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Abstract

Neoclassical and anomalous transport fluxes are determined for axisymmetric toroidal
plasmas with weak electrostatic fluctuations. The neoclassical and anomalous fluxes are

defined based on the ensemble-averaged kinetic equation with the statistically averaged non-

linear term. Thé anomalous forces derived from that quasilinear term induce the anomalous

particle and heat fluxes. The neoclassical banana-plateau particle and heat fluxes and the
bootstrap current are also affected by the fluctuations through the parallel anomalous forces
and the modified parallel viscosities. The fluctuating part of the drift kinetic equation gives
the response of the distribution function to the potential fluctuation, from which the quasi-
linear term, the anomalous forces, and the anomalous particle and heat fluxes are evaluated.
The averaged drift kinetic equation with the quasilinear term is solved for the plateau regime
to derive the parallel viscosities modified by the fluctuations. The entropy production rate
due to the anomalous transport processes is formulated and used to identify conjugate pairs
of the anomalous fluxes and forces, which are connected by the matrix with the Onsager
symmetry. Estimates are given from the dispersion relation for the ion temperature gradient

driven mode for the anomalous fluxes and viscosity.
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I. INTRODUCTION

Extensive theoretical and experimental studies on transport processes of magnetically
confined plasmas have been performed over many years since it is crucially important to
understand the transport rates for realizing controlled nuclear fusion. The neoclassical
transport theory'~3 is based on Coulomb collisions of particles moving in toroidal magnetic
configurations. Particle and energy transport fluxes observed in most fusion devices exceed
the predictions of the neoclassical theory and thus are called anomalous transport. The
anomalous transport is considered to result from the turbulent fluctuations caused by vari-
ous instabilities existing in confined plasmas. Most of the theoretical works on the anomalous
(or turbulent) plasma transport have been done separately from the neoclassical transport.
Shaing®® and Balescu,” however, have attempted to unify the neoclassical and anomalous
transport theories. The present work treats this same problem from a different approach.

Here we investigate thé weakly turbulent regime as in the theories of Shaing and Balescﬁ.
Only electrostatic fluctuations in the axisymmetric toroidal system are considered for sim-
plicity. The principal difference between the present theory and the formulation of Shaing
and Balescu lies in the way of dividing the physical variables ini";o the average and fluctuating
parts. Two-scale separation of spatio-temporally varying quantities is essentially important

-in treating both the neoclassical and turbulent effects. Variables treated by the neoclassical
theory are spatio-temporally smooth and regarded as the ensemble-averaged parts while the
fluctuating parts are treated mainly by the anomalous or turbulent transport theory. For
example, the averaged flow is incompressible to the lowest order in the neoclassical theory,
which is crucially important in deriving the neoclassical banana-plateau transports fluxes.
This incompressibility is derived from the continuity equation with the slow temporal vari-

ation of the ensemble-average density neglected. On the other hand, the fluctuating part of



the flow can be compressible, which causes the ion sound wave, the ion temperature gradient
driven mode and other effects that influence the anomalous transport. Here we emphasize
that it matters significantly how the separation of variables into the average and fluctu-
ating parts is defined. In our treatment, strict separation into the ensemble-average and
fluctuating parts is done at the level of the kinetic equation. We define the average part of
fluid variables such as densities, flow velocities, temperatures and heat flux from the average
kinetic distribution function. These definitions are different from those given by ensemble-
average of random fluid variables. For example, the flow velocities and temperatures given
from the average kinetic distribution function (which we call the ‘kinetic definition’) deviate
from the average of the random flow velocities and temperatures given from the random
kinetic distribution function (which we call the ‘fluid definition’). In the works of Shaing
and Balescu, clear definitions for the average and fluctuating parts are not written although
they seem to obey the fluid definition. When the fluid definition is employed, the averaged
fluid equations include many nonlinear terms with respect to the fluctuations of the fluid
variables. On the other hand, by using the kinetic definition, each fluid equation contains
only a single nonlinear term with respect to the fluctuations, and thus the complexities are
reduced.

Furthermore, the kinetic definition makes clearer the division of the total transport into
the neoclassical and anomalous parts. The averaged kinetic equation is a starting point of
the neoclassical part of the theory, where the effects of the fluctuations are contained through
the term including the statistically averaged quadratic nonlinearity. We define anomalous
particle and heat fluxes from this term quite naturally according to the analogy to the
definitions of the classical and neoclassical fluxes. This definition of the anomalous heat flux
is different from that of Shaing®® and Balescu.7 Thus, this statistically averaged nonlinear
term plays a essential role in the unification of the neoclassical and anomalous transport

theories, and it is calculated by the quasilinear technique in the weakly turbulent regime.




Evaluation of this quasilinear term requires the fluctuating part of the kinetic distribution
function. In our formulation, owing to the kinetic definition, the fluctuating part of the
kinetic equation coincides with the standard drift or gyrokinetic equation for the plasma
turbulence, and the fluctuation of the kinetic distribution function takes a well-known form
used for microinstabilities. In contrast Shaing®® and Balescu” employ Shaing’s ansatz®=7
for the kinetic distribution and derive the kinetic response to the fluctuations from a drift
or gyrokinetic equation including non-diamagnetic flow dependence which we treat by the
average part of the drift kinetic equation.

In the present formulation the modified averaged parallel viscosities are obtained in the
plateau regime from the solution of the averaged drift kinetic equation and the fluctuations
affect the neoclassical banana-plateau transport fluxes. We find the new relation between
the parallel viscosities and the average poloidal flows caused by the electrostatic fluctuations,
which are not described by Shaing and Balescu since the quasilinear fluctuation effects on
the average kinetic distribution are neglected by them. Physically, the parallel viscosity
modification arises from the pressure anisotropy induced by the parallel velocity diffusion
produced by the drift wave fluctuations. This anisotropy competes with the neoclassical
anisotropy mechanism from the poloidal flow in producing the parallel viscosity.

