here is that there is no concern that the JiJ take
the form given by Eq. (2). Rather, we require only that the J11  endow the

Poisson bracket, as given by Eq. (1), with the following properties:




(i) [f,g] = -[g,f]

(ii) [£,[g,n]] + [g,[h,£]] + [b,[£,8]] =0 .

These must hold for all functions £, g and h defined on phase space.
Property (i) requires that JL1I be antisymmetric and property (ii), the
Jacobi identity, requires the following:

ki o agtd

o ko
siik = gie 30T, 530 3T gk

=0 . (3)
Bzz Szz Bzz

Equation (3) is trivially satisfied for the form of Ji3 given by Eq. (2),
though in general it is a severe restriction. It can be shown that sijk
transforms contravariantly; hence if the Jacobi identity is satisfied in one
frame it is satisfied in all frames. Similarly, antisymmetry is coordinate

independent. This suggests the following outlook: if a system of equations

possesses the form

zi = Jii BH 1,5 = 1,2,e002N
9zl

where JiJ is antisymmetric and satisfies Eq. (3), then it is Hamiltonian.
This outlook 1is Jjustified by a theorem due to Darboux which states that

assuming det(Eij) # 0 (locally) a canonical coordinate system exists.




Turning now to systems of infinite dimensions we mnote that the

gneralization of Eq. (1) for a system of field equations is

(GF 8¢ _ §c cSF)dkE<GF joid 56 (4)

{F,¢} = }
’ k=1 Sny Smy  Ony Smy sul sud

Here the Poisson bracket acts on functionals F, G of the field variables ny
and Ty, and partial derivatives are replaced by functional derivatives that

are defined in the usual way by

dF §F
=5 [nctev] o = e lw> - (5)

The bEacket stands for the usual inner product

i

KElg> = [ fg dt .

We now carry over the ideas for finite degree of freedom systems. We

define a system to be Hamiltonian if it can be written,. for soméfHémiitonian':f

functional H, in the form

dul _ 15 8H
at 6uJ

where 01J is a matrix (in general nonlinear) operator that endows a Poisson
bracket defined by the second equality of Eq. (4) with the properties (i)
and (dii). Antisymmetry requires that o1ld be antiself-adjoint. The Jacobi

requirement for a specific case is taken up in the text. For the general

/
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case we direct the reader to Ref. 14. A major goal of this paper is to
i,

present the operator 01J with these desired properties such that the u™’s

are the usual field variables for RMHD.

C. Overview of Results

Section II is composed of two subsections. In Subsection A we briefly
review how RMHD is asymptotically obtained from MHD. Here we define our
notation and our coordinate system. In Subsection B we discuss integral
invariants. A comparison is made between the invariants of ideal MHD and
those of RMHD that survive the asymptotics. In the course of investigating
these invariants, a class of exact, nonlinear, uniformly propagating
solutions to RMHD were discovered.l!® A novel result of this subsection is
the presentation of a new class of dinvariants for single-helicity RMHD.
These invariants are a mnatural by-product of the generalized Poisson

structure obtained in Sec. III. Quantities that commute with all

Hamiltonians are known as Casimir invariantsl6 - the new invariants are of.

this type. Casimir invariants are 1important Dbecause together with the
Poisson bracket they enable the construction of global nonlinear stability
criteria for nonlinear solutions. This result is due to Arnold® who wused
the Hamiltonian structure for two-dimensional invicid, incompressible fluids
to prove nonlinear stability. Arnold’s theorém has been invoked by Meiss
and Hortonl’/ in order to ascertain the stability of solitary drift waves.

Recently the technique was utilized by Holm et al.l8 to prove stability for
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three-dimensional compressible fluid flow. Applications involving RMHD

nonlinear solutions are currently under investigation.19

The main portion of this paper is presented in Sections III and 1IV.
The Poisson brackets are described and the Jacobi identity is proven for
both the léw and high-B theories. In Subsection IV(B) we present the
Hamiltonian description in terms of the usual discretization employed for
tokamak numerics, i.e., use Fourier transform in the poloidal and toroidal
angles. We leave the radial variable alone, but finite difference schemes

can be worked out within the generalized DPoisson bracket contexture.

Discretization in this manner automatically insures energy conservation.

