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Abstract

A novel type of ideal toroidal Alfvén eigenmode, localized in the low-shear core region of
a tokamak plasma, is shown to exist, whose frequency is near the upper continuum of the
toroidal Alfvén gap. This mode converts to a kinetic-type toroidal Alfvén eigenmode above
‘a critical threshold that depends on aspect ratio, pressure gradient, and shear. Opposite

to the usual ideal toroidal Alfvén eigenmode, this new mode is peaked in amplitude on the

small-major-radius side of the plasma.



I. INTRODUCTION

A surprising recent result from NOVA code simulations® of a certain D-T discharge in
the TFTR tokamak? was the finding of a core-localized toroidal Alfvén eigenmode (TAE),
at a plasma pressure gradient value considerably higher than would have been expected
theoretically.>~® An explanation for this result has been given by Fu® from an analytic
solution of the finite-frequency ballooning equation with finite aspect ratio terms carefully
included. The aim of ‘the present paper is to point out that the finite aspect ratio terms
that Fu considered also lead to the existence of a second core-localized ideal TAE within
the Alfvén continuum gap. This latter mode had, in fact, previously been noticed in results
from numerical calculations.” Furthermore, we show how both of these core-localized modes
convert to kinetic toroidal Alfvén eigenmodes (KTAE)®~1% when the parameter values for

shear, pressure gradient, and aspect ratio are varied.
II. ANALYSIS

In the reduced MHD description, the linearized eigenmode equation for the perturbation
amplitude ® = exp(—iwt+ing) ¥, ém(r)e~™ is, in the limit of large toroidal mode number
(n > 1), given by
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Here, w is the eigenvalue, v4 the Alfvén speed, x the magnetic field line curvature (|x| = 1/R,
with R the major radius), p the plasma pressure, and B the equilibrium magnetic field. To
analyze Eq. (1), we assume small inverse aspect ratio (¢ = r/R < 1), so that only two
poloidal harmonics ¢,, and ¢.,+1 are excited near the shear Alfvén gap at r = 7, with 7,

such that ¢(rm) = (m+ 1/2)/n, where ¢ is the safety factor. We focus attention on the core
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~region where the shear s = d(Ing)/d(Inr) is low. In the s < 1 limit (more precisely, when
the condition nee='/¢ « 1 is satisfied'!), the mode amplitude is localized in the vicinity of
this gap. Then, in a straightforward procedure,'? Eq. (1) can be rewritten as the following

set of coupled equations:
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Here, o = —8rRg>B~2(dp/dr) is the normalized pressure gradient; A’ is the radial derivative
of the Shafranov shift; Q = w/2wq is the normalized frequency, with wy = v4(7m)/2¢(rm) Ro;
and y = n[g — g(rn)] is the radial coordinate.

We will look for the core-localized modes near the tips of the continuum at the two ends
of the gap. Introduce g = (w? — w?)/ewd, the normalized shift of the frequency from the
Alfvén gap central frequency wg, where € = 2(e + A’) is the toroidicity coupling coefficient;
then g = +1 and —1 correspond, respectively, to the upper and lower ends of the gap. We
can treat both ends simultaneously by writing g = go(1 — g1), with go = £1, where we seek
solutions with ¢g; < 1. For these frequencies of interest, it is particularly useful to define the
sum and difference combinations ¥1 = ¢m — goPm+1 and Yo = godm + Gme1. The coupled

equations for these new field amplitudes, with scaled radial variable z = y/s, are
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with § = e+2A’. The form of Egs. (4) and (5) has the advantage that it exhibits an obvious

~ordering when € and o are taken to be O(s?) < 1; it will be seen a posteriori that g; is also
O(s?).

With this ordering, the solution of Eqgs. (4) and (5) becomes a boundary-layer problem.

In the outer region (where z ~ 1), to lowest order in the smallness parameter s the solutions

well-behaved at |z| — oo are

p(2) = —CiKo(lz])  and  4hs(2) = —Cy Ko(|2)) (6)

with 6’1 and C, constants and Ko the Macdonald function. These lowest-order solutions need
to be matched to the solutions that are valid in the inner layer region, where z ~ egl/ 2 /s =
O(s?) « 1.

In the inner region, since the solutions are peaked, only the high-order radial derivative
terms of Eqs. (4) and (5) contribute. Their first integrals can be written, in terms of the

: ~ 1/2
new variable z = 4sz/ egt/?, as
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where a prime denotes a derivative with respect to z, and C; and C, are the same integration
constants as in Eq. (6). In the inner region (z ~ 1) we have added nonideal effects® =10 due
to finite ion Larmor radius and parallel electron conductivity, represented by the first term
in Eq. (7). Here, \* = 8n2s%g*(r?, + 2r2,)/&r? plus a small collisional correction such
that Im A\* < 0, with rz; the ion Larmor radius and rz, & rp; (T./T;)*2. Observe that
Yy /¥ = O(s) < 1 holds in the inner region; this is what motivated the choice of the
particular forms for ¢ and 1)5. Combining Eqgs. (7) and (8) leads to the single equation
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whose solution, obtained by means of a Fourier transform technique,®'° then yields the

following “jumps” in ¢ and 1b,:

T l_f_ﬂ
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with @ = g1/23/2).
III. EVALUATION OF CORE-LOCALIZED EIGENMODES

The jumps across the inner layer must be matched to the corresponding jumps found
from the outer region, to obtain a dispersion relation. The matching procedure separates
into the two cases of Cp = 0 and C; = 0, related to the parity of the inner layer KTAE
solution (3; even and odd, respectively). The former is the more interesting case because
it has both ideal and nonideal solutions, continuously connected, and its KTAE modes are

known'? to have a lower instability threshold.
Case 1: 5’2 =0

In this case the matching is straightforward, with the ordering ¥5/11 = O(s) < 1. To
lowest order in s, the outer solution is ¢ = —C Ko(|2|), which reproduces the logarithmic
Alfvén singularity near the gap and matches onto the condition A7; = 0. The jump Ay,
in the outer region is next order in s and can be derived from the regular Green’s function

solution of Eq. (4) with the use of the lowest-order form for ;:

. [ 5 — d 25 b—a) 5
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Equating this result to Eq. (11) gives a general dispersion relation, which we now examine

specifically for the two ends of the frequency gap.

(a) Upper end of the gap (g0 =1):

The dispersion relation is given by

P<3+a)
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We can gain graphical insight into the roots of Eq. (13) by plotting its left-hand side as

a function of @, as shown in Fig. 1. The roots are located where this function is equal to the
quantity a, defined in Eq. (13), where a may be either positive or negative, depending upon
parameters.

KTAE roots (i.e., @ < 0, correqunding to frequencies lying in the ideal continuum)
occur just above & = —2 — p when a < —1; near & = —% — p when |a| < 1; and just below
@=—2—pwhena>1, withp=0,1,2....

An exception occurs when a > 7/2/4, in which case a positive root (lying in the ideal
gap) can arise. When nonideal effects are negligible (a > 1), this root is given by & ~ a?,
and it can be obtained directly from the ideal TAE equations. Figure 2 shows a plot of this
root as a function of a, compared with the approximate expressions & = a? when a > 1,
® = —1/4+ a/n/? when |a| < 1, and & = —3/4 + 1/2|a|7"/? when ¢ < —1.

Note that all the roots are undamped, to the extent that A is real. Wave tunneling,
collisional dissipation, and ion Landau damping, if taken into account, can give A a small
imaginary part and cause the roots to be slightly damped.®*°
(a) Lower end of the gap (go = —1):

The dispersion relation, given by

r(3-io) s §—a\ _ I
— 1 —im/4 = —in/4 14
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is intrinsically complex. In Figs. 3(a) and (b) we show, respectively, the real and imaginary
pafts of the principal root as a function of the quantity b, defined in Eq. (14), together
with analytic approximations for various values of 5. When b > 1, the principal root goes
over to an ideal root, approximately given by @ = b2[1 — 2i exp(—2mb?)]; note that radiation
damping for this root is small, even for b =~ 1, due to the large exponential coefficient. In
two other asymptotic limits, the principal root is seen to be a KTAE mode with appreciable
damping, being approximately given by & = —im/4 + br~/2 exp(ir /4) when |b| < 1 and
& = —3im /4 — exp(—im/4)/2|b|m/? when b < —1.

In the ideal limit (A — 0), the condition for the core-localized mode at the lower end of
the gap to exist is @ < s® + §, which was derived by Fu.® For this mode, the critical beta
value above which the mode shifts into the ideal continuum is increased by finite aspect ratio
effects, which is consistent with the NOVA simulation results.® The corresponding condition
for the ideal core-localized mode at the upper end of the gap is o < —s? + §, which shows
that finite aspect ratio effects are essential for its existence. The lower core-localized mode
of Fu® is the finite-¢, finite-3 generalization of the usual ideal TAE at low shear, whereas
the upper mode gives a new ideal TAE. Both modes take into account finite-¢ harmonic
coupling effects not only in the inner region (as with earlier TAE theories), but now also in
the outer region. As the plasma beta value increases, the upper core-localized mode enters
the continuum first. We have here demonstrated how both upper and lower core-localized

modes are converted into KTAE modes.
Case 2: @1 =0

As before, we match inner region and outer region jumps. In this case, however, the
evaluation of the outer jump requires that an apparent divergence be removed. The lowest-
order outer solution is 9 = —ChKo(|2|). Using the symmetry properties of 1, and the

regular Green’s function solution of Eq. (4) for 4, we can write the jump in %, across the



origin nearly exactly as

oo € d? €+ o
Ay = 23/0 dz Ky(2) [—2—3-5 d;/); TR P2 + goz c;if (15)

For evaluating the last two terms in this integral, the K solution for 1, may be employed,
since convergence near the origin is sufficiently rapid. For the first term we need to be more
careful, by including the behavior of 1), when z S egl / s ~ s2. Let 9 denote the exact
inner-layer solution, from Eq. (8). Since this has even parity in z and is nonsingular, we can
integrate by parts and write the first term of the integral in Eq. (15) — call it Av,bgl) — as

follows:

(1) _ € [®, dKo diy
Ay —s/o dz dz dz (16)

Let L be a distance between the inner region and outer region scale lengths: €gi/ ? /s << L k1.
For z < L, we can approximate dKo(2)/dz = —1/z and use di)s/dz = dii* /dz. Likewise, for
z > L, we can use di),/dz & "OQdKo/ClZ and dyi/dz = 02/2 Then Azp(l) can be written

2
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The first term in Eq. (17) is just the jump that arises from the inner solution, as can be

as

seen from Eq. (8), and has been already evaluated in Eq. (10). To avoid double counting, we
ignore this term. The second term in Eq. (17) can be exactly integrated, yielding the total

jump in the outer region,

s ([6—« A
Ay = — < R 90) Co. (18)
which is to be equated to Eg. (10).

Again, first consider the upper end of the gap (go = 1). The dispersion relation is

L(;+@) wsAl/? §—a
= + =c. 19
ré+o) 274 1+ =5 ¢ (19)

The right-hand side, ¢, is proportional to sA}/2 and hence always small compared to unity,

so KTAE roots occur near @ = —3/4—p, with p a positive integer. For example, the frequency
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shift for the smallest root (p = 0) can be calculated, which gives & = —3/4 — c/2m%/?; this
result was previously obtained without finite beta and aspect ratio effects.’® (Another root
from Eq. (19), @ = 1/c?, which gives g; ~ 1/s, is spurious since our analysis requires
|91] < 1.) When |¢| < 1 and also |a| < 1 [cf. Eq. (13)], the KTAE roots here are paired
with those from the Cy = 0 case at the upper end of the gap, with only a fine frequency
splitting between them.1%!3

At the lower end of the gap (go = —1), the dispersion relation has the same form as in
Eq. (19) with the substitutions @ — —i@ and +1 — —1 on the right-hand side. This has
only damped solutions, given by & = —i(3/4 + p), with p a positive integer.

There are no ideal roots in the &y = 0 case at either end of the frequency gap.
IV. COMPARISON WITH NUMERICAL SOLUTIONS

It should be pointed out that the basic equations, Eqs. (2) and (3), are derived from a
model equilibrium that is accurate only to first order in €. Consequently, the analytical theory
in the present paper is valid only in the limit € <« s. This ordering, however, may break down
for realistic tokamak equilibria. Then the separation into iﬁner and outer regions cannot be
used, even for the ideal core-localized TAE. Nevertheless, direct numerical integration of
Egs. (2) and (3) shows that two core-localized TAE modes can still exist when this small-€
ordering is not satisfied.

Another such example, calculated with the CASTOR. code” for a realistic equilibrium,
for the case € > s and with toroidal mode number n = 5, is shown in Figs. 4-6. These
results correspond to the particular TFTR equilibrium (shot #76770) mentioned earlier,’?
with pressure profile p(¥) = p(0)(1 — ¥)(1 — 1.288% + 0.943%?), density profile p(v)) =
p(0)(1 —0.99¢)(1 + 0.5¢) and the current profile j(3) = j(0)(1 — 1.515% + 0.615¢°%), where

¥ = Pp/1Peqge is the normalized poloidal flux. Both of the core-localized modes are associated



with the same gap near the center of the plasma, with € = 0.035 and s = 0.048. Figure 4
shows the low-end mode, and Fig. 5 the high-end mode, both dominantly consisting of the
m = 4 and m = 5 poloidal harmonics. Note that these modes have opposite polarizations,
ie., sgn(Pm=s/Pm=5) = —go, and eigenfrequencies located near the corresponding edges of
the gap, in qualitative agreement with the theoretical analysis, even though the € <« s
ordering is not satisfied.

Figure 6 shows the CASTOR code results for the mode eigenfrequencies as the central
plasma pressure p(0) is increased, together with the results obtained from direct integration
of the model equations, Egs. (2) and (3). For the model equations, parameters were chosen
that map the model Alfvén continua onto the CASTOR continua and yield the same values
for the quantities s, €, and A’ as p(0) varies. Both sets of numerical results show that
the upper and lower core-localized modes approach the Alfvén continuum with increasing
pressure; this behavior also agrees with the analytic prediction. In the CASTOR results,
the upper TAE reaches the continuum at o, = 0.131 (with ¢ = 0.035, A’ = 0.045, and
s = 0.048), before the lower TAE does at ag;, = 0.152 (with € = 0.034, A’ = 0.050, and
s = 0.048), in agreement with the corresponding analytic thresholds o* = §Fs2. The results
obtained from integrating the model equations also exhibit the same behavior and agreement
at threshold. Below threshold, the frequency shift from the continuum as calculated from
analytic theory is somewhat different from that obtained from the CASTOR code; we suspect
that the high-n approximation in the analytic theory is a source of this disparity.

In Fu’s analysis® of finite aspect ratio effects (also with the ordering € < s), he used a
ballooning mode type of treatment, which is valid'* when nee=*/* > 1; this would then lead
to replicating local mode structures at each location where ¢(r) = (m+1/2)/n, for many m
values. However, when the opposite inequality nee™'/® < 1 is satisfied, as in our treatment,
then the eigenmode will truly have a single localized structure due to the m and m + 1

poloidal harmonics near g(r) = (m+1/2)/n . Nevertheless, the eigenvalues obtained with a
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ballooning theory will differ only slightly, because the mode overlap between successive gaps
is exponentially small in the low-shear limit.

We again note that the lower frequency core-localized mode, found by Fu,® tends to be
strongly damped by radiation damping as its frequency approaches the continuum, whereas
the new core-localized mode at the high end of the gap has negligible radiation damping.
Hence this new mode may be experimentally observable at moderate beta values when the
other mode is suppressed by radiation damping.

Finally, we note that there may be a relatively straightforward experimental method for
distinguishing the upper core-localized mode from the lower one, if appropriate core plasma
diagnostics are used. Since their polarizations are determined (in Case 1) by ¢m+godms1 =0,
the time-averaged power signal corresponding to the lower core-localized mode will peak on
the outboard tokamak midplane, being proportional to cos?(6/2), whereas that for the upper
core-localized mode, proportional to sin?(6/2), will be peaked on the inboard side of the
plasma.

We acknowledge our gratitude to Dr. G. Y. Fu for showing us his results prior to publica-
tion and checking the comparison with the NOVA-K results, and to Dr. B. N. Breizman for
pointing out the mode structure diagnostic. The work of two authors (HLB and JVD) was
supported by the U.S. Department of Energy under Contract No. DE-FG05-80ET-53088.
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FIGURE CAPTIONS

FIG. 1. Graphical plot of the dispersion relation of Eq. (13). Roots occur at the intersections
of the curves with the horizontal line that corresponds to the value of a; two cases

are shown, one for negative a and one for positive a.

FIG. 2. Eigenfrequency shift & (solid curve) as a function of the quantity a of Eq. (13),
compared to approximate analytic expressions (dashed curves ¢, £, and ) for various

ranges of a: the ideal TAE limit corresponds to a2 > 1.

FIG. 3. Complex eigenfrequency shift @ (solid curve) as a function of the quantity b of
Eq. (14), compared to approximate analytic expressions (dashed curves 1, 2, and

3) for various ranges of b: (a) Re@; (b) Ima.

FIG. 4. Eigenfunction of the lower core-localized TAE, calculated from the CASTOR code:

n = 5 with dominant poloidal harmonics m = 4 and 5; eigenfrequency w = 0.5570v4(0)/Ry.

FIG. 5. Eigenfunction of the upper core-localized TAE, calculated from the CASTOR code:

n = 5 with dominant poloidal harmonics m = 4 and 5; eigenfrequency w = 0.5951 v4(0)/R.

FIG. 6. Upper and lower core-localized TAE eigenfrequencies as calculated from the CAS-
TOR code (thin solid curves) and from integration of the model equations (dashed
curves), compared with the CASTOR-calculated upper and lower Alfvén continua

(thick solid curves), as functions of the plasma pressure gradient a.
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