We also analyze the Onsager relations and the entropy production functional in the
anomalous transport system. Shaing argues that the Onsager relation holds for the anoma-
lous transport coefficients while Balescu claims that it does not. Here, we emphasize that
the Onsager relation is closely related to the entropy production. For example, in the classi-
cal process, the entropy production defined in terms of the collision operator is represented
by the product of transport fluxes and thermodynamic forces and the Onsager symmetry
is valid for the transport matrix which relates these fluxes and forces to each other.® Thus,
conjugated pairs of the fluxes and forces are determined through the entropy production

functional. According to the neoclassical and anomalous transport processes, there exist
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two types of entropy production: one is derived from the collision operator as mentioned
above, and the other is due to the transfer of energy and momentum through the anomalous

processes. Since neither Shaing nor Balescu give clear expressions for the entropy produc-

tion in the anomalous transport process from which the conjugate pairs of the anomalous-

transport fluxes and forces should be defined, their arguments on the Onsager relation seem
to be incomplete. We define the anomalous entropy production in terms of the anomalous
quasilinear term and thus give the conjugate flux-force pairs. The resulting expression of
the anomalous entropy production coincides with that derived by Horton.® It is also shown
that the Onsager symmetry is satisfied by the anomalous transport matrix connecting these
anomalous fluxes and forces. However, this anomalous transport relation has the structure
which is totally different from the classical or neoclassical one, since the anomalous transport
matrix is also a highly nonlinear function of the forces such as the density and temperature
gradients through the eigenfrequencies. Furthermore, in order to complete the transport re-
lations, the spectrum of the potential fluctuations remains to be determined. The fluctuation
spectrum is given by the nonlinear saturation mechanism although here we only treat the
spectrum as given following the works of Shaing and Balescu. We estimate the anomalous
transport and the parallel viscosities from the dispersion relation for the ion temperature
gradient driven mode.

This work is organized as follows. In Sec. II, basic equations for the density, momentum,
energy and energy fluxes are derived from the ensemble-averaged kinetic equation including
the effects of the electrostatic fluctuations through the quasilinear term. In Sec. III, the neo-
classical and anomalous transport fluxes are defined. In Sec. IV, the average and fluctuating
parts of the drift kinetic equation are shown, which give the bases for the neoclassical and
anomalous parts of our theory, respectively. In Sec. V, we derive the entropy production in
the anomalous transport process and show the Onsager relation between the conjugate pairs

of the anomalous transport fluxes and forces. In Sec. VI, the averaged drift kinetic equation




with the quasilinear term is solved for the plateau regime to give the average parallel vis-
cosities. There, estimates are given for the anomalous transport and parallel viscosities from
the dispersion relation for the ion temperature gradient driven mode. Finally, conclusions

and discussion are given in Sec. VIIL
II. BASIC EQUATIONS

We start from an ensemble-averaged kinetic equation for species a:

0fs 0fa

€q 1 )
: — (E+-vxB])- =C,+7D 1
5 TV Vfa+ma< +-v X 5y = Ca+Da (1)
where C, is a collision term and D, is fluctuation-averaged nonlinear term defined by
Da=——e“—<1§)-af“> (2)
M, OV [ s
E=-V¢ (3)

Here (), . denotes the ensemble average and we divided the distribution function (the electric

ens

field) into the ensemble-averaged part f, (E) and the fluctuating part f, (E) Taking the

moments of the kinetic equation yields the following fluid equations. The continuity equation:

on,

5 + V- (ngu,) = 0. (4)

The momentum balance equation:

1
MgNg (% +u, - V) Uy = Ng€q (E—i— Eua X B) —Vp, =V -7, +Fu+Ku (5)

The energy balance equation:

30 5
5 ;;a =-V- <qa+§paua+7"a'ua> +ua'Vpa+ua‘ (V'ﬂ'a) +Qa+Ha- (6)
The energy flux equation:

0 5 1
mana& = Lo [E ’ <_pa| + 7.+ manauaua> +=Qq X B:|
ot My, 2 c

—(Fa1 + Ko1) + (Fao + KaQ):l — Vit (7)
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Here Fg1, Q,, and F oo represents the collisional generation rates of momentum, heat,
and heat flux, respectively, which are defined in Ref. 2. The density n,, pressure p,, flow
velocity u,, heat flux qq, total energy flux Q,, viscosity tensor 7., and energy weighted
stress tensor r, are all defined from the ensemble-averaged distribution function f, in the
standard way as given in Ref. 2. It should be noted that these ‘kinetic’ definitions of the
average fluid variables are different from the conventional ‘fluid’ definitions: for example,
the both definitions give the same average density and pressure although the average flow
velocity in the latter is defined by the average of the random flow velocity given from the

total kinetic distribution and is different from that in the former as

Jdv(fa+ ﬁ)v> [d3vf,v _
< TRt ) )T TP, = ®)

and similarly the different average temperatures are given depending on the definitions. By

our kinetic definitions, the above fluid equations contain the nonlinear terms with respect
to the kinetic fluctuations, which are all derived from D,, while, when the fluid definitions
were used, there are large numbers of nonlinear terms with respect to the fluctuations at
each level of the averaged fluid equations. For example, the averaged momentum balance

equation is written in the fluid definition as

Me—=7 (nau& T <,ﬁ'aﬁa>ens)

ot

~ o~

+ mav M (nauaud + na <ﬁaﬁa>ens + <naua>ens 'Lla + 'Lla, <ﬁaaa’>ens + <ﬁaﬁaﬁa>ens)

1 ~ A €a /o~ ~
i naea (E + Eua X B> — vpa - v * 7Tg, —I_ Fal + ea <naE> + _a (nﬂ.ua>ens X B

ens c

where all the random fluid variables are defined from the total distribution function f, + f;
and divided into the average (ug, - --) and fluctuating parts (g, - ).

