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ABSTRACT

We show that the generally neglected Hall term in the equations for two-fluid magnetohydrodynamics may
have a profound effect on a-dynamo action. The new calculation, in addition to subsuming the standard results
from the mean field approach, contains a contribution to the a-coefficient entirely due to the Hall current in the

microscale.

Subject headings: galaxies: magnetic fields — magnetic fields — MHD — stars: magnetic fields

1. INTRODUCTION

One-fluid magnetohydrodynamics (MHD), the standard
framework for describing dynamo activity in astrophysical en-
vironments, cannot be expected to properly describe collision-
less plasmas because it fails to distinguish the relative motions
between different species. It is nonetheless interesting that
MHD often turns out to be a reasonable description of the
large-scale bulk dynamics of the fluid, as long as the fluid does
not support a significant electric field in its own frame of
reference.

A first step toward creating a more appropriate theory for
collisionless dynamics might be to include the dominant two-
fluid effects through a generalized Ohm’s law: E +u X B =
—Jj X Bine, which includes the Hall effect, considered to be the
most important in a wide range of cases of interest (n is the
particle density, e the electron charge). In order for the Hall term
to be important, the characteristic length scale (L) of the system
should be on the order of the Hall scale, L, = cv,/V,w,,, where
c is the speed of light, v, the Alfvén speed, V, a characteristic
speed, and w;, the ion plasma frequency. Inclusion of the Hall
term leads to the Hall-MHD equations that display, among other
properties, the freezing of the magnetic field to the electron flow
rather than to the bulk velocity field. Consequently, the Hall term
is likely to exert a major influence on the generation of the
magnetic field through dynamo activity.

The astrophysical systems where the Hall effect might be
important are relatively well known. Some examples are as
follows:

The interstellar medium.—The characteristic Hall length
scale is about 1000 km, while typical length scales for tur-
bulence in this medium range from 100 to 10° km (Spangler
1999). While these length scales are still very small for helical
effects to be relevant, Hall effects can be important in large
Prandtl number dynamos (Kinney et al. 1999), which take place
in scales below the kinetic energy dissipation scale.

Turbulence in the early universe.—The Hall effect can affect
the inverse cascade of magnetic helicity, which is believed to
be responsible for the generation of large-scale magnetic fields
(Tajima ct al. 1992).

White dwarfs and neutron stars.—Evidence of strong Hall
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effect exists for the relatively wide range of magnetic fields
detected in these objects (Urpin & Yakovlev 1980; Shalybkov
& Urpin 1997).

In the present work, we go beyond the standard MHD treat-
ment and calculate the contribution of the Hall term to the
o-effect. We also avoid using the first-order smoothing ap-
proximation (FOSA), the standard closure scheme of the tra-
ditional mean field dynamo theories, since it requires the mag-
netic Reynolds number or the Strouhal number to be much
smaller than unity. Such conditions are not satisfied in a number
of relevant cases, such as the cases of the Sun and the galaxies.
An alternative closure has recently been proposed (Blackman
& Field 1999) that partially solves some of these problems.
However, limitations in the derivation of the mean field still
remain. In § 2 we derive an expression for « that includes the
Hall effect, and in § 3 we obtain quantitative results for a set of
Hall-MHD equilibria. In § 4 we summarize our conclusions.

2. THE HALL-MHD EQUATIONS

Ideal and incompressible Hall-MHD is described by the
modified induction and the Euler equation:

%:Vx[(U—VxB)xB],

2
%:Ux(VxU)+(VxB)xB—V<P+%),

ey

where the velocity and magnetic fields are expressed in units
of a characteristic speed and lengths are in units of the Hall
length. We are interested in finding out whether this system is
able to generate a macroscale magnetic field from an initial
microscale configuration, consisting of a small seed magnetic
field along with a substantial velocity field.

We assume the initial state u,, b, to be a solution of equa-
tion (1) in the absence of a long-scale field. We now perturb
the system about_this microscale solution, with B = B +
b+b,and U = U + u + u, where the overbar denotes spa-
tially or statistically averaged long-scale fields while u and b
are small-scale perturbations. Note that while b, is the short-
scale magnetic field in the absence of B, b is the perturbation
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when B is present and need not be isotropic. All small-scale
fields have zero averages, while their products in general do
not. Substituting into equation (1) using the equation for b, and
taking averages, we find an equation for the evolution of the
large-scale averaged magnetic field:

oB _ _ _
E=Vx[(U—VxB)xB+(Vx(ugxb+u“xb0)),

@)

where u® = u — V X b is the electron flow velocity. Quadratic
terms in b and u were dropped, as is usually done in the mean
field theory. Note that although it is a common assumption, it
is not clear that these terms will remain negligible once the
mean field grows to finite amplitudes. However, our assumption
is less restrictive than the standard FOSA used in mean field
derivations and is more akin to that of Blackman & Field
(1999).

We can also derive an equation for the small-scale perturbed
magnetic field . Here we drop terms involving spatial deriv-
atives of the mean fields because the variations of the long-
scale fields are negligible on the microscale. Finding correc-
tions to the a-coefficient as our current focus, we also ignore
the averaged terms, as they will not contribute to the equation
for B. We obtain

%:Vx(ugxi—boxt_l). 3)

In a similar manner, we can write the perturbed Euler equation,

P - —
a—l:z(beo)xB—(U°V)u0—-Vp. 4

From the divergence of equation (4), we obtain p = —bO-E
for the small-scale pressure perturbation, which when substi-
tuted in equation (4) yields

%:(E-V)bo—(l_/-V)uo. 5)

To obtain an expression for «, we close equation (2) by ap-
proximating the time derivatives in equations (3) and (5) by
multiplications by an inverse correlation time. Note that this
step, which amounts to the assumption that the correlation time
7 is finite, is common in mean field theory, even though there
is at present no evidence, experimental or numerical, that it is
valid in general. We are working on an extension of the present
model that does not rely on this assumption.