Our final section is concerned with the transformation of our
generalized Poisson brackets to canonical form. The equations of motion in
these variables are presented - analogous equations for ordinary fluids have
been numerically integrated. Having obtained a canonical Hamiltonian

description we take the short step to produce a variational principle that

yields Hamilton’s equations of motion. Nonlinear variational principles are

useful in that one can employ Rayleigh-Ritz or trial function
approximations. A variational principle for the regularized-long-wave
equation, which was obtained by the same route as that descfibed in Sec. V,
has been used to successfully predict the phase shift of solitary wave

scattering.20
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II. Reduced MHD: Equations and Constants

A. Equations of Motion

The reduced MHD equations are obtained by asymptotically ordering the
equations of ideal MHD. The fundamental small parameter 1s the inverse

aspect ration, € = a/Ro, where a and R, are the minor and major radii

> A >
respectively [See Fig. 1]. The fluid velocity v = vyztu; is scaled with the

poloidal Alfvén speed v_ = Bpo//4wp where p is the mass density and B

p po *

aBO/R; B, is the scale for the toroidal field. We note, parallel flows are

X >
small in this model: vy = 0(e). . The RMHD ordering renders Vev=0(e). Time

is scaled with Ty = a/vp while distances in the toroidal (z) direction are

scaled with R, and poloidal distances are scaled with a. The dimensionless

gradient operator is V = €z -gi A+ V. The scaled magnetic field 1is
z
represented in the form
3.2 + eV,p x z + ezh + 0(e?) . (6)
1+ex L

The first term is the wvacuum toroidal field, the second is the poloidal
field represented in terms of the scaled poloidal flux ¢, and the third term
represents the deviation from the 1/R toroidal field due to the presence of
the plasma. Note that R = Ro(l+ex). fhe function h is determined from the

ideal MHD momentum balance equation. One obtains to order ¢

vV (B/2+h) = 0O where B = §E§ .

B,




-11-.
i
Here p is the plasma pressure. In the high-~B version of RMHD B is chosen to

scale as €. The previous low-B version avoided pressure effgcts by scaling

B~52; this version may be obtained from of Egqs. (2)-(4) by setting B=0.

The dynamical equations obtained from the ordering described in the

previous paragraph are

Y % _ o,

= T o3, -2 Y x Yy . 7
3U 37 _ 4 ~ 38

PR PRI L S AT I IR e (8)
and

38 _ = |

_8_§_=Z . Ylsxyld) . (9)

Here we have introduced the stream function ¢ defined by v, = z x Vé, the
vorticity U = Vi¢, and the toroidal current J = Vfw. The Poisson brackets
for Egqs. (2)-(4) and important subsets thereof are obtained in Sections III

and IV.
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B. Constants of Motion

A dynamical system such as RMHD possesses a conserved density if there

exists a quantity R that satisfies an equation of the form

_+Vog=0 » (10)

where R and C are composed of the dynamical variables of the system.
Clearly for each such quantity R there corresponds an integral comnstant of

motion, since

_ R dt = VeCdt =0 . 11
VeC (11)

In Eq. (6) the integral extends over the fixed domain of interest and the

second equality arises if the surface term vanishes.

The equations of dideal MHD are known to possess many conserved
densities. These are shown in Table 1 along with the RMHD remnant obtained
under the ordering of the previous subsection.. For a discussion of the
ideal MHD constants and the symmetries they generate we refer the reader to
Ref. 14. In the table, cases where the remnant appears to be trivial are
left Dblank. Of the nontrivial remnants the natural choice for the

Hamiltonian is, of course, H. This is used in the upcoming sections.

The quantity C, which appears to have no MHD antecedent, is the Casimir
invariant mentioned in the Introduction. It dis conserved for the

two-dimensional and hence single-helicity models of Sec. III. It was
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obtained by recognizing that the Poisson bracket in this case is identical
to that for the incompressible Euler equations in two-dimensions. This

structure is well understood.22>23 i

It is easy to see that V, the cross~helicity, is a special case of C
where h(y) = Y. The invariants C are the cross-helicity analogue to the
class of invariants associated with the magnetic helicity. These invariants

have been proposed as constraints on turbulent relaxation.2%4»25
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III. Low beta theory

A. Two dimensions

In this section we construct a Poisson bracket for the simplest version
of reduced MHD, in which the interchange term on the right-hand side of
Eq. (8) is neglected. The resulting system describes the nonlinear behavior
of current-driven modes, such as the kink mode, and is consistent with the
ordering 8wp/Bg < e2. We further simplify, initially, by neglecting
z-derivatives, thus considering a two-dimensional system. Axisymmetric
disturbances have little dinterest in themselves. However (as becpmes
explicit in the following subsection) the axisymmetric system is equivalent
to one possessing helical symmetry, and the helically symmetric case has

considerable intrinsic importance.l

Hence we consider the system

[$,J]1 + [U,¢] , , | \ (12)

b -

/
l.l) = [1’)’4’] ) (13)
U=V, JT=Vip . | (14)

Here we use a bracket notation which has become conventionalB:

[f,g] Z'Y_Lf X Zlg . (15)
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Because this bracket presently will be embedded in the field Poisson
bracket, we refer to it as the "inner" bracket. The inner bracket is a

divergence,

[£,8] = V) +(gz x V,£) (16)
which satisfies tHe crucial identity

[ dx flg,h] = [ dx) glh,£] = [ dx, hlf,s], (17)

for any functions f,g and h. Equation (17), in which dx; = dx dy and the
integrals extend over the entire plasma volume, depends upon the neglect of
surface terms. Such neglect is not usually serious; however, the present
formalism must be applied with care to situations in which the plasma
boundary significantly affects the dynamics. We mnote in passing that
several of the conservation laws presented in Sec. II are immediate

consequences of Eqs. (17).

