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Abstract

Phase-space density granulations (clumps) are studied wusing the
theory of two-point phase-space density correlation. A novel mechanism
of extraction of expansion~-free energy is described. This mechanism
affects questions pertaining to nonlinear stability. Theories for two-
point correlation for the universal mode in a slab geometry with shear
and trapped electrons in toroidal géometry are discussed. Results are
presented which show destabilization of the universal mode and
enhancement of the trapped electron growth rate. An analytic formula
for the width of the frequency spectrum is obtained. By specifying the
collective resonance damping mechanism, the wavenumber spectrum is also
calculated. A formula for energy fluxvillustrates the impact of clumps

on transport and energy confinement.



I. INTRODUCTION

In recent years, it has become increasingly apparent that a
description of plasma behavior only in terms of collective normal modes
is incomplete, particularly in the turbulent state or near an
instability in the presence of fluctueu:ions.l'4 The inadequacy of the
normal mode description of plasma behavior, basically a legacy of linear
theory, ié underscored by expefimental measurementsrof the fluctuation
spectrum of low-frequency turbulence in tokamak plasmas.5 These
measurements of broad frequency spectra at fixed wavenumbers are
inconsistent with the normal mode picture in which at saturation the
dielectric 1is zero, the modes are marginally stable (nonlinearly), and
hence the collective mode resonance width is very narrow. Absent from
this picture are fluctuations which are not phase coherent with the
potential and, hence; are not mode-like in nature. These incoherent
fluctuations are produced by the mode coupling associated with the
nonlinearity. Represented mathematically in Fourier transform space as
a convolution with the potential, the nonlinearity thus provides a
component of the distribution at wavenumber k which is proportional to
the potential at some other wavenumber k’ . When fluctuations resonate
with particles, the incoherent fluctuations become particle-like in
nature: they are a granulation in phase-space resulting from a mixing
process in which the conservation of phase-space density along the
particle orbit dnhibits the intermixing of different densities. This
can be understood by considering the correlation of neighboring
particles in the presence of the turbulent mixing. Neighboring

trajectories diverge due to the mixing process. However, particles

closely separated in phase-space remain correlated for a longer time
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since the turbulent potential each particle sees is mnearly the same.
The particles in a sufficiently small volume in phase-space stay
correlated with each other for a time exceeding the typical correlation
time of the turbulence and are thus scattered turbulently as a macro-
particle. The mixing process continues, however, and the granulation or
clump eventually decays in time. The decay process is offset by the
éontinuous creation of microscale structure caused by the turbulent
rearrangement of the average distribution which has a gradient. The
granulations are thus said to have a source. Systems having such a
scale dependent mixing process and a gradient driven source are common
in plasma physics. They include systems in which, for example, ion
sound waves and drift instabilities might occur, as well as turbulent
plasmas existing in conditions below the threshold of these
instabilities, but which nevertheless have a free-energy - source.
Although historically the description of clumps and associated phenomena
has been couched in a kinetic formalism, these considerations and
processes are also germane to fluid descriptions, dincluding both one-
fluid (MHD)6 and two-fluid models.’

The decay of the microscale correlation, formulated in terms of a
relative diffusion process has been extensively studied; a number of
investigations have dealt exclusively with relative diffusion.S Here, we
seek to emphasize the crucial role played by the source. The source is
proportional to the rate of relaxation of the average distribution and,
hence, to the rate of extraction of expansion-free energy. Through the
source, the incgherent fluctuations have access to the expansion-free
energy. The incoherent fluctuations act as noise, exciting the

collective modes. In the saturated state, the modes are necessarily
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damped in order to balance the noise excitation. This damping then

constitutes the width of the collective resonance centered at the
frequency w(k) of the collective resonance (mode). The standard view
of turbulence in the saturated state as consisting of a spectrum of
waves 1s thus replaced by a description in terms of collective
resonances broadened by incoherent noise emission.