Assuming a weakly anisotropic turbulence and eliminating
terms involving U in the short-scale equations in the proper
reference frame, the evolution equation for the mean field B
becomes

oB _ o _
E:Vx[(U—VxB)waLaB], ©6)

where oB denotes the microscale contribution to the magnetic
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field generation with
T
o= 5(—-(uf,°V Xug) + bV X by)
—(by+ VXV Xui)). @)

The standard results from the mean field theory can be extrac-
ted from equation (7) by neglecting the terms originating from
the Hall effect. By replacing u§ with u, and dropping the
last term, equation (7) reduces to o = 7(— (U, V X u,) +
(bo+ V X b,))/3. The kinetic term (Krause & Ridler 1980) is
modified by a magnetic correction derived by Pouquet, Frisch,
& Leorat (1976). Our more general expression (eq. [7]) differs
from the classic result in two ways: it replaces the kinetic helicity
(of the bulk motion) by the helicity of the electron flow, and it
contains an extra term due to the Hall current in the microscale.
A nontrivial consequence of the latter is that while the expres-
sion by Pouquet et al. (1976) is zero in a pure Alfvénic state,
u = +}p (Gruzinov & Diamond 1994), equation (7) is not. In
§ 3 we compute the expression for o for double-Beltrami states,
which were shown to be the dynamically selected states in Hall
MHD (Mahajan & Yoshida 1998).

3. THE DOUBLE-BELTRAMI EQUILIBRIA

To assess the importance of the Hall term on «, let us assume
the initial state u,, b, to be a double-Beltrami state (Mahajan
& Yoshida 1998). The two Beltrami conditions,

u,—-Vxbh, =

>

by
a
by +V Xu, = du,, (8)

express rather basic physical laws, namely, that the inertialess
electrons follow the field line and the ions follow the field lines
modified by their vorticity. The parameters a and d measure
the magnetic and generalized helicity, and for slowly evolving
systems, they are constants of motion labeling the state (Ma-
hajan et al. 2001; Ohsaki et al. 2001). These equilibria do not
require any exact symmetry (such as Grad-Shafranov) or neg-
ligible U and VP (such as Taylor states). In addition, the ve-
locity and magnetic fields are treated on an equal footing in
the double-Beltrami state, making it an equilibrium of choice
for the dynamo problem, where the velocity fields are so fun-
damental.

Double-Beltrami conditions (eq. [8]) are always accompanied
by the Bernoulli condition, V(p, + u3/2) = 0, where p, is the
equilibrium pressure. Double-Beltrami conditions allow a gen-
eral solution in terms of two single-Beltrami fields (V X b, =
Aby), with the inverse length scales determined by A, =
—r2 + (r*/4 — s)"?(wherer = l/a — dands = 1 — d/a). For
dynamo applications, we are interested in the situation where
the two scales are widely separated, requiring r* > 4s. The long
scale will be associated with the characteristic scale of the system,
while the shorter scale is associated with the turbulence. To reflect
vanishingly small long-scale velocity and magnetic fields, the
initial fields are assumed to be purely short scale (X' is the short
scale), given by V X b, = Ab, and u, = (\ + 1/a) b,

One of the fundamental consequences of the Hall term is to
effectively replace the bulk velocity by the electron flow in the
expression for a. Considering the Beltrami conditions and the
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initial fields, this ratio is

ug 1
u, Na+1

, &)

which can vary over a rather wide range. In the initial stages
of the dynamo, this ratio is of great significance in determining
the difference in « caused by the Hall term from its standard
value. In Figure 1a we display this ratio as a function of the
equilibrium parameters a and d. Note that for large |a| and
|d|, u§ = 0, implying that the c-effect is virtually suppressed.
On the other hand, when |a| is small, u} is strongly enhanced,
while the bulk motion in the microscopic scale remains small.

This equilibrium condition allows the compact form o =
7F(a,d) (u,+V X u,) /3. In Figure 1b we display the depen-
dence of the function F(a,d) on the parameters a and d
[F(a,d) = [1 — (1/a + Nlal/(1/a + N)*]. Figure 1c¢ shows the
regions where the separation of scales exists. Note that we have
an almost vanishing a-effect if |a| and |d| are large, since for
this case the Hall cancellation makes the electron fluid motion
much slower than the bulk motion. On the other hand, when
|a] is small, there is again a serious disparity between the electron
fluid and the bulk motion, but with u{ much bigger than the
bulk velocity in the microscale. As a result, the e-dynamo be-
comes much more effective. In these two asymptotic limits, the
Hall term plays a dominant role.

4. CONCLUSIONS

This Letter contains a first derivation of the «-dynamo co-
efficient when Hall MHD is used to describe the plasma. A
more complete two-fluid self-consistent approach will be pre-
sented in a later work.

The changes induced by the Hall term are twofold: The first
is to cause the replacement of the bulk kinetic helicity by the
helicity of the electron flow in the formula for the o-dynamo
effect. Since these two-fluid motions can eventually become
quite different, we find large suppression or enhancement of
dynamo action (as compared to the standard MHD), depending
on the state of the system. The second is the introduction of
an additional term in the «-coefficient (due to Hall currents in
the microscale), which survives the standard cancellation of
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Fic. 1.—(«a) Ratio of u,/u,. Holes correspond to regions where the length
scales are complex. (b) Amplitude of F. (¢) Region where separation of scales
is fulfilled.

the kinetic and magnetic contributions for Alfvénic perturba-
tions.
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