Qur objective is to write Eqs. (12)-(l4) in Hamiltonian form. That is,
we seek a suitably defined "outer" bracket, {F,G}, which acts on functionals

of U and ¢. The outer bracket must be antisymmetric,

{F,C} = - {G,F} , | (18)

must satisfy Jacobi’s identity,

{E,{F,G}} + {F,{G,E}} + {G,{E,F}} =0 (19)
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and must yield Hamilton’s equations, in the (generally noncanonical) form

=

= {IP,H} ’ (20)

= {U,H} . ‘ (21)

Cie
|

Here H is the energy introduced in Sec. II, appropriately simplified for

low-beta and axisymmetry:

H = %f az; [(v0)% + (V92] . | (22)

We simplify notation by using the same symbol to denote the general energy

integral and its various simplified versions.

The quantity H is manifestly a functional of the reduced MHD fields.
Note that the fields ¢ and U can themselves also be interpreted as

functionals; for example,
v(xy) = [ dxf 8(x;=x]) v(x]) - (23)
Such interpretation is called for in Eqs. (20) and (21).

A generic form for the Poisson bracket can be inferred from previous

work:

(®.60 = [ gy Wiy [ 5 ] (24
1 J
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where (§,,8,) = (¥,U), a sum over repeated indices is implied, and the
functional derivative as noted in the Introduction is defined by

= Fletew] = [ dx; w SF/SE . (25)

The quantities Wij are to be chosen to satisfy Eqs. (18)-(21). From

Egs. (20) and (21) it can be seen that W;: must depend linearly upon the &;.

3

Before proceeding further with Eq. (24), we turn our attention to H,
which must now be considered as a functional of ¢ and U. After partial

integration, Eq. (22) becomes

H = —%f dx; [U$ + ¢J] = -%f dx, [UR(D) + $v3v]

’ where X represents the operator inverse to V%: K(fo) = f, Because Vi, and

therefore K, are self-adjoint operators, we see that

—=—d ., ¢ om—= =T . ' (26)

It follows in particular that the equations of motion can be expressed as

I §H

U—[W,xp]+[6—ﬁ-,U] (27)
and

VIS I B (28)
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We now return to Eq. (24), and consider the quantity {¢,H}. In view of

the identity (17), this can be written as

, 6 §H
W =[x gt [, Wyl
i 3

But 'Gw/GEi vanishes wunless 1i=1, in which case it’s the identity operator

[cf. Eg. (23)]. Thus

{¥,H} = [-557 ) sz] . | (29)
J

Comparing the right-hand sides of Egqs. (28) and (29), we see that Eq. (20)

will hold only if

Wip =0, Wp=19v.

Analogous consideration of {U,H} readily shows that we must choose
Wop =V, Wyp=1U,

'in order to reproduce the right-hand side of Eq. (27).

We conclude that the bracket defined by

SF SG] + [6F 5G])

9 50 3T’ Sy (30)

(7,6}, = fax; {v(]

yields the correct two-dimensional equations of motion (the subscript refers
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to the dimensionality). It is a proper Poisson bracket if, in additiom,
{, }2 is antisymmetric and satisfies Jacobi’s didentity. Since antisymmetry
is a trivial comnsequence of the antisymmetry of the inner bracket and the

symmetry of wij = W the remainder of this subsection is devoted to

ji
verifying the Jacobi identity.

Our demonstration is grossly simplified because of two symmetries:

antisymmetry " in the bracket and symmetry in the second variation. Consider

the general bracket of Eq. (24). We can evidently write

SV -
8 ij r 6F 8G
-—— {F,G} = d s

e 1+ 4, (31)

where A, involves higher order functional derivatives of F and G. For the
purpose of verifying Jacobi’s identity, one can always neglect Ak' The
point is that the terms in A, are consistent with Eq. (19) for any symmetric