The heat generation rate and forces resulting from the fluctuation term D, are given by

o~

H, = /d%Da%ma(v —u)l=e, <(f‘a — fgU,) - E>

ens
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K, = / dBvDymyv = e, <ﬁaf}>

ens

2 5
K,y = / 3 Mel” 0
a2 d*vDymgv ( 5T, 5
s /5. ~ o~
= T; <§(pa - 'naTa)E + e E>ens (9)

where we defined the fluctuating density, particle flux and pressure (scalar and stress parts)

as
Aig = / Bl
L,= / d3v f;v
~ 1l 2 2
Do = g/d V fa MgV
~ 3 7 1 2
o= /d Vfamg (vv =Y I> (10)
Let us define an ordering parameter A for the fluctuating variables as

f a Ta Mg k‘_]_

Jo L8 e B, (11)
where kj ~ L~! (L: the scale length of the plasma equilibrium quantities) and &, denotes
the parallel and perpendicular wavenumbers of fluctuations, respectively. Then we have
Ky ~A
Ko~ A (j=1,2). (12)
Another ordering parameter is a drift-ordering parameter 6§ given by
§ ~ pa/L (13)

where p, is a thermal gyroradius. When A ~ 6, we should use the gyrokinetic equation

to obtain the gyrophase dependence of f,. If A > 6§, the lowest-order part of f; has no
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gyrophase dependence and is obtained from the drift-kinetic equation. In the latter cdse, T

has a CGL form:

~ N N 1
Tg = (plla — Pla) (nn - §|>
Dle = /d?’vﬂmavﬁ

~ 1 3, F 2

Dila = 5 / d Ufama,v_]_ (14)

wheren=B/B, yy=v-nand v, =v —yn.

From the perpendicular components of Egs. (5) and (7), we have the perpendicular clas-
sical and neoclassical fluxes of particles and heat of O(62) and the anomalous perpendicular
fluxes driven by Kg;1 of O(6A). In the parallel components of Egs. (5) and (7), forces such
as (V- m,)) and (V - 1)y are O(6) while the parallel forces Ky are O(A?). Thus, if we
take A ~ 6, the order of the anomalous perpendicular fluxes is equal to that of classical and
neoclassical perpendicular fluxes, and the fluctuation effects due to K, on the neoclassical
banana-plateau fluxes and the bootstrap current are neglected. Hereafter, we employ the or-
dering A ~ 6%2 > §. Then the anomalous perpendicular fluxes exceed the neoclassical ones
and besides the banana-plateau fluxes and the bootstrap current are significantly affected

by the fluctuations as shown in the following sections.
III. NEOCLASSICAL AND ANOMALOUS FLUXES

In axisymmetric systems such as tokamaks, the magnetic field is given by
1
B=IVC+%V( x VX (15)

where ¢ denotes the toroidal angle, X the poloidal magnetic flux and I the covariant toroidal
component of the magnetic field (here as in Ref. 2, we consider a general case in which I is

not treated as a flux surface quantity without assuming no radial current). Hereafter, we
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assume that the ensemble-averaged distribution function f, is independent of the toroidal
angle ¢ and that all the average fluid variables defined from f, and the average electric field
E are axisymmetric.

The lowest-order parts of the continuity equation (4) and the energy balance equation
(6) show that the divergence of the lowest-order flows u, and q, vanishes. Using this zero-
divergence constraint and the lowest-order parallel components of Egs. (5) and (7) with the

friction-flow relations,>® we have the relations:

G- i e

Te ) —\/—a” B4 (B K1)+ (B-V-7,)
”eme{ Ve H 4 <B>-Ke2)+(B-v-®e> } (16)

and

2p (Bay) = 222 (5%) + (Bvs) = - 25

5 ( (B:Kig) +(B-V-0y)). (17)

where (-) denotes the magnetic flux surface average, and ©q = (mq/T,)[ra — 31(1 : ry)] — 37,

Here uq4 and gy is the flux functions? defined by

- V6o Qg+ V0O

s ve @ =gv (18)

Ugg (TP)

with the poloidal angle ¢ and an arbitrary flux label 4. The dimensionless coefficients @,

ay, %ﬁ and Eﬁ are given in Ref. 3. The diamagnetic flow contributions V;, and V,, are defined

by
_ 2rIcT, (p, e d
Vi = X' e,B <p_a+ T, )
2l T},
=—— 19
%a X/ eaB ( )

The species summation of the lowest-order parallel component of the momentum balance
equation (5) gives

(B-V-me)+(B-V.m)=0 (20)
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where we should note that the species summation of the anomalous forces 3", K41 vanishes
due to the quasineutrality condition -, e,fi, = 0. The parallel viscosities (B -V - 7,) and
(B:V-0,) are calculated by solving the ensemble-averaged drift kinetic equation which
contains the quasilinear fluctuation term as shown in the following sections. The source
of the parallel viscosities consists of two parts : one is the same as in the conventional
neoclassical theory?® due to the poloidal flows and the other is the anomalous drive due to

the quasilinear fluctuation term. Thus, the parallel viscosities are written as

(B-V-mg) | _ , 2\ | Hat fhaz | [ Uas Yo
[<Bv®a> —3<(n VB) > _,U'a.Z,U’aS_ _%% + }/:12

=3 <(n ) VB)2> -/J'al ,U‘a2- 9

21
| Ha2 fas | | 55 — Waz (21)

[ Uy — Wa1 :l

Here the neoclassical viscosity coefficients uq; (7 = 1,2, 3) are given in Ref. 2 for the Pfirsch-

Schliiter, plateau, and banana regimes, and written in Ref. 3 as

Fal Ha Mgy I \/—:u
’ <(1'l ' VB)2> [:U'aflz /J'aﬂ Ta <B2> \/J/j31 2#3:3:’ )

for the banana regime, where ¢ and u, should be replaced with @, and Az for the plateau

regime (see Ref. 3 for the definitions of these coefficients). In Eq. (21), Y3, (5 = 1,2) denote
the anomalous parts of the parallel viscosities, Wy; (j = 1,2) represent the shifts of the
poloidal flows due to the fluctuations, and they are calculated in the Sec. VI for the plateau
regime.