The vrelationship of the source of microscale correlatidn to the
extraction of expansion-free energy provides a new accessibility
mechanism and resultant clump-induced instability. The width of the
frequency spectrum, as the collective mode’s damping response to the
instability, is thus strongly related and may be considered a signature
of the clump-induced instability. Considerations of free-energy extrac-
tion and relaxation of the average distribution also point to a strong
effect on transport arising from clumps. Thus, a consideration of the
source introduces the issues of plasma stability and transport into the
study of clump-related phenomena as well as alters the classical view of

steady-state turbulence.

IT. EVOLUTION OF THE TWO-POINT CORRELATION

We have already described the action of the turbulent mixing on
neighboring phase-space trajectories and the scale-dependent correlation
function that results. This correlation 1is a.two-point phase-space
density correlation. We seek an equation which describes the evolution
of two-point phase-space density correlation under the influence of the
turbulent mixing and the source. An equation which correctly describes

this evolution cannot be obtained from a standard one-point
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renormalization theory. A two-point equation constructed from a
renormalized one-point equation incorrectly predicts that two points
will diffuse independently even when their separation is very small.
Following Dupreel’z, we start with the evolution equation for two-point
phase-space density correlation obtained from the Vlasov hierarchy and
renormalize the triplet nonlinearity. It is then readily ascertainable
that thé relative diffusion Vindeed reflects correlétion at small
separation.
We have already alluded to measurements of the fluctuation spectrum

5 as motivation for considering

of low~-frequency turbulence in tokamaks
incoherent fluctuations. WeAformulate the theory of two-point correla-
tion for drift-wave fluctuations, widely considered responsible for
anomalous transport processes 1in tokamaks. In contrast to Dupree, we
treat clumps in the presence of collective modes -- the dielectric is
zero and the collective resonance shields the clumps, as governed by
Poisson’s equation. Drift-wave flﬁctuations occur at frequencies
approximately given by the electron diamagnetic drift frequency, Wge *
Incoherent fluctuations, which propagate ballistically, E:Ef’ are
resonant, are therefore generated in the electron species.
Collisionless electron dynamics are described by the gyrokinetic
equation,

[ 3 Ao c A 90 c A
(-8——'*‘ Yd.Y..L +V”n"Vw)g -qu)xnuvlg = ———<f>-3—t——-B_O-V.L®xn.v.L<f> s

(D

where g is the nonadiabatic part of the fluctuating electron




-6—
distribution, & 1is the potential, <f> is the average distribution,
and 10 is the unit vector in the direction of the magnetic field. The
velocity V4 represents the VB and curvature drifts. The last term
on the left-hand side is the BB drift, which is the dominant
nonlinearity in the problem. Simplifications of Eq. (1) are appropriate
for the problems we shall consider herein. When g is taken to
describe a distribution of trapped electrons, ar bounce-average 1is
performed. When the bounce frequency represents the fastest time-scale,
the parallel gradient term averages to zero and only the VB and
curvature-drift resonance remains. When g describes the electron
distribution for the univers;l mode, the VB and curvature drifts are
negigible and the parallel resonance remains. For concreteness, our
description of the theory will focus on the later application. Details
for the former case are presented in Ref. 4.

From Eq. (1) we .construct the Vlasov hierarchy equation for two-

point phase-space correlation:
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where ke = rq/r . We have employed the ballooning representationg,

given by the transformation

Jonm|

N (3
;gn(n) )

fq) = E " exp(ing) E exp(-imd )/dn exp[ i(m - nq)n]
.8 B
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n

where ¢ =~ 1is the toroidal angle and n is the variation in the
direction of the magnetic field. This eikonal representation extracts
the radial wvariation in (m - nqg) as rapid variation; the remaining
explicit radial dependence is slow. Thus, for lowest-order theory, the
radial variation is contained in n ; kr = - kegn , and r enters as a
parameter. A compact form for the ExB nonlinearity is so obtainedlo, in

which the interaction is between n and n” at r along n .
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It 1is necessary to close the two-point equation, since its
nonlinearity contains a'three-point correlation. This 1is accomplished
by renormalizing the mnonlinearity wusing the direct interaction
approximation. We anticipate the separation of variables into average
motion ¢, =¢; + ¢, and relative motion ¢_ = ¢1 - 42 . The averaging
is performed by integrating over ¢, to yield &§(n + " + ") . The
nonlinear term le thus‘becomes | |