W essentially because 62/65-65- is symmetric din i and j. The reader
172]

ij»

interested in seeing a proof of this is directed to Ref. 14,

In our case, Egs. (30) and (31) yield

5 _ (8F  8Gy . [8F &G
wiheh g owl *lgewl t A
§ _(8F 66

50 1202 = [gg o 5g) + A

and therefore,
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_ SE §F 4§66 SE §F §G SF e
{E’{F’G}z}z - f dEl {¢([3$', [‘gﬁ "Eﬁ ]] + LEE » [fEE ,'gﬁ ] + ['EE "EE ] ])
SE SF §G
+ U[gﬁ s ['gﬁ > 50 ] ]} . | (32)

Here irrelevant terms, involving the Ay, have been omitted. It can be seen
from Eq. (32) that the outer bracket will satisfy Jacobi’s identity provided
only that the inner one does. This is obvious with regard to the term which

is weighted by U,

SE §F e
Lgﬁ > ['EE ,'gﬁ ]]

It is also true for the Y-weighted terms, because functional derivatives
with respect to Y occur uniformly in these terms: once on E, once on F and

once on G. Hence it suffices to verify that

[f,[g,h]] + [g,[h:f]] + [h,[f,g]] =0 . (33)

But Eq. (33) can be established by elementary means (for example, by noting

the resenblance of the inner bracket to the classical Posson bracket).

We conclude that the equations
Y = {W,H}z > U = {UQH}Z (34)

indeed yield a Hamiltonian representation of two-dimensional, low-beta,

reduced MHD.
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We remark in closing this subsection that the bracket given by Eq. (30)
has a mathematical interpretation as the dual of the Lie Algebra of a

semidirect product.11 This will be discussed in a forthcoming publication.26

B. Three dimensions

Here we generalize the low-beta bracket to allow for arbitrary

asymmetry. It is convenient to use cylindrical coordinates,
(X,y,z) > (r’e,c) b

where

X = r cosf , y = r sinB, z

]
Y

The coordinates 0 and ¢ are conventional poloidal and toroidal coordinates

respectively, while r is a dimensionless minor radius. Evidently, the

operator V_L = % gi-+ ;-é% becomes
X
~ 3 B 0
Vi=r —+ - — .
»l r dr r 98

To treat the z- (or z~) derivatives in Eqs. (7) and (8), it dis helpful to

introduce a three-dimensional gradient operator, defined by
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. ‘ : (35)

1<
1
'l_<l
+

™

Q
w

Note that V differs from the true, normalized gradient, which contains a
factor a/R in the toroidal derivative term. The present definition implies

E = §C and therefore
[£,8] = V2V x Vg = Ve (g¥z x Tg) (36)

_1 _ %8 of
- L2f 2 ) . (37)

We mnext introduce a new inner bracket, the "poloidal" inner. bracket.

It is defined analogously to Eq. (36):

[£,8], = 79+VE x Vg = ¥o[g¥0 x ¥£] . = (38)

The word "poloidal" refers to the %6—factor; in this sense, Eq. (36)

provides the "toroidal" inner bracket. Both brackets can be seen to satisfy
[ ax flg,hl(py = [ dx glh,£](py = [ dx hif,gl(y) (39)
as in Eq. (17). Here and below,

dx = dx, dz = L r dr deé dg
P> zl b

and surface terms are presumed to vanish as usual.
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The essential property of the poloidal inner bracket is that it allows

us to write, for any function f,

(40)

Hence the three-dimensional, low-beta equations of motion [Egs. (7) and (8)]

can be written as

¢

2
= 4] + [5o4],

e
I

r2

= [¥,3] + [53], - [e,0]

(=]
|

Alternatively, we may use the three-dimensional Hamiltonian,

H =.% [ ax [(v$)% + (v, p)?] ,

which also satisfies Egqs. (26), to write

;! SH r?
belgg el 7l s
s -SH §E 2 §H
- [‘W: ll)] + [&p"_z]p'*' [GU ’ U] ¢

(41)

(42)

Observe that Eqs. (41) and (42) differ from the two-dimensional system only
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. . r?
in that [¢,f] is replaced by [¢,f] + LE— , f]p. We therefore obtain the
three-dimensional outer bracket by making an analogous replacement in

Eq. (32):

§F tSG] + [6F GG] )

{F,G}3 = [dx {‘P([W » 5T 30’ S

+£23 (3% Eg]p+ (87 cc]p) + o[F 56 1

Sy ’ 8U U’ Sy 8U > §U
2 §F &G §F  §G
= {F’G}z + f d§'%f([§$ "gﬁ]p + [gﬁ "gi]p ) . (44a)

Alternatively, Eq. (44a) can be written in the form

§F 3 6G &G 9 GFJ

{F’G}B = {F,G}z + f d}j( ——————— (44b)