Taking the flux surface averages of the toroidal components of Egs. (5) and (7) yields the

flux-surface-averaged radial particle and heat fluxes up to O(6?%) as
(Lo Vi) = (Lo~ Vi), + (1" V) pg + (Lo Vib)y,

2or B B MaC 1a(4)
+ X,nac< L <(I) <Bz>—I>>+< e xn-v¢>

+ <1~\a . vw>;n5?m + <Fa . v¢>anom
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<qa, ) VQP) = <qa ) V,(ib)cl + (qa ) VQp)PS + <qa ) V,d})bp
+ {0 VY)ps +(da- V)™ (23)

where the first three in the right-hand sides represent the classical, Pfirsch-Schliiter and
banana-plateau fluxes while the last two are the anomalous contributions defined later. The
classical and Pfirsch-Schliiter fluxes are given in terms of the pressure and temperature
gradients in the same way as in the case of no fluctuations and their transport relations are
written in Refs. 1-3. However, the fluctuation effects appear in the anomalous fluxes as well
as in the banana-plateau transport relations as shown later.

Anomalous terms (B - K,;) and W,; (or Yy;) are incorporated into the modified forces

and poloidal flows by defining

Te
U

(B(Vae = Vai))™ = (B(Vae — Vas)) + @au (B Ke) + (B?) (Wer — W)

m 2~e Te
(BVae)™ = (BVh) — &l

NeMe (B Kea) + <BQ> We

. m 2~i Ti
(BVa)™ = (BV:) — =h

(B Ku) + (B?) Wy

n;ymy;
(BEM)™ = (BE(™) — (n.e)™ (B- Kau)

(m)
Uy = Uag — Wa1

v T v a2
S Pq D Dq

If we use the above modified forces and poloidal flows, the neoclassical expressions for the
parallel viscosities and accordingly for the banana-plateau particle and heat fluxes which are

valid even in the presence of fluctuations. From Eq. (16), we can obtain the contributions

of fluctuations to the parallel current. Then, from Eqgs. (16), (17), (20), (21), and (22), we
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obtain the banana-plateau transport equations as

(Te - Vi), Lyy Li Lns L] |~ (P/dy) ™
<q Vzp)bp _ L21 L22 ng L24 Te_i(dTe/dw)(m) 5
(@ 0y |7 | Lo Ly Ly Lue | | =TT/ (25)
(%7 (Bj) Lut L Las Laa ] | (B2)™% (BE)
where the fluxes in the left-hand side are defined by
_ 2rIc(B-V-m,)
<Fa ) V¢>bp X/ € <B2>
_ 2rlc(B-V-0,)
1/, . __ a
Ty (Qa V¢>bp X' eo (B2)
N _ gy Mo (m) \/5 _ et
(Bji)" = (Bj)) - . <BEH > $0—— (B Ke) (26)

and the modified pressure and temperature gradients are given from Eq. (24) as

dP (m) dP XI e \/§~ T, ,
<@> Ty 27rIE ( galla (B Kea) + 16 <B > (Wey — Wit

(m) !
dar,\"™ dT, X e, (2., T )
(d;b) @ Tl (5 il g (B az) = (B >W2> @)

The transport matrix is given by

Lyy Lyp Lz Ly 10 0 0
Loy Loy Lgz Loy | nepz 2rI\* |0 \/gTe 0 0
Lsi Ly Lz Las | 2Tt < X' ) 1o 0 \/g% 0
Ly Lap Lyg Ly 00 0 —e%| Qel7e
lee lee leé l%E 1 0 0 0
B 8 5| |0V 0 0 %)
B A G| 0 0 3% o0
%1 (%3 Ugs lem 0 0 0 —e%lﬂelﬂ:

where p, = v, /|| and Q, = e, (Bz)l/ 2 /mqc. The dimensionless coefficients 1%, -- - and A

are defined in Ref. 3. From Eqgs. (17), (21), (22) and (24), the parallel ion viscosity is written
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as

(B-V m)=="(B")¢

i i \2~1 (4 (m)
iy — (pis) R ———— | u,
( 11 13 ” 1 + KT'M%?,(P i0

. \/E i (B V2i>(m)
21+ Rjudsp  (BY)
The Pfirsch-Schliiter type fluxes induced by the parallel fluctuation forces are given by

) 2
(To Vi) =~ <1:nIc<zl (I 0 é_2>)>

T VR =~ (S (1= 0 ) ) <0

(29)

The anomalous transport induced by the perpendicular fluctuation forces are given by

<Fa . v¢>anom _ <‘m,v;/}2 . (Kal X 1’1)>
T (g - Vi) = <mvé (Ko x n>>. (31)

The anomalous fluxes in Eq. (30) are negligibly smaller than those in Eq. (31) since kj < k1

is assumed.

IV. DRIFT KINETIC EQUATION WITH ELECTROSTATIC
FLUCTUATIONS

The drift kinetic equation® is given by

ez @)

0f, - 8%
—i Ot vas)  VFot+ea |2+ (oyn + van)  EW| 2 =

ot

where f, is a gyroangle-averaged distribution function in the phase space of guiding center
variables (x, E, 1) and vy, is the guiding center drift velocity. The potential ® consists of

the time-independent ensemble average part ®; = (®)___ and the fluctuating part $;

ens

0B

=+, - =0 (33)
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Then the energy variable E is divided into the average and fluctuating parts:

E=E,+ €a$
L
Ey = 5Mav + e, Dy. (34)

Hereafter let us use (x, Eo, 1) as independent guiding center variables instead of (x, E, u).