Tip = Z Z
n n’

:éxp(in¢_) :E:: kekég(ZHm') exp(2rin’qgm’)
o m’ )

(i (0% 20 g (D) 0D - expCims + 1240 D ok
m
x s(2rm’) exp(2rin’qm’) <i$_n,(n1 + 2rm”) é_n,(nl) §n+n'(n2?:>

F(1e 2y, &)

where shielding effects of a third term, <<%n+n’ g&_n’ gn:> are
neglected. Wave-particle resonances dominate and the clumps themselves

are resonant so that §n+n' = géﬁ%z where

who ’ w-tw

B = e 2D () (5 + 5+ )3
W wH’ 0 n" m’

x exp(2rin"qm’) [5_nn(nl + 2nm) §n+n'+n"] (5)

and
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Lytn = ,[‘i(w +o’) + ik + K Vu)] .

wt
Proximity to resonance permits the Markovian approximation,
Lotns * Lys « Selecting from the sum over n" , the directly-
interacting triplet (n" = -n’) , we arrive at the renormalized kinetic

-equation for the two-point phase-space density correlation,

s f o T}y 52 <
st | Rq(r) * Rqr(r) / 3n_ g_—_ g(l)g(Zi>

Y Lol axp( 17y ) (07 - wke) <ECL> <%(2>5<1>3n' : (6)
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’

w

where y = 1d/q , D = 2D - p(2:1) _ p(1,2)

2 . ~— A s
D = = Z k%82 (Rely.) Z (2rm)? .<<1>(n + zim)2
K’ 0 e

2 (7
By
w z
and
2 N
p(1,2) - .SE § , exp(ik’y_) kézs ReL E (erm)2
BO k’
(],) ’
x exp(2mimr_k’s): <i (nl + 2rm)@ (“2 + 2nmi>> . (8)

The diffusion coefficient D represents independent diffusion which is
derived from a one-point renormalization, and hence characterizes

coherent mode coupling. The coefficients D(152) and p(2,1)



-10- .
represent the correlated diffusion caused by incoherent mode coupling.
Correlated diffusion vanishes for large relative separation and
approaches 2D as the separation goes to zero. The relative diffusion
D_ thus tends to zero as the separation of neighboring orbits
approaches zero. The scales over which D!s2 # 0 as determined from
Eq. (8) define the scale of the clump. For phase-space separations

small compared to the clump scale, the relative diffusion is quadratic

in the relative phase-space variables,

(9

where k51 s kalg"l » and An are the clump scales for the toroidal,
radial, and parallel variations, respectively.

The evolution of the separation of neighboring trajectories permits
a determination of the lifetime of microscale correlations. The time
required for the separation to reach clump scales from an initially

smaller separation defines the clump lifetime, Teg

vy T
+ —-—TC n (V + "+ _> 1 + fe 1 (V +
- I j Al
k%(An)2 - r Rq(r) Zk%AnZ [Rq(r)] 2 -

(10)

where To is the correlation time of the coherent fluctuations for
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scales comparable to the clump scale (TC = 1/k%D) « The clump lifetime
exhibits the logarithmic peaking in the phase-space variables which is
cﬁaracteristic of the exponential separation of trajectories occuring
over most of the clump scale. An earlier assertion that particles in a
sufficiently small volume stay correlated for a time (Tcz) exceeding

the correlation time (Tc) of the turbulence is now obvious from

Eq. (5);

III. THE SOURCE

The clump lifetime Tog 1s the decay time of the microscale corre-
lation, Which characterizes the evolution of the two-point equation,
Eq. (2). In the steady state, the solution of the two-point equation is
given approximately by <g(l)g(2)> = Teg S12 + The decay is counteracted

by the source which drives the microscale correlation,

Sialkpskpsvy) =

i':l[‘el Z exp(ik’y_) [w' - w*'e) E(L)> <§(K2)E’ (Kl)>k' . (11)
e x’ w’
u)’

For convenience we work in the space of « and K obtained from
’ 1 2

Fourier transforming,

Sialkiskg) = [ang exp(ikqny) [dny exp(ixony) Spp(ngmy) -

The source is proportional to the rate of relaxation of the average
distribution S = —<E> aE>/ot Consequently, associated with the

driving of the microscale correlation is the extraction of the
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expansion-free energy stored 1in the density gradient of the average
distribution. A detailed picture giving insight into the mechanism by
which the expansion-free energy is made accessible through thé source 1is
provided by an analogy with the physics of discreteness as described in
the Balescu-Lenard equation.l’2 This analogy is suggested when the
source is separated into coherent and incoherent components. We recall

that

8e(<) = 8L () + Bi(x) (12)
where

A _(w "Ll)* ) A
(c) - e le|
WO = T e < ) (13)

is the coherent response and g,(x) 1is the incoherent fluctuation.

Substituting Eqs. (12) and (13) into Eq. (11), the source is written as

S1, = Z CHETIRE o1 E(1><E@)> 18w’ - L)' {ac1)b(2)
12 = *e) 79 . Rq/) 5

’

k’ e w

w ’

+ iée] (0 - wie) <f(1)><<§(2)5(1)>>k' . (14)
e : w’

The first term is the coherent component and the second is the
incoherent component. In writing the first term, we anticipate that we
will require the real part of the source; hence, we retain only the

‘residue contribution in§(w - Kv"/Rq) from the pole (0w - Kv"/Rq)—1 .
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Since S12 = L<f>(8<f>/8t) ,» We associate with the right-hand side of
Eq. (14) the processes that drive the evolution of <f> . The equation
IE>/ot = 819/<f> 1is analogous to the Balescu-Lenard equation and
allows us to identify with the coherent and incoherent components of the
source the processes of diffusion and drag, respectively. The diffusion
is quasi-linear diffusion, except that here the coherent response,
fhrough Poisson’s equation, shields the clump. The drag term represents
the friction experienced by the clump as it emits Cherenkov-like
radiation while moving through the plasma.

The analogy with particle collisions is useful in understanding an
important cancellation which occurs in the source. To see the
cancellation, it is necessary to express the clump-shielded potential 5
in terms of the incoherent potential 5k = Awqfdv“ék(K,v") . The
relationship between é and 5 is obtained from ©Poisson’s equation
Lk(K)ak(K) = 5k where Lk(K) is the eigenmode operator. We further
recall that clumps are resonant, moving at the ballistic velocity

u = w/k“ = wRq/k . Thus,

<"g(2)€>(1)>k, 21r6>(w - kv ) L (k) <§(2)5(1)>k, ’
\ wl

<i5(1)$(2) >

w

L:I{,(KI)LEl(KZ)/dv" <"g(2)€>(1)>k, 28w’ - kfvy)

- 112<1,,Tl Lg (c DLE} (¢ 5) <fg(u')§>k, (15)

and
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(16)

From the imaginary part of Lk:(K) comes the drag term’s contribution
to the source. This consists of the electron and ion dissipation
involved 1in the mode. The electron dissipation, representing the
electron-electron drag, is that of inverse Landau daméing; the ion
dissipation, representing the electron-ion drag, consists of the shear
damping (linear) and the nonlinear damping (here, ion compfon
scattering) which satrurates finite amplitude turbulence. Since the
diffusion term is proportional to the electron dissipation, the
diffusion cancels with the electron~electron drag. This cancellation is
generic to clump phenomena and reflects the shielding of clumps by
collective modes, For quasi-neutral fluctuations, the shielding of a
single clump species, say electrons, is expressed by a shielded quasi-
neutrality condition, n, = néc) + Be = —néc) « Rewriting the right-
hénd side as an ion response function times the potential, the imaginary
part of this condition yields a relation between electron density and
ion dissipation. This velocity-averaged shielding relation is extended
to phase-space densities because ballistic, particle-like clumps select
from the velocity continuum a single velocity, projecting onto the

configuration space. This leaves only the drag with the ions, so that
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x LoE(kp) They) <BWHR D ], (17)
where is%ﬁN is the ion dissipation. The scaling of the source with
ion dissipation reflects emission by an electron clump due to its drag
on the ions.

A final form for the source is obtained by expressing the inverse
eigenfunction operators T terms of the wave function Tk(K) and

w
dielectric response e(k,w) ,

where Ni.. 1is the normalization constant. Thus,

’

w

2
<f(u)>(w’ - w;e)s%gN(k’,w') ,Yk,(K)‘
w’ '

<§(U)E >k.'

le (k)12

(18)

where

<"g'(u)ﬁ>k, = __1__2_ deI/dKz Yier (1) ¥ gr (k) .<§(u)ﬁ>,.k, .
l o T .

i
wl

For electron phase—-space granulations in low-frequency (w*e)
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turbulence, the consequences of Eq. (18) and its scaling with ion
dissipation are important and account for the significant impact of
clumps on the collective modes. As mentioned, the electron dissipation
is destabilizing (e%&EC > O) and the ions are stabilizing (a%ﬁN < O) .
The ion dissipation includes the linear stabilization mechanisms (shear
damping) and amplitude dependent damping mechanisms such as ion Compton
scattering and isrlarge, as it musf balance the linear instability and
its enhancement by the incoherent excitation. With w < Wxe » a large,
positive source 1is thus provided for the electron microscale

correlation.

IV. THE SPECTRUM BALANCE

The steady-state solution of the two-point phase-space density
equation is given approximately by <ggd> = TegS o The incoﬂérent part
of the correlation is obtained from the total correlation by extracting

the coherent part, and the <g(c)é> cross correlation. Hence:

EE = (g -1 (19)

In the last section the source was expressed in terms of <§f§jﬁ}k, s
the projection on the eigenfunctions of the incoherent part of velocity~
integrated correlation. The quantity E(u) results from the velocity
integration of the incoherent density for the ballistic clump with
velocity v = u = w/k" . By performing the velocity integrations,
Fourier transforms in n and y , and eigenfunction projection on both

sides of Eq. (19), it is possible to express Eq. (19) entirely in terms
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of <E(wi>, . The relationship between <EB(wh>, and <EE>p 1is

expressed by

: ( e :
ﬁvll+ﬁvll_ 21r6<m - ky v"_i__)fdy_ exp(—iky_)fdn_ exp(—iK__n_)<"g"8'>k

and

' 2 S 0N g
dv, 2rSfw - kv T(u)n = 732N %) = (1
/ Iy ( I u+)<g< Dk | .,<8 (k“,) >k A

where the two time correlation <Hi>, is obtained approximately £from
W

the one time correlation by operating with the propagator 2ﬂ6[m - k"v")

which represents ballistic propagation. Using these equations and the

eigenfunction projections, we obtain the spectrum balance equation,

" [ [ Vi (kDY 5 (kp) [
T - [, fon LD [,
, N | -

X /dy_ exp(-iky_{/cm__exp(—iKn_) (tog = TIS12 » (20)

AY

where. Te @and S;o are given by Eqs. (10) and (18). The integration
over v, has been given previously.1 The Fourier transforms are
performed with the aid of a polar transformation to variables & and
B : 2cosb = en_/AnYZ ; Lsind = kyjey_ . A Bessel function expansion of

exp(~-ikn_ - iky_) then facilitates the 6 integration to yield
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~fdv“~.jﬁn_ exp(iK_n_);fdy_ exp(iky_) (Tcx - Tc) -

2 1
L6nAn“Rq | 1 ~[. d cos™le J(kan = oa(k) ,  (21)
3,2 K

where k = /(x%An?%/e?) + kz/(kéez) . Combining this result with

Eq. (20) gives

‘yk(K' l)‘y—k(K 2)

a(ky) <£(u)>

N 12
) gION(k',w )
de’(m’ -w;e) Tk'(Kl)'P_kr(Kz) ™ <g(u)n>k' . (22)
©’ e(k’yw’)?

This equation describes the detailed steady-state balance in the
spectrum between linear destabilization, the enhancement by incoherent
emission and the linear and nonlinear damping mechanisms. It plays an
analogous role in the two-point theory to the wave-kinetic equation of
weak turbulence theory. One important difference should be noted.
Because IdVHTcz is amplitude independent as Eq. (21) indicates, and
because the source 1is proportional to <g(u)i> - , the incoherent
fluctuation amplitude appears to scale out of the balance. The
incoherent emission process is ostensibly independent of fluctuation
amplitude above some nominal level and the spectrum is determined only
up to an unspecified function N(k) : However, because eqy details

the balance between destabilization mechanisms and the linear and

nonlinear amplitude-dependent damping, the spectrum balance equation
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does, 1in fact, depend on the collective mode amplitude. 1In the steady
state it is possible, by supplying the details of the nonlinear damping
process to determine N and completely specify the spectrum. Such a
calculation will be outlined in the next section.

For this resonant system, we may expand the dielectric |e(k’,w')[2
in the denominator of Eq. (22) about the eigenfrequency, assuming that

the spectrum broadening, or damping, at saturation is not too large,

’ 7 7 ’ z ae 2 Y ’
e(k’,w’) = [k - ki(w )] S5 + iy [krﬁn),w ]
where er[kr(m),w] =0 . We perform the k' integration, evaluating

the residue at the pole corresponding to the eigenmmode. The correlation
then cancels out of the spectrum balance leaving an equation expressing
the relation between the total dissipation EIM(k,mk) and the

dissipation in the ioms, e%gy(k,wk) s
e(k,wy )] = Clk,wy) jeiON(k,w,) (23)
[€ vl kswe) | W) ey (Ksye) |

where

Yo (k)12 ¥ (ko) 2
INCK) |

E>

% (24)

X (wk - w*e)

k=k(w)

The integrations over Ky , and Kk, are transformed to x, and «_ ,

and the integrations then allow the shielding response structure
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functions to sample the dependence of the clump on the two parallel
scales. The evolution or clump decay enters into the fast scale (x_)
sampling. The slow scale (K+) sampling reflects the degree to which
the mode structure in n shields the clumps.

Since the total dissipation 1s composed of electron and ion
contributions, €y = e%ﬁEC - fe%ﬁN| and eqy <0, as collective
resonances must be damped to balance noise emiésion, we may rewrite

Eq. (23) to obtain a saturation condition:

€ELEC(k wy)
TON _ M Pk
eIM (k,(ﬂk) = [1 = C(k’wk)] . (25)

This expresses the balance in the steady state between the linear
electron destabilization of inverse ZLandau damping enhanced by the
incoherent noise emission [1 - C(k,mk)]"l and the linear and nonlinear

damping in the ions. A related expression,

C(k,wk) C
EIM(k,wk) = '_l - C(k,(ﬂk_)] E%{ZE (k’wk) (26)

gives the total dissipative mode response to the incoherent emission
process in terms of a numerical enhancement of the electron dissipation.
The width of the frequency spectrum at fixed k 1is just eIM/(aa/aw)

and is given by

prrc  CCKs0y)

Awk = Yk I.l — C(k’mk)T . (27)
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V. ILLUSTRATIONS

We first report the results obtained for stability of the universal
mode in the presence of incoherent emission. For comparison, we then
consider a different problem, that of trapped electrons in toroidal
geometry, and obtain formulas for the frequency and wavenumber spectrum
as well as energy flux for the energy transport problem.

The universal mode is a density gradient-driven drift mode iﬁ a
slab geometry with a sheared magnetic field B = BO(; + x/Ls§) . The
linear properties of this mode have been extensively investigated.
Destabilization 1is provided by electrons which resonate with the wave.
Ton inertia is stabilizing, and is increasingly effective for stronger
shear. It is now well established that the universal mode is linearly
stable for all values of wavenumber and shear.lls12 The level of
thermal fluctuations in an ohmically-discharged plasma is sufficient to
trigger incoherent fluctuations which tap the expansion-free energy as
already described. The level of incoherent fluctuations grows, exciting
the collective modes which reach finite amplitude. Nonlinear ion
Compton scattering provides saturation and the overall damping necessary
to maintain the steady state.

In previous sections, we have outlined the calculation of the
incoherent spectrum relevant to the univeral mode. Using the ballooning
representation, the radial eigenvalue problem is re-expressed as an
eigenvalue problem in n . The x and y wvariations of the slab
geometry pass over dinto the n and y = ¢r/q variations of the
ballooning representation. Hence, the «k, - and k_ integrations of
Eq. (24) for the clump-enhanced growth factor C(k,wk) provide a

sampling of radial structure by the radial eigenmode shielding response.
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Assuming Pearlstein-~Berk mode structure by writing the shielding
response as a Gaussian, Wk(m) = exp(quxz) (where o 1s, 1in general,
complex) the k, and k_ 1integrations may be performed using saddle-
point contour methods. With normalized wavefunctions, the final answer
is relatively insensitive to the detailed value chosen for a , beyond

the usual scaling of LS/L the ratio of shear length to density scale

n ?

length which reflects the mode width of Pearlstein-Berk structure. The

final result for C(k,wk) is

; ko o ko [ Mg \1/2
Clkywy) = 100(An)2.-€E)————————— . <—) . (28)
k In)(1+%2) k{2

The mass ratio dependence arises from a phase-velocity scaling
(w/k"vte) which reflects the emission process of ballistic electron
clumps into modes at frequency Wi o We note that the incoherent
emission process occurs over the entire n extent of the mode, in
contrast to another theory of nonlinear destabilization of the universal
model3 which relies on effects within a small layer around the rational
surface.

Evaluating Eq. (28) for parameter values consistent with the
universal mode, we obtain a quantitative measure of the impact of clumps
on the universal mode stability. We rewrite the saturation condition,
Eq. (25), separating the nonlinear and linear damping in the ion term
and writing the nonlinear damping rate at saturation as a function of

linear dissipation:
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on e (ki) /(e Buy) ey (kswy)

Yo = Yfer. T TS ewap] o Gesep 0 Y

The mnonlinear destabilization is the clump-induced growth rate. When
positive, it indicates that incoherent emission has driven the modes to
finite amplitude, despite shear  damping, and has effectively
destabilized the mode. The clump-induced growth rate is expressed in
terms of the linear dispersion function. This reflects the fact that it
is the response function with its associated dissipative processes which
shiélds the clumps. Furthermore, we assume that the response structure
in the nonlinear regime is well appoximated by the structure of the
linear response. The wvalidity of this assumption 1is verifiable a
posteriori in terms of the magnitude of the ratio, YIC.I./m*e , and is
already evident in Eq. (28) where the small parameter (u/vte) plays a
central role. '

The evaluation of Eq. (29) is displa&ed graphically in Fig. 1,

where YIC.I. is plotted as a function of kpS and compared with

IMw(k) from 1linear theory. It is seen that clumps effectively.

destabilize an otherwise stable mode. A similar effect has been
predicted and observed in simulations of a plasma below the threshold of
the ion-acoustic instability.14 In contrast to our calculation of the
steady-state, clump~induced destabilization rate of a finite amplitude

mode, Berman et al.l% determine the nonlinear growth of the incoherent

fluctuation <gg> [they solve for vy = d/dt in Eq. (6)] away from
conditions satisfying the linear dispersion. In the universal mode, the
destabilization is not particularlyi large; for trapped electrons,

however, the effect is more significant.
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We consider electrons trapped in the magnetic mirrors created by

the spiraling of the magnetic field on the toroidal magnetic flux
surfaces of tokamak geometry. Such trapped electrons have banana-shaped
orbits in a poloidal plane. The collisionless trapped electrons cause
an unstable mode. In treating the dynamical equatiomns, considerable
simplification is obtained by performing the bounce average, which 1is
poséible when the trapped electron bounce frequency is associated with
the fastest time scale in the problem. Further details are found in
Ref. 4. The formula for the width of the frequency spectrum is given by

Eq. (27), for trapped electrons,

. 1/2
v/ Yk Yk
{\:;) <1 "&:;) (30)

where A(kps) = (kng)—l[l - JO(/7'k/ko)] , Jd = Eqlixg is the
ballistic frequenéy of the clump corresponding to the phase velocity
u = wﬂ;d , and Eq = Ln/R « As with the universal mode, phase-velocity
dependence enters the relation, underscoring the emission process of
ballistic clumps into modes at Wy « The dependence on the shielding-
response Wavefunctionlz%k indicates that shielding-response structures
which experience greater overlap with regions of clump activity allow
for more efficient emission. For parameters consistent with the
toroidicity-induced mode structure15, the frequency broadening is
computed to be Awk/wkfv 1.1 . This broad line width is indicative of a
strong enhancement of the linear growth due to the incoherent emission

process.
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As mentioned in the previous section, the spectrum may be
completely specified from the saturation condition, Eq. (10), by
supplying the details of the nonlinear'damping process. We consider ion
Compton scattering as the process of turbulent energy transfer. The
nonlinear ion damping rate is obtained from perturbation theory, as it
is in weak turbulence theory, however, the integral over frequency is
performed uéing the broadened frequency spectrum Awk/[(m - wk)z + Awﬁ]
obtained from the two-point theory. The frequency broadening is
responsible for broadening the beat resonance, inducing dissipation in
the background fluctuations as well as altering the spectrum spatial
structure. The net impact of these effects is an enhancement of the
nonlinear wave-ion interaction. This may be interpreted as a spreading
of the ion-Landau resonance point due to the wuncertainity in w
represented by Awy . v From these considerations, the  wavenumber
spectrum 1is determined and found to scale as N(klps) ~ (kJ_ps)"g’/2
asymptotically.

The fact that incoherent fluctuations are driven by the relaxation
of the average distribution according to the drag-induced enhancement of
free-energy accessibility implies that the quasi-linear prescription of
transport is no longer valid. A direct calculation of the flux T of
energy transport (3E/3t + TV.E = 9) shows that the flux is

proportional to the clump-enhanced growth rate

ELEC
€IM

I_ 1 - C(k,(ﬂk)_‘

s (31)

rather than Y1, » as 1in conventional quasi-linear theory. The
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enhancement of energy flux is obviously strong where significant

broadening of the frequency spectrum occurs.

VI. CONCLUSIONS

We have considered herein the incoherent part of the fluctuating
density, a constituent of turbulence usually neglected in theoretical
treatments. These fluctuations are identified with clumps, granulations
in the phase-space density resulting ffom the properties of the mixing
process. We have used the theory of two-point phase-space density
correlation as the natural vehicle for treating incoherent fluctuations.
The source term has been emphasized and discussed in detail. 1In
particular, we have shown that the driving of the microscale correlation
by the source is proportional to the relaxation of the average
distribution. Hence, we identify a novel mechanism for the extraction
of expansion-free energy. The effect of incoherent fluctuations on the
collective modes has been examined. The effect has been described as an
emission process which excites the modes. We have considered the steady
state in which the modes are damped to balance this emission. We obtain
from the net damping in the steady state an analytic formula for the
frequency spectrum at fixed k . The theory, then, efféctively links
the issue of the width of the frequency spectrum with nonlinear
stability associated with incoherent fluctuations. Indeed, the width of
the frequency spectrum provides a measure of the strength of the

nonlinear instability.
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We consider two drift-type modes in realistic geometries to obtain

a quantitative measure of the impact of clumps. For the universal mode,
we find that the mode is destabilized and reaches finite amplitude due
to incoherent emission. The destabilization, however, is a small effect
with y[g 1 /wxe ~ 0.02 for Lg/L, = 32 . For trapped electrons, the
impact of incoherent emission can be significant. In this case, with
téroidicify-induced mode structure, the frequency spectrum is broad
(Awy/wgg ~ 1.1) + Considering the details of ion Compton scattering
necessary to achieve saturation, we are able to completely specify the
spectrum and show the wavenumber dependence. Finally, the effect on
transport is assessed with the‘result that incoherent emission enhances
the transport of energy increasing the flux by a numerical factor

(1 -0"1 .
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Figure Caption

The clump-induced growth rate normalized by Wge as a function of kipg
three values of the shear, compared to the linear growth rate in which

incoherent fluctuations (noise) are neglected.
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