A bracket of the form of the second term of Eq. (44b) has previously

appeared in Refs. 13, 14, 27. For its geometrical interpretation, see

Ref. 13, The argument of the previous subsection quickly shows that this"

bracket yields the correct equations of motion,
Y = {wsH}3 ’ U= {U,H}3 s (45)

and it 1is obiously antisymmetric. Hence we turm our attention to Jacobi’s

identity.
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The nested three-dimensional bracket {E,{F,G}3}3, will contain: nested
two-dimensional brackets, coming from the first term of Eq. (44); nested
brackets involving only poloidal inner brackets, corresponding to the second
term; and cross terms involving both poloidal and toroidal inner brackets.
The first two of these contributions are easily seen to éatisfy Eq. (19), so
we may restrict our attention to the cross terms. These can be simplified

by means of Eq. (31), and there remains only

2
- {[SE [ SF §G ]]p

{E’{F,G}3}3 = f d§ 2 G_q) N ?ﬁ R _ﬁ
SE SF §G 0F §G
[Eﬁ ’ ['ga s ]]p Lgﬁ ’ Eﬁ']]p } + A . (46)

Here, as usual, A represents the terms which are already known to satisfy
Jacobi’s identity. Because functional tv-derivatives are symmetrically
distributed in Eq. (46), it can be seen that { , }3 will satisfy Jacobi’s

identity provided that the quantity

2
z = [ dx 2 {[e,[f,8]], + [£ul8se]], + [g1e,51]5)

vanishes, for any functions e, f, and g. We use Eqs. (39) and (40) to find

3 3 9
Z = d _— — = £
[ dx {e T: [f,g] + £ 3% [g,e] + g T: [e,£]}

and then combine Eqs. (36) and (38) to obtain

Z = -f dx ie-if X ig.
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The integrand in this last expression is a divergence. Hence, with our

usual neglect of surface contributions,

and the Jacobi identity is satisfied.

We close this section by considering the specialization of the

three-dimensional bracket to the single~helicity, or helically symmetric,

case., The helical symmetry constraint,

of 1 2af (47)

where q, is the helicity (or rational safety factor), can be seen to imply

[£,8], = 2= [£:8) - | (48)

(o} -

Hence Eqs.'(4l) and (42) can be written as
vh = [¥ps ¢ | (49)

U= [y, Jp] - [o, U] (50)

where
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x?

Y =¥+ 24,

is the helical flux and Jy, = Vf¢h. We have noted that @ = ih and that
[¥n> 3] = [¥n> 3]

since Jy differs from J = Vfw only b& a constant. It follows that Egs. (49)
and (50) coincide with the two~dimensional system studied in the previous
subsection; one needs merely to interpret ¢, in the two-dimensional
formalism, as the helical flux. Similarly, in terms of the helically

symmetric Hamiltonian,

[ ax [(V6)2% + (V2] (51)

jas
1l
N =

the Poisson bracket of Eq. (30) can be obtained as the helically symmetric

version of Eq. (43).
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IV. High Beta Theory

The results of the previous section applied to the equations obtained
in the ordering 8np/Bg < e2. Here we consider the case where 8ﬂp/Bg = 0(e).
This results in the inclusion of the interchange term, -3B8/3y, in Eq. (3)
and the pressure is seen to advect as in Eq. (4). The equations are thus

generalized to include pressure-gradient driven instability.

A. High Beta Poisson Bracket

In Sec. II it was noted that the conserved energy for high beta RMHD is
He= [ 207012 + 2 17,91% - 2xBydx . (52)

Note that this form differs from that used for the Hamiltonian in Sec. III
by the addition of the pressure term, -2xB, which comes from the internal
energy term of the ideal MHD Hamiltonian. The Poisson bracket of the
frevious section with this Hamiltonian will still produce the 1low beta
equations. In order to produce the high beta equations, additional terms
nust be added to the bracket, Eq. (32). These terms will naturally involve
functional derivatives with respect to B. Furthermore, since the equation
for B is coupled to the equation for U, the Poisson bracket must involve
functional derivatives with respect to U. These rem?rks suggest that the

following should be added to Eq. (43):
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'{F,G}z‘. - f 8 {[5F GG] + [6F GG] } dx (53)

88’ 8U-  t8U 8B

This form is clearly antisymmetric, but let us investigate its effect upon

the equations of motion. Inserting U with the Hamiltonian, Eq. (52), yields

{U,H}, = - —gg :

This is the interchange term that is desired for the right-hand side of Eq. (8).

Inserting B and the Hamiltonian in Eq. (53) yields

{B:H}['_ == [Bad’] .

This is clearly seen to be the right-hand side of Eq. (9) written in "inner"
bracket form. In summary, Eq. (43) plus Eq. (53) produces the high beta
RMHD equations with the Hamiltonian Eq. (52). It remains to show that this

large bracket satisfies the Jacobi identity.