Then the drift kinetic equation is rewritten for 7,(x, Eo, 1) as

. — ~ = a—a 7z
22 (o + Voo + 95) - Vo + ealogn +vaso +¥5) - (BHEW) e~ 0,7)  (35)
0
where

~ ~ . Ca
E:—V¢’ VEZEEXH

= e (Sey®y 4+ 22 VIn B +22%n - V (36)

Vdao-—eaBnX T, 0T TV DL+ 2Tjn- Vn

with 2, = v /vrg, 7| = v)/vre and v, = (2T,/m,)"2. Due to the electrostatic fluctuation

terms, the solution f, of the drift kinetic equation also includes average and fluctuating

parts:
Fo=(Fa),, +fa (37)
Taking an ensemble average of the drift kinetic equation and retaining the terms up to O(6),
we obtain
_ o(f, _ _
(v”n T Vdao) "V <fa>ens - ea'v"El(lA)%E%ﬂi - <Ca(‘f"‘)>ens + Da (38)
where R
Da = —eay) <E’na—_a> (39)
a a
an ens

To the lowest order, we have

vV (Fa), = Cal(Fa), )- (40)
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As a solution of the lowest order equation, we use the Maxwellian distribution function

. 3 —g2 me \3/2 ey — B
= fou =Pzt = (1) e (S522) @)

7(10 = <7a0>

ens

where 7, = v/vp,. We should note that the lowest order distribution function f,, does not

include a fluctuating part, i.e. f o = 0. To O(6), we have

. _ o7, _
n - \Y <fa1>ens + Va0 * Vfao -+ ea'U"EI(IA> a]_CE:: = Oa,(<fal>ens) + Da. (4:2)

In the right-hand side, we use the linearized collision operator and

_ - 87,
Da = —eav” <E” 8E01> . (43)

The linearized drift kinetic equation for the fluctuating part ?al is written as

=~

a?al
ot

+ (v”n + Vdao) . V?al +9g- V}'—ao + e, (v”n + VdaO) 8].;“';) a(?al) (44)

where higher order terms than O(6) are neglected. Defining the nonadiabatic part e by

== e (45)

)

we obtain

o T, ) eaqﬁfaM (46)

0
[E + ('U”l’l +Vda0) -V + Ca} hea (Bt

911,12 iy the zero gyroradius limit.

which has the well known form of the gyrokinetic equation
Using the Fourier representation for the rapid spatio-temporal variation of the fluctuating

quantities as

é ] [ b ] . .
I = 2% | explik - x — dwyt 47
HEHE: - (47)
and neglecting the bounce motion of the trapped ions that is justified in the plateau regime,
we have
~ w—wg — wl ead
hak _ B a a.¢k o (48)

w—wg —Wpe — kv +iv, Ty

16




where C‘a(’ﬁak) is replaced with v kg and

wE=k-%n><V<I>o

T,
wpa =k (Vop + Veury) =k - ec 0 x (27,VIn B + 2,0 Vn)
T 2 3
Wiee = Wig [1 + Na (.’L'a - 5)]
=k o % Vinn,
€a
Ne=dInT,/dlnn, ' (49)

are used. Using Eqs. (43), (45), (47), and (48) and assuming that v, < |w|, we have

ﬁ = —€a’U” Z Real <E”kaa};;k>
ens

¢
= — Z k”v“ <| kal >ens 3E, [(w —wp — wh)6(w — wg — wpg — k”’u”)faM} . (50)

From Egs. (9), (10), (45), (47), and (48), we can calculate the anomalous heat generation

rate and forces as

2 —~
Hy=n2Y" <|¢k|2>ens/d‘°’vfaM5(w — wp — wpa — kjvy)(w — wp — wy,)
k

a

X(k“v” —Wwg — w*a[l + na])

2

K, = WT Z <]¢k] S/d?’vfaM(S(w — wg — Wpe — k) (W —wg — wfa)k

2
K, = ?“ Z <|¢k| s/d3vfaM5(w — Wg — Wpe — k)Y (W — wg — wl)

5 d
<[ (3afa+ ok 3 ) am (o + 2000 = 5 ) e (1)

When the fluctuation spectrum <[$k|2>em and the dispersion relation w = wy are given, we

can obtain from the above equations the parallel anomalous forces, which are necessary for
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the determination of the banana-plateau transport in Eq. (25) and the anomalous Pfirsch-
Schliiter fluxes in Eq. (30). We can also obtain the anomalous fluxes from the perpendicular

anomalous forces as

C

renom — ~: Ko X1
iqa““rn = K. xn. (52)
T, ™ e.B

The flux surface averages of the radial components of Eq. (52) were already found in Eq. (31).

V. ENTROPY PRODUCTION AND CONJUGATE PAIRS OF
FLUXES AND FORCES IN ANOMALOUS TRANSPORT
PROCESSES

We define the microscopic entropy S, and macroscopic entropy Sy per unit volume by
Sm== [ @o(() + D () + ) (53)
Su=— [ o (f)In(f). (54)

In this section, subscripts for species and ensemble average are suppressed. We have the

relation between these entropies by retaining terms up to O(A?) as
)
17 ol
SM—<Sm>+§/d'U<f>- (55)

Without collisions, the total microscopic entropy, i.e., the species summation and the spatial
integration of S, is conserved although the total macroscopic entropy can be increased by
the turbulent or anomalous transport process. In this section, we are concerned with the
entropy production by the turbulent process and neglect the collisional effect by assuming
that the time scale of the turbulent fluctuations is much shorter than the collision time. Then

we see from the average kinetic (Vlasov) equation that the conservation of Sy is broken by
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D and the entropy production rate due to the anomalous or turbulent process is defined by
o4=— / PvDln (f) . (56)

From the average and fluctuating parts of the Vlasov equation, we also obtain up to O(A?)

UA=%/dsv<%+v-V>%. (57)

Here we can see that ¢ is due to the spatio-temporal variation of the second term in the
right-hand side of Eq. (55). Using (f) ~ far and the linearized drift kinetic equation (44) for
f in the collisionless limit and assuming that the temporal variation of f3; is much slower

than that of < f2>, we have
cum 3ok (o) P [ 0{7 5Ot o3
=J; - X1+ Js Xo + J3X3 (58)
where we defined conjugate pairs of forces
X;=-Vian, Xy =-VInT, X3 =1/T (59)
and fluxes

- e’ |6kl T
J1=Ty= /d3v <fi7'E> =7r§k:%{—|—z/d3vfM5(w—wE—wD —k”v”)(w—wE—wf)z—ka n

- [ (=) 7o

e? (|¢w? 3 cl’
=Ty <——>- /d3v <a:2 - 5) fub(w —wp —wp — k) (w — wg — wf)e—B-k X n

J3 = E/dg'U <fE> . (’U”l’l +vyp + chrv)

2/14 |2
=7rze<$z/d3vfM5(w—wE—wD—kHv“)(w—wE—wf)(w—wE). (60)
k
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Here J; = I'4 is the particle flux conjugate to the density gradient force X; = —VInn and
is the same as the anomalous particle flux I'***™ defined in Eq. (52). Jo = q4/T is the heat
flux divided by the temperature conjugate to the temperature gradient force Xy = =V InT
although it is different from the anomalous flux q®*°™ /T defined in Eq. (52). The flux Js
is conjugate to the force X3 = 1/T" and represents the rate of the energy transfer from the

electrostatic fluctuations to the particles moving along the guiding center orbits.

The positive definiteness of o4 is shown as
¢k
oy B

The relation between the fluxes and forces are given by

/d3 frub(w —wg —wp — k) (w — wg — wl)* > 0. (61)

J1 Li; Lyigp Ly | [ X
Jo| = | Lig Log Log | | Xy (62)
Js Lis Lgs Lss | | X3

2/17 12 m—
Lim = ’]T% e<]ZZL2kI>/d3'U (:1;2 — g)H QfM6(w —Wg —Wp — k”?}”) (%)2 (k x n)(k x n)

2/ |bu2 -1
Lis =7rze<k%|>/d3v (mz - %) fub(w —wg —wp — ky)) (w — wg) g(k X 1)

k

Ly =7 e (|ful?) /d3vfM5(w —wp —wp — k) (w —wg)?  (L,m=1,2). (63)
k

Thus the matrix relating the fluxes to the forces satisfies the Onsager symmetry and the
positive definiteness although it is qualitatively different from the classical and neoclassical
transport matrices in that the former matrix depends also on the forces through the eigen-
frequencies, which are determined from the dispersion relation, and through the spectrum
of the fluctuation amplitudes, which is given by the nonlinear saturation.

The effects of the finite gyroradius can be derived from using the gyro-kinetic equation
and the results are easily obtained by including [Jy(kiv1/S2))? into the integrands in the

matrix coefficients given by Eq. (63).
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VI. ANOMALOUS EFFECTS ON THE PARALLEL VISCOSI-
TIES |

Now, let us find the solution of the averaged drift kinetic equation (42). Here, we consider
a large aspect ratio tokamak in order to derive the approximate solution for the plateau

regime, and, as shown in Appendix A, the solution is written as

<fal> = Fal + §a1=1) - (Vaf'a)—l <f<(zl_>-2)> + ha (64)

where we denoted the contribution of the thermodynamic forces by given by

—= 2nl v 87a 2y 5 —
Fa=—Srarer ~a et (73) e %5

the poloidal flow part by

[\

(= v 2 Qap O\ | =
ggl 1 - Z)-Q-ZIB [uaa + gpla (:232 - 5)] faos (66)

the part contributing to the parallel viscosity by

A a 2 a — 1/
o= 07 P4 B fugy + 222 (32— 2| 70+ = [ (DI g
IUTa 5pa 2 Va, 0

x / ” drsin(§ — v Y3¢r)e /0 (67)
0

and the definition of (v,L,)7! <"ﬁf?2>> is described in Appendix A. Here, £ = vj/v de-
notes the cosine of the pitch angle. Fluctuation effects on the solution are explicitly included
through <§fj22)> in the third and fourth terms in Eq. (64). The third term —(v,£,) ™! <f§f22)>
results from the balance between the collisional pitch angle scattering and the quasilinear
anisotropic deformation of the distribution in the velocity space. The fourth term A, repre-
sents the distribution of the resonant particles (|€| < 1). The anisotropic distribution (or
¢-dependence) in the velocity space caused by the second term (poloidal flow) and that by
the third term (quasilinear effect) give the sources of the resonant particles that are respon-

sible for the neoclassical and anomalous parallel viscosities, which are shown in Eq. (67).
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Since the quasilinear term <§a> contains a delta function of &, all the Legendre function
components with [ = 2,3,4,-.. homogeneously contribute to fg22)> although its even
parts with [ = 2,4,6,--- vanish in the integral f; <§EF”> d¢. Then, noting that only h,

contributes to the flux averaged parallel viscosities, we obtain

[(B.v.wa)} _ (J dPvmav}B - Vh,)
(B-V-0,) <f dPumauf (:ra - 5) B- Vi_za>

™ 11w Y,
= §€2namGWTGB2 !:1 123 2&] + l;l}
2 E_ L5 pa a2
T 1 17 Ugy — W.
= \/——eznamawTaBO 18| | 20w W(vzl (68) -
2 3 2] L5 pa a2

where the anomalous contributions from the quasilinear fluctuation term are given by

3 . D(l>2)
Ya| _ V7, / R 1 t\7e
_ VT By [ dzgei— o / ‘e /
,:}/652— D) € NaMaWTaVTaTaa L0 0 L€ Teala(%a) <.’L‘§ _ g) 0 Furr d¢

(-2 + %m%)} /01 @dg (69)

(1 - %Sﬂg faM

" 4
Wa _ VTaTaa /oo dxae—sz
Was | By Jo TaaVa(Za)

722) .

where the quasilinear term D, =™ is given by

_ _ 1_ 1
D =D, [ Dude % [ Dt
2/ 2 J-1 .

|0 —p = wD)ad(E - 0) = 5o wp = ) (1 b et ) e - )] (1)

with

W —WEg — Wpg

/ 5
wl”z‘:l = Wsa l:l + 7 (CBi - —>:| ) Weury = k- Veurv o= ]{;”1}

2
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Hefe, if the anomalous contributions Y,; or Wy, vanish, Eq. (68) reduces to the conventional
plateau parallel viscosities.

As seen from Egs. (51), (69) and (70), the anomalous effects are negligibly small when
the phase velocities of the fluctuations in the reference frame moving with the guiding center
particles are much larger than the thermal velocity, i.e., |(w — wg — wpa)/kj| > vre. Thus
we now investigate the unstable modes with |(w — wg — wpa)/kj| ~ vre to give the detailed
expressions of the anomalous transport and the parallel viscosities. In the case of the electron
drift wave driven by the density gradient dn,/d¢¥ < 0 with 1, ~ 0 and wp, =~ 0, the
anomalous effects are small since vp; < |(w — wg)/ky| < vre is required for the unstable
modes and the anomalous contributions K,j, Y,; and We; (j = 1,2) are all proportional to
(W — wg — Wae) [wse| = 3k3 p2(1 + ZiT./T;) < 1, where Z; is the ion charge number.

The most relevant fluctuations that resonantly exchange energy-momentum between the
ions and the fluctuation is the ion-temperature gradient driven turbulence. Numerous studies
of the stability and quasilinear fluxes from this form of drift wave turbulence are available.
For the small berpendicula,r wavenumbers satisfying ki1p; < 1 or wp; < kjvr;, we obtain
the slab ion temperature gradient (ITG) driven modes'®!* where the instabilities with |(w —

wg)/ky| ~ vr; are found as shown in Appendix B. The relationship of the small wp; limit

15 and Kim

to the strong toroidal regime of wp; ~ kjvr; is developed in Kim and Horton
et al.'® When Z;T,./T; = 1 and dT;/dv < 0, we can write the anomalous effects for ions from

Appendix B as

Tt (g - Vi)™ = 2.61 m

0 k’ z

<B ) K1,2> —1.30 szO Z 0*zk||
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e} (|¢wl?
Yy = CijQPiWTiTiiBO Z:a,m-k"M (1=1,2)
k!

T2
2. Tii e? (|¢wl?
W, = C,w'?)r_g:)'m Za*iku <‘ T‘2| >ens (‘7 =1, 2) (71)
K’ i

where Y represents the summation over the wavenumber region where |wien;/kjvri| ~ 2
and o, is the sign of the ion diamagnetic drift frequency. The dimensionless constants in

Eq. (71) are given by
Cyr=—3.05, Cp=085 Cy =194, Cyup=—045. (72)

We should remark on the symmetry properties of the eigenfrequency and the fluctuation
spectrum with respect to the parallel wavenumber kj. It is found that the eigenfrequency
given is an even function of kj, which results from our use of the Maxwellian distribution
with no flow velocity as an equilibrium. If we assume that the spectrum <|$k|2>em is also
even in ky, the parallel anomalous forces (B - K,;) and the anomalous effects on the parallel
viscosities Y, and W,; vanish. These are confirmed by noting that the wavenumber spectfa
of (B-K,;), Y,; and Wy, are odd functions of k). Thus, in this case, the banana-plateau
transport is not modified by the fluctuations. The kj-symmetry of the dispersion relation
is broken, for example, if we take account of sheared flows in the equilibrium distribution
function, although they are neglected here by the §-ordering.

Using me/m; < 1 and Eq. (20), we have (B-V -m;) ~ 0, from which we obtain the

poloidal flow velocity up = Bpuy as

G <Iq;1:2| >ens (73)

1

1 ¢ dI; _
up = _§e,-_B;d_7“z +1.95¢q 1U%i7ii%:0'*ik||

where Eqgs. (17), (19), (21), (68), and (71) are used. In the right-hand side, the first term
represents the ion temperature gradient driven poloidal flow in the plateau regime given by

the conveﬁtional neoclassical theory, the second is due to (B-K;) and Y;; (or W;;). As

24




previously mentioned, the second term vanishes if the spectrum <|$k|2>em is even in k. We
can see that first term contributes to the direction of the electron diamagnetic rotation with
dne/dr < 0 and dT;/dr < 0 assumed, while the sign of the second term depends on the
wavenumber spectrum. The ratio of the anomalous poloidal flow to the ion temperature
gradient driven flow has the same order of magnitude as the ratio of the anémalous parallel
current to the pressure gradient driven bootstrap current and that is estimated for the
plateau regime from Eq. (73) as

y ANnom
u%nom _7 ]

T?

)

B~ T~ clonm) (70 Mo e L) (74)
where a dimensionless numerical constant is omitted and Lp; = |dInT;/dr|™* is used. When
we write the parallel wavenumber as that kj = (m — ng)/Rq with the poloidal and toroidal
mode numbers (m,n), Eq. (74) implies that the anomalous rotation and the anomalous
parallel currents have opposite signs on different sides of the mode rational surfaces as shown
by Shaing.® As shown by Dong et al.,}” in the presence of the parallel shear flow which breaks
the radial symmetry, the peak of the fluctuating potential shifts radially. In that case, the
anomalous forces on the both sides of the mode rational surface do not cancel out and they
generate the net rotation and current. If we use o,k R ~ 1 and 3 e? <|$k]2>ens JT? ~ A2

8 ~ p;/Lri, the ratio in Eq. (74) reduces to e(wr;7y) and we have € <« e(wriTy;) < e~ /2 for
the plateau regime. Thus, the anomalous contribution to the transport along the magnetic
flux surface is expected to become dominant in the weak collisional plateau regime. For
comparison, let us consider the anomalous contribution to the anomalous heat flux across

the magnetic flux surface. Using Eq. (71), the ratio of the anomalous to the banana-plateau

heat flux is estimated for the plateau regime as

ganem N x@nom N <LT1) Z kL R <|¢ | >ens (75)

q%leo X?EO T

)

From the ordering ki /&) ~ A~! > 1, this ratio is much larger than the ratio given by
Eq. (74) and reduces to A~
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VII. CONCLUSIONS AND DISCUSSION

In this work, we have investigated the neoclassical and anomalous transport in axisym-
metric toroidal systems with electrostatic fluctuations. The total transport is clearly sepa-
rated into the neoclassical and anomalous parts by using the kinetic definitions which give
the average fluid variables from the average kinetic distribution function. The neoclassi-
cal banana-plateau transport fluxes modified by the fluctuations were shown in Eq. (25),
where the parallel fluctuation-induced forces (B - K,;), (a = 1,2;5 = 4,e) and the correc-
tions Y,; (or W,;) to the parallel viscosities due to the fluctuations appear in the definitions
of the modified thermodynamic forces and the parallel current. The anomalous transport
fluxes were defined by Eq. (31) or Eq. (52) in terms of the perpendicular components of the
fluctuation-induced forces Kg; in the similar way to the definition of the classical transport
fluxes by the collisional friction forces Fo;. Thus, the anomalous fluxes are defined com-
pactly in terms of K,; in our treatment, which give expressions different from the anomalous
heat fluxes defined by Shaing and by Balescu. The parallel components of K,; produce
the Pfirsch-Schliiter like anomalous fluxes as given by Eq. (30) although they are negligibly
smaller than those in Eq. (31) for the fluctuations with kj < k.

The fluctuation-induced forces K,; were defined by Eq. (9) in terms of the statistically
nonlinear term D, which appears in the ensemble-averaged kinetic equation and they were
calculated from the solution of the fluctuating part of the linear drift kinetic equation as
given in Eq. (45). The anisotropic distribution in the velocity space caused by the quasilinear
fluctuation source gives the corrections to the parallel viscosities Y,; (or W,;), which were
obtained for the plateau regime in Eq. (69) from the solution of the ensemble-averaged drift
kinetic equation. Thus from K,; and Y; (or Wy;), we can evaluate the neoclassical and
anomalous transport fluxes when the fluctuation spectrum (|@k|?),,,, and the frequency wi

are specified. The results using the slab ITG mode dispersion relation for the fluctuations
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with the small perpendicular wavenumbers were shown in Sec. VI.

Neither Shaing nor Balescu described the anomalous contributions Y,; or W,; to the
parallel viscosities since they did not take account of the ensemble-averaged drift kinetic
equation with the quasilinear fluctuation term. The anomalous effects on the banana-plateau
fluxes appear through (B - K,;) and Yy, (or Wy;). If (|ék|?),, is even in &, (B - K,;) and
Yy (or We;) vanish. The spectra of K,;, are larger than those of K, by an order of
ki/ky(> 1) so that the anomalous effects on the perpendicular transport is much larger
than those on the parallel transport.

The entropy production in the anomalous transport process was given in Eqgs. (56)-
(58) and its positive definiteness was shown. Then, we identified conjugated pairs of the
anomalous fluxes and forces and found the Onsager symmetry satisfied by the transport
matrix connecting them. This matrix is a highly nonlinear function of the forces such as
the density and temperature gradients through the eigenfrequencies and the fluctuation
spectrum.

The magnetic flux surface average of Eqs. (4) and (6) yields the basic equations used for
the particle and energy transport analyses. The results of our work suggest that the modified
neoclassical fluxes as well as the anomalous fluxes should be included in the total transport
fluxes and that the anomalous heat generation terms H, should be added into the energy
transport equations. The anomalous particle fluxes in Egs. (30) and (31) are intrinsically
ambipolar due to the quasineutrality condition ), e,fi, = 0 which is used for the disper-
sion relation. Thus, in the axisymmetric systems even with the electrostatic fluctuations,
the ambipolarity gives no constraint to determine the average radial electric field. In the
conventional neoclassical transport theory for the axisymmetric systems, the radial electric
field does not affect the particle and heat fluxes and it is not required for the transport anal-
yses. In our case, the radial electric field affects the anomalous energy exchange between

the electrons and the ions through the dependence of H, on the E x B drift frequency wg.
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However, the anomalous fluxes and the dispersion relations contain wg only in the form of
(w — wg) as seen in Eqs. (51) and (B1), which implies the Doppler shift and no explicit
dependence of the anomalous fluxes on wg. Further investigations for the determination of
the radial electric field and the fluctuation spectrum (|@k|?),,, are required. We are also
considering the direct extension of this work to the case of the nonaxisymmetric system with

the magnetic fluctuations, which will be reported elsewhere.
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APPENDIX A: SOLUTION OF QUASILINEAR EQUATION IN
THE PLATEAU REGIME

Here, we find the solution of the averaged drift kinetic equation (42). Putting

(Fa),,,=Far+7. (A1)
where
Fu= -2 By, o (2 DY) o (42)
Equation (42) is rewritten as
o3, ~ OF(0,) = ~ean {8 + OF(F) + OF + D, (A3)

where CT and CI are the test and field particle parts of the linear collision operator, respec-
tively. The [ = 1 part in the Legendre polynomial expansion of <7al>ens as a function of &

is written in the 13M approximation® as

<fa1>ens = 2_;1 {U,”a + %% <xi - g)} 7(10 (A4)

Ur

and that of g, is given as

(= 2v 2q, 5\ | =
lel Y= E!B [ Ugp + gp—: <$§ - 5)] Jao- (A5)
We find
1
(v V3)0=0 = = [ dgom- Vg, =0. (A6)

Then the [ = 0 part of Eq. (A3) is given by
— T (0= o) §g=0) 4 Cf(l:O). (A7)
Subtracting Eq. (A7) from Eq. (A3) yields

ym - vga _ Vaﬁaga _ gF('U, '(,b, 0) O/(l>2) + D(l>2) . (AS)
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where v, L, denotes the pitch angle scattering part of the collision operator and
O(; = Og(ga) + Of - Va[’aga' (AQ)

The superscript (I > 2) represents the sum of the Legendre polynomial components with
[ > 2. Here F(v,1,0) is an isotropic function in the velocity space and its functional form
will not affect the results of the following analysis.
Let us put
90 =90 - (L) (DY) + R (A10)

where (v,L,) ! represents the inverse of the pitch angle scattering operator. Here ggf:l) and
(v Lg)™t <§sz”> do not contribute to the parallel viscosities. Neglecting C/*>? compared

to the pitch angle scattering term in Eq. (A8), we have

6 10lnB w0 T, 0 09 |+
{580 2 a5 g gl e )ag] fe
_OlnB [1—3£%2z, 2006 [ 4 B\]| = 178 a2
T { 2 ’UTaB [uae-l- 5 pg (m“ B 5) feo = Vg /_1Da 4
+ (wreza) ™ {5(122) _ <5(122)>}
e {(oraz) F - 20,5 [uog+ 222 (52 - 5) 7,0} (A1)
Vrg 5 a 2
where
_ _1TaaVa(Ta)
Vg = (wTa,Taa) T,
X! (%

= — oY — 12
Wrg on B \/g'UTa Rq (A )

Here the collision frequency 7,, and the energy dependent collