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Weak turbulence is frequently analyzed by use of the
radiative transport equation [Davidson, 1972]. This equation
describes the evolution of the mean wave action spectrum under
the assumption that the wave phases are random. In a homo-
geneous medium, with quadratic nonlinearity the waves interact

in triplets satisfying the wavenumber relations
k*2*tm=20 . (1)

The equations of motion for the amplitudes of the linear eigen-

modes take the form

ak + iw ay = E [F_ asa, ak—&fm + F+ a a, 6k+2—m.] (2)

%,m

where wklis the mode frequency and Fi are the nonlinear coupling

coefficients as functions of k,%, and m.
The transport equation is obtained from (2) by use of the
"random phase approximation" (RPA) fpavidson, 1972]. This

approximation implies that only triads satisfying resonance con-

ditions of the form Wy * W * W, = 0 contribute to the transport.

~ ~

Schematically, the transport equation may be written
3¢ Fk) = I(k) - 2vp (K)F (k) (3)

where F (k) = <Jk> is the mean wave action denéity in wavenumber

space, and I(E) and vP(k) are functionais of the spectrum F(k’).




Here I(k) is a positive definite quadratic functional of F which
represents the flow of action into the wavenumber k. The rate
vP(E) is linear in F and describes the effective dissipation due
to the ambient wavefield*. As indicated above, the RPA implies
that both I and Vp are integrals over resonant triads.

This separation of the transport into two parts can be
further elucidated by consideration. of the autocorrelation func-
tion of the wave amplitude

iwkt , —i(9k - W t)

bk(t) = ak(t)e ~ = /Ek e ~ ~ o (4)

~ ~

*%

" Using a multiple time scale, averaging perturbation theory on

equations (2), the autocorrelation function can be shown to obey

[Pomphrey, Meiss, and Watson, 19807 :

9 (e .

3T Cp (B) = (= vy(k) + 16w£) C&(t) (5)
where Vp is identical to that rate in (3) and 6wk is a real
second order frequency shift. Therefore v, describes the relax-

P

ation rate; as distinguished from the transport rate given by

oF

'-575 in (3).

*

For non-thermal spectra it is possible to have'vP < 0,

Y ; o - . .. S .
Strictly speaking, the RPA is not used in this derivation--

the average over the fast time scale eliminates the non-resonant
contribution.




In this paper we describe some numerical experiments which
attempt to ascertain the validity of the RPA in determining Vp -
In our "experiments" we consider a spectrum of waves which is
in steady state according to (3) (an example of this is the
equipartition of action equilibrium: F(k) = constant; however,
non-equilibrium steady states could also be used). Suppose that
a single wave - the test wave - is initially given a non-steady
value for its action.' Equation (3) then predicts exponential
relaxation back to the steady state:

-2v_t I(k) -2v._t

P ~ (1 - e P

F(}i,t) = F(]i,O) e + 55 ) (6)

P

where I(i) and §P(E) are constant in time since the ambient
waves are in steady state. Our numerical experiments will dyna-
mically model this process.

The model we use is the test wave (TW) Hamiltonian [Meiss,
1979]. In this system one wave - the test wave - is allowed to
interact with a set of background or ambient waves. All inter- -
actions, however, that do not involve the TW are discarded.

'In addition, each ambient wave is permitted to interact in ..
only one triad. |

~

We label the test mode by wavenumber k and frequency Wy s
and the ambient modes with wavenumbers 2 and m and frequencies

Wy and W For triad or three wave interactions, the TW

~ ~

Hamiltonian is then




e, =6, 6, -0 (7)

Here J represents the wave action density, 6 the conjugate
angle variable, and Fi(k,&,g) are the coupling coefficients as
in (2). The summations are over a set of wavenumbers comprising
the ambient modes.

It is easy to see that the derivation of the relaxation
equation (5) [Pomphrey, Meiss, and Watson, (PMW); 1980] also
applies to the TW system when the background wave.spectrum is
continuous. In fact, the averaging perturbation methods, in
lowest order, select the "direct" interactions of the ambient
waves with the test wave and discard the "indirect" interactions
of the ambient waves among themselves. Higher order perturba-
tion calculations would, of course, include increasingly more
direct interactions.

The test wave model was introduced in plasma physics by
Dupree [1966]. 'In Dupree's analysis the initial phases of the
background waves were assumed random. We shall consider a
similar ensemble for some of the computations below.

The TW approximation to the full dynamics is similar in

character to the direct interaction approximation (DIA). In




fact the renormalization in the DIA utilizes just those inter-
actions retained in the TW Hamiltonian [Orszag, 1977; Xrommes,
1980]. Kraichnan [1963] used a TW model in a 2-d turbulence com-
putation for comparison with the DIA. These considerations lead
us to hope that the TW system will be a useful model for the
descfiption of weak turbulence.

In contrast to these expectations, numerical integration
of the equations of motion leads to evidence that the’TW
Hamiltonian is completely integrable [Meiss, 1979]. An N degree-
of-freedom Hamiltonian is integrable if there exist N independent
integrals (or, roughly, constants of motion). For systems with
more than one degree of freedom the required integrals often.
do not exist [Berry, 1978]. For the test wave system, the com-
‘putations suggest integrébility for an arbitrary number of
triads,with arbitrary values for the parameters. The analytic
form of these integrals is known [Meiss, 1980] only for the special
case of resonant triads with equal coupling coefficients (I‘i = 1).
Discovery of the integrals in the generai case would eliminate
the need fér the following computations, and perhaps provide a
platform from which the indirect interactions could be'attacked..

Complete integrability has a dramatic qualitative effect
on Hamiltonian flow. To demonstrate this we compare the trajec-
tories of the TW system with two ambient wave pairs with thése

of a system in which the background waves are coupled together.

The Hamiltonian for this system is




H = HO + SH
4
Hy = E w,J, + el¢JOJlJ3 sin(00—91—93) + eZVJOJ2J4 sin(90—62—64)
i=0
S§H = €3VJ,J,75 sin(61—02—03) + g, JuV0, sin(04-203) (8)

The interactions for this system are indicated in Fig. 1. Here
each mode is represented by a circle and each triad by a triangle
connecping the modes. The TW Hamiltonian, HO, has only the
interactions indicated by solid lines in Figf 1; while the.
additional interactions, representing §H, are shown by dashed
lines. For our computations we choose the w; SO that all triads
are resonant.

A trajectory for the TW Hamiltonian H displayed in Fig.

0’
2a with € = 0.67 and e, = 0.85, shows that the motion 'is quasi-
periodic with a near recurrence of the initial conditions at

t = 42, For the trajectory of Fig. 2b the Hamiltonian is

H = HO + §H where €y = 0.47 and €4 = O.58< This trajectory is
qualitatively mofe irregular, and if it is periodic must have

a much longer period. A‘more definitive indication of this
irregularitythﬁétochasﬁicity" is obtained by considering the
rate of separation of neighboring trajectories [Berry, 1978].

In FPigures 2c andv2d the phase space "distance" between orbits

[Meiss, 1979] that had an initial separation of 1070

is plotted.
For the TW system this distance increases only linearly with

time as is characteristic of an integrable system. The second




System exhibits exponential growth of the separation which
saturates when it becomes of order the "diameter" of the energy
surface. This strong instability makes accurate numerical inte-
gration of the equations virtually impossible; in fact if the

equations are integrated backwards beginning with the state at

-t = 60, the time reversed orbit follows the original for only

25 time units.
Relaxation rates for nonlinear wave interactions are
obtained by calculation of correlation functions. The auto-

correlation of the TW amplitude is defined by

<b;Kt)bk(t + T)>t
C, (1) = = (9)
k <Jk(t)>t

~

~

where < >t denotes time average.. Figures 2e and 2f show C0
for the two Hamiltonians of'éq. (8). The relaxation rates, v,
computed from the figures, could be comparéd with the Vp of (5).
Similar computations for 2-d turbulence have been done by

Kells and Orszag fl978];

The rate computed in this manner for the TW system is not
very useful because i?svtrajectories are not ergodic. This
implies that v depends upon the orbit along which the time
average 1s taken - that'is, v depends in detail upon the wave
phases as well as amplitudes.. We can circumvent this problem

for the TW system by using an ensemble average in place of the

time average. This is a reasonable procedure since in an




experiment, most of the integrals of the TW system would
probably not be measured or controlled. All that is typically
known is the mean wave action. We, therefore, choose an ensemble
that depends only on these actions and for simpiicity use the
Gaussian distribution with random phases. In our computations
the initial TW action-amplitude is held fixed while the initial
conditions of the ambient modes are picked randomly from the

ensemble. The correlation function is now defined by

<b;(0)bk(1)>

~

C, (1) = = . (10)
k J]i(O)

We begin with an example for which Jk(O) is much smaller

~

than <J,>. Using N = 100 initial conditions we find that

L

<J, (t)> converges and exhibits the form shown in Fig. 3. The

k
sazient features of this figure are a rapid rise of the TW

action by a factor of iOO in the first 20 time units, followed

by small oscillations about some stationary value. Qualitatively,
this is précisely what one would expect from the transpoft theory
(e.qg. equétidn (6)). In contrast to this, the computed Ck;(lO)
does not converge with N = 100. In fact since the mean acgion
(which is also the variance of the random variable bk(t))-
increases by a factor of 100, the error in the compugétion of
Ck(t) also bécomes large. Proper computation of the correlation

~

function in this case would require more than 104 initial conditions.
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The "steady state" value for the TW action, <Jk(W)> appears

~

to depend upon its initial value. The curve for <Jk(w)> as

~

presented in Fig. 4 is closely fit by the function

1
+ 3 J,.(0) : (11)

~

<Jk(°°)% = 4.0 <Jk>eq

~ ~

where <Jk>eq is the equilibrium level expected from the initial

~

ensemble (for example equipartition of action). In the computa-
tions of Fig.4 only 15 triads were retained, and it is probable
that the dependence of <Jk(w)> on Jk(O) is due to the size of
the TW action relative toNéhe totalmémbient field action. As
the number of triads becomes large this effect should disappear.
The dependence of‘<Jk(W)> on other parameters of the
Hamiltonian (1) can be de;érmined by scaling. If the ambient
actions are increased by a factorA-(<J2>eq - A<Jz>eq), then the

~

value of <Jk(w)> is also increased by_;. However if the
coupling co;fficients are scaled by A (I' = AT) then <Jk(w)>
is unchanged. -

The computation of relaxation rates necessitates considera-
tion of resonance phenomena. As is well known, the Langevin
and transport rates are given by integrals over resonant triads.
For.finite amplitude nonlinearities we still expect that the

most important triads will be resonant; however, non-resonant

triads will also contribute. Define the resonance mismatch by

Awffz Wy * We = W (12)

~
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For any two-dimensional system, the resonance condition (Aw = 0)
defines a curve in wavenumber space (see e.g. Fig. 5). We will
determine the effect of non-resonant triads by including triads

in some baqdeMﬂ-< Amx about resonance. Triads are picked on

a rectangular grid in wavenumber space with spacing Ak. Our
procedure is to compute an action relaxation rate for increas-

ing values of Amx until further increases have no effect on

the value of the rate. In the compgﬁgtions of EMPW, 19791 we assumed
that the relaxation is exponential and computed

Alog<Jk>

vexp - At (13)

averaged over the time it takes <J, > to double. Values of

k
v for various Ak are shown in Fig. 6. It is seen that v
exp exp
increases as more non-resonant triads are included until A =~ 'g.1.
\ xS

In general we expect that the required value of.AmX will
scale with the nonlinear timescale. Therefore a converged
value for v will be obtained if Amx is chosen, self-consistently -
to be a few times v. This is in agreement with our expectations
from résonance broadening theory.

The values of Vexp in Fig. 6 appear to be relatively
independent of'the grid spacing Ak. This.implies.that the
number of triads included has little effect on the relaxation
rate. While this is serendipitous for our computations, it is

also unexpected because the Langevin and transport theories
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are valid only when the spectrum is continuous. Practically
this implies that the time scale associated with the grid
spacing should be long compared to the nonlinear time scale,

or
Ak/vgr << v (14)

where vgr is the group velocity. This condition is not satis-
field by our computations. In fact there are cases displayed
in Figure 6 for which the inequality (14). is reve?sed! -

The exponential rate obtained from (13) is not appropriate’
for comparisbn with the transport theory result (6). In fact |

(6) gives a relaxation that is nearly linear in time:

A<, (£)>

~

providing vat << 1. This rate is therefore linear providing

<Jk(t)> is small compared to the steady state value.

To test (15) we present, in Figure 7, a log-log plot of the
action versus time. This figure shows that <Jk(t)> grows as

t2 until it reaches the steady state value at t = t_. In addi-

tion, the growth rate in Figﬁre 7 increases with Amy so long as

At S om.
mx S
This behavior can be explained by considering the equations

_of motion (2) for the amplitudes b defined in (4):

8

b, = Z T, bgb Oy 4 g _ Lethwgt (16)

~ triads
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Assuming that the background wave amplitudes are approximately

constant since bk is small, the average action is roughly

~

t

2 . 2
—~ e lAU.)T
<Jk(t)> EE: Iri!<J2><Jm>6k L m‘u[ © * dT! (17)

~ ~

triads . 0

The sum over triads can be approximately transformed into integrals

along and across resonance curves, yielding

t 2

A _
mx v
<3y (£)> ~ A/ dw / etWlgq ' (18)

- Amx 0

It is easy to see that (18) implies

8A t2A At << T
mx -~ mx

<Jk(t)> ~ _ A (19)

~

47tA At >> 7
A mx

In Fig. 7, Amxt g m so that the quadratic law applies. Equation (19)

also explains the dependencevof the growth rate of Fig. 7 On'Amx'
The linear growth fqr larger Amx is displayed in Fig. 8 (taken

from Fig. 4 of MPW, 1979). The break in slope from t2 to approxi-

mately t occurs at Ath = 1 as given by (19). It is clear from

. Fig. 8.and from (19) that the.action at some time t > m/A_  1is

X

independent of the value of Amx' Therefore if one is interested,
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for example, in the saturation time, it is sufficient to choose
Amx =‘ﬂ/ts to obtain a converged result for tg.

In conclusion, the dynamical computations qualitatively
verify weak turbulence theory. In addition, quantitative com-
parison of the dynamical rate with vp should be possible providing
the time integration is carried beyond the point Amxt = T.
Surprisingly,:the.computed relaxation rates are insensitive to

the number of triads in the system.
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Figure Captions

The interactions of the Hamiltonian of equation (8).

Trajectories for the Hamiltonian Ho(a)_ and Hy + SH (b)-

from equation (8). Separation of nearby orbits for Ho(c)
and HO + S8H(d).. TW correlation function for Ho(é) and
Hy + SH(E) ..

Relaxation of TW action for an ensemble average over

ambient initial conditions. Taken from MPW [1979].

Dependence of "steady state" action-on initial action with

15 ambient triads.

Example of a resonance curve for a two-dimensional system.

For details see Meiss [1980].

Computed values of the relaxation rate vexp by equation (9)

for various Ak and Amx'

Plot of TW action versus time on log-log scale showing

qguadratic growth.

. TW action showing contribution of non-resonant triads.
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