As in Subsection III(B), we observe that in order for { , }3 + {, }4

to satisfy the Jacobi identity, the following must vanish:

{Fs{G,F1} + 4 = {F,{G,H}5}5

+ {F,{G,H}3}4 + {F,{G,H,}5 + {F.{G,H},}, + + ,

where the arrow indicates cyclic permutation. We have already shown that
the first term makes no contribution. Likewise the third term vanishes
since {F,G}4 has no explicit dependence on ¢ or U. Hence it remains .to show

that
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{r{cm}}, ++=0 , (54)

where we only need to worry about functional derivatives acting on explicit

dynamical variable depéndence. Equation (54) thus becomes

- SF §¢  dH
{F,{G,H}}, + + = [ dx B{[EE" (5o a0 ! )
§F . 86 4H SF §¢ 6H
* [SU L35 59 1+ [GU L5553 Hhes

Clearly this vanishes, as 1is always the case for brackets that depend
linearly on the dynamical variables, by virtue of the Jacobi identity for

the inner bracket.

To summarize, we denote the three-dimensional, high-beta Poisson

bracket by
{ T={ 133+1{ 1}

or

SF SG] + [6F SG])

{F,e} = [ dx {w(fga > 30 ST’ Sy

2
r §F &G §F &G
t = ([W , 'gﬁ]p + [gﬁ , W]p)

§F GG] + B([ﬁF GG] + [GF GG]) }

G_U”CS—[—]. G_B,G—U Eﬁ)"gg . (55)

+ U [




-3 ]

Then we have shown that the high-beta reduced MHD equations can be expressed

as

b = {v,H ,

U= {u,m, | (56)
B = {8,H} ,

where H is the general Hamiltonian given by Eq. (52).

B. Fourier decomposition

In applications of reduced MHD, it is often convenient to represent the
g—variation of the fields in terms of Fourier components., We use the

convention
£(r,8) = J exp(ime8) fm(rﬁ
m ~
so that
Ep(r) = (21)72 § d8 exp(-im+8) £(r,8)

with f_m = f*, Here we have introduced the convenient abbreviations

~

H=F
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t

= (6,1)

andv

m = (m,-n) .

The asterisk denotes complex conjugation and

‘

$do = [T a0 [ az.
- -

In order to express the Hamiltonian theory in terms of Fourier
amplitudes, we consider first the decomposition of the inner brackets. For

the toroidal bracket of Eq. (37), we compute

[£,8], = (21)72 § 49 exp(-im+8)[£,g]

of Bgm ’
- L —_n 7 I~Il - 4 ’ ~-IB'
== %' [(m m )gg_gf —y " m fIL1 ___5;__]
3f_.
u , 9
R e e - O (57)
- 0~ n-m°

Notice that the radial derivative in the last term of Eq. (57) acts on both

functions to its right. The poloidal bracket yields a similar form:

(n gIE__ml 3T - 1n ﬁ gm_ml fIE') . (58)
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Consider next some functional, F, of a field, £,

F£] = [ dx F(£, VE,...)

where F is the corresponding density and the omitted arguments are higher
order derivatives on f. It is clear that Fourier decomposition of f will

induce a functional of the Fourier coefficients,

F£], £,...] = [ v dr § d8 F(] £, exo(in-0)) . | (59)
172 L

What is needed is a relation between the functional derivatives &F/8f and

GF/Sfm. A convenient expression for 8F/8f is obtained from Eqs. (25):

== Ve e+ L, - (60)

while GF/Gfm is defined by

~

5F

d —

= F [..., fE + 8“9""] = fr dr ng-gfg . (61)
From Egs. (59) and (60) we compute

dF _ . 3F IF

i f r dr ng(r) § d8 exp(ime+9) [gf v ETYE3'+ ...] . (62)

After comparing the integrand in Eq. (62) to the definition of Eq. (61), we

see that
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SE . (63)

Let us apply this formula to the general Hamiltonian functional

H = %f dr ¢ § a8 [(vV;¢)% + (V)% - 2r coseB].

The induced functional, ﬁ, is readily computed

¢ 2
= 1 m2 2
H==> ] der {|I== +— l¢y]
2 m or r2 -
My 2 2
m m 2
4—]_554 +-;§ |¢9|» - 2r(cos 6)IB 89} .

Notice that
2(cos @), = Gn,O <6m,l + Gm,—l)

in terms of Kronecker delta~functions. Hence only B1.0o and B_j.p contribute
> b

to H. Recalling that

we can use Eq. (63) to obtain the formulae
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S _om2g C(64)

= =(2m)? b, (65)
énd

SH o (om)? % 8no (8m,1 + 8p,-1) - ~ (66)

Equations (535), (57) and (58) can be combined to write the general

Poisson bracket in terms of the Fourler coefficients wm, U, and Bm‘ We omit

~ ~ ~

the result, which is straightforward to obtain, but consider explicitly the
most important special case: that in which the functional F is a Fourier
component of one of the three basic fields. It is evident that any Fourier

coefficient, fm(r), can be considered as a functional of £(r,0); Eq. (25)

~

provides the functional derivative

§£,(r)

S5 (21)72 7! §(r-r,) exp(-im+8,) - (67)

Hence {fm,G} is- well-defined for any functional G. Suppose, for example,

~

that £ = ¢ . Then Eq. (55) provides
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8 §
wm §G r2 [ ‘plﬂ

(ot} = [ 7 ar § 0 (vl » 59 + 50

SG] }
sy ’ su'p
We use Eq. (39) to rearrange the integral,

awm 2
~ 8G 8G
{ogoch = [ = ar § o 2 (128, 4] + (88, 207,

which then can be evaluated by means of Eq. (67):

_ de . 5G 8¢ r?
g0} =4 (2r)2 exe(-1m-80) (g » ¥+ g » 7))
(S, W, 2y
§U ° §U° 27p'n :

Since a similar argument, using Eq. (23), shows that

[GG

§¢ r
L R L

{v,6} = s ¥] +

we have obtained the important result

{v,6}l, = {vy.6} (68)

which equates the Fourier component of a Poisson bracket with ¢ to the same

bracket with the Fourier component of ¢, It can be seen that Eq. (68) also

holds when ¢ is replaced by U or B.
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The main point of Eq. (68) is that it permits dimmediate Fourier

decomposition of Hamilton’s equations, Eqs. (56):

Yy = {‘1@ , 2}

o, = {u, » 8 , (69)

3=

™e
1

3=

—{BE}’H}’

where, as in Eq. (56), the Poisson bracket is that defined by Eq. (55).
Thus the Fourier coefficients obey precisely the same equations of motion as
the corresponding £fields, when (and only when) these equations are written
in Hamiltonian form. 1In this "sense, Hamilton’s equations are dinvariant

under Fourier decomposition.

0f course wm (for example) is coupled to Vs Q’ # m, as well as to U,
and Bys+ Such couplings are explicit in Egs. (57) and (58), and are
impli;itly included in Egs. (69), by the definition of the outer Bracket.
This bracket similarly includes the effects of the Fourier components'Bm, m

~

% (*1,0), which are absent from the Hamiltonian.

The main conclusion of this subsection is that the transformation from
the space (r,8) to the space (r,m) (Fourier discretization) is easily

effected without modifying the definition of the outer bracket.
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Ve Introduction_g£ Potentials_: Canonical Form

/

It is well-known that in order to represent Maxwell’s equations in
vacuun in canonical Hamiltonian form it is necessary to introduce the vector
potential. In a similar manner the generalized Poisson brackets presented
here can be transformed to canonical form via the decomposition of our
fields into "potentials". Decomposition of physical fields into subsidiary
fields has an extensive precedence that includes work of Fuler28 (1769) and
Clebsch?9 (1859). The reader interested in this history is referred to
Ref. 14. Recent work concerned with the interconnection between
noncanonical Poisson brackets, canonical variables, gauge groups and

variation principles can be found in Refs. 12, 14, 21, 23, 30, 31.

In this section, we vrestrict our attention to the low-~beta,
single-helicity case of Subsection III{(A). The transformation to canonical
variables, (Q, P), is effected; hence, the equations of motion are expressed

in the form

Q=2 » P=-42 . (70

The canonical formulation involves four fields rather than the initial two
($,U0) - a fact which weighs against the apparent simplicity of Egs. (70).
Nonetheless, the analogous potential decomposition for the ideal fluid has

32 t6 be of numerical advantage. Next, din this

been ascerted by Buneman
section we present the wvariational principle for which solutions to

Egs. (70) and hence RMHD are extremal functions. Variational principles are

natural starting points for trial function or Rayleigh-Ritz approximations.
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The analogous variational principle for two-dimensional scaler vortex

advection has been used by Salmon for numerical integration.33

The canonical variables are related to ¢ and U through the following:

V=2 ViQp *x Y1Qp = [Q1, Q] (71)
and

with these definitions, we can compute the relevant functional derivatives.
For example, a functional F of i and U yields a corresponding functional F

of (Q;, P;) i = 1,2 with

§F _ [6F
35, " bso > al

§F _ (SF SF
?QT_—[G_w’QZ]-[S_U"Pl]’

and so on. (Such formulae are derived from a functional derivative version
of the chain rule.) One readily finds that the outer bracket of Eq. (30)

becomes

§F 86 _ OF &G
{F,G}, = ; [ dx (spi gy 6Pi) , - (73)
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~

which is manifestly canonical. 'For simplicity, the -notation is suppressed

on the right-hand side.

The canonical bracket leads directly to Egs. (70). Consider, for
example, the equation of motion @ = {Y,H}. In view of the definition,

Eq. (71), we have
[Q, ] + [15 Q] = {[ay> ], H} .

Then Eq. (73) provides

. . §H §H
(a5 ] + [0, @] = [gf; » Q] + [, 52y I

Therefore we can choose

Qp = Sm/ép; , i=1,2 . (74)

A similar calculation shows that

P; = -8H/8Q; i=1,2, (75)
will produce U = {U,H}. Hence if P; and Q; satisfy Eqs. (74) and (75),
where the right-hand sides are obtained by treating H as a functional of P

~and Q, then the ¢ and U obtained through Eqs. (71) and (72) necessarily

satisfy Eqs. (12) and (13).
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Let us write Eq. (74) more explicitly. In view of Egs. (26) and (72),

§H §H ‘
E@;=[6_U’Qi]=—[¢’ Q] -

Hence we have

Q; + [, Q4] =0,

or, in terms of the reduced MHD fluid velocity,

A~

V=t xVi¢,

! __aQi v 0 (76)
dt sc T LY =0 .

"

Thus Eq. (74) simply implies that the Q; are constant in the rest frame of

the fluid.

A similar explication of Eq. (75) reveals that

dp, -

=0 @I x T, | 77
dp, R

dt = Y_L ¢ (YJ_Q]_ X CJ) s (78)

where, as usual, JEV% y measures the toroidal current. The interpretation

of Eqs. (77) and (78) is considered next.
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We first observe that the flow velocity defined by
Vs =-] Py ¥ Qg (79)
i
has the same vorticity as V. That is,

e¥y x Va = =z+V1 x (] P;9,Q;)
i

C.V.L X VE U,

in view of Eq. (72). Thus V4 and V differ by a two-dimensional gradient,

Ta= T+ 9 x (80)

and we can ensure that Vi*Vx = V| *V = 0 by requiring

In terms of canonical variables, the same requirement yields the constraint

2 =
L (pgVQy + ¥ P4+¥,0Q) = 0. (81)
i
Equation  (79) suggests  choosing the Q; as spatial coordinates:
(%,5,2)*(Q4,Q9,2)« The P; are then seen to be the covariant components of
~-V%, which evolve according to Eqs. (77) and (78). We write the latter in

terms of the new coordinates, noting that the volume element, vg, in

(Qi,Qz,C)‘SPace is given by

71§ = To70; x Y0 =¥ - (82)
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Thus, for any vector A,

5 AV 5y AV Q

VoA = ,
g = (3Q1 v * 3Qy 1

and we find that Eqs. (71) and (72) can be written as

To understand Egs. (83), we return to the single helicity equation of

motion,
{I+ [d),U] = [IP,J],

which can be written as

d ~ ~
e L x Y=l v x¥J

= el x (BT .
Thus

. dy
¥ % (FE - WD = 0 .

Here we used the identity

(83)

(84)




-

ge9, x [(v+7,)v] = ve¥; (z+9; x V)

which also enters the derivation of reduced'MHD, and which can be verified

directly. Equation (84) implies that

dy
o VNIV, (85)

where the arbitrary function F is evidently related to the "gauge" function,
¥x, of Eq. (80). Equation (85) can be seen to be equivalent to Egs. (83).
The 1latter therefore compactly express the covariant fluid acceleration,
with a gauge choice which eliminates the V|F term. Since the vorticity, and
thus also the dynamics of vreduce MHD, are gauge independeht, this gauge

choice is appropriate.

Equations (83) have the nice property of emphasizing the essential
free—energy source for the class of motions pertinent to low-beta reduced

MHD: current gradients.

Now we construct the action principle that produces Eqs.(74) and (75)

upon variation. Consider ‘
A[Q,2] = [ dt [ [ ax peQ - B(2,Q)] . (86)

If we treat Q and P as independent variables, then the class of variations

~

of A that allow the neglect of surface terms yields for 6A/69(§,t) =0




5

)
= 69(§) (87a)

trge

and similarly S6A/6P(x,t) = O we obtain

é -8, (87b)

If either the variational principle Eq. (86) or the symmetry manifest

in Eqs. (87) is to be utilized, then initial conditions on ¢ and U must be

~

transformed into initial conditions on Q and P. This transformation is not

unique - the choice must be tailored to the application at hand.
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Figure Caption

FIG. 1 - Tokamak coordinate system. RO is the distance to the minor
toroidal axis. The closed curve is used to schematically indicate

‘a poloidal plane, which has a characteristic size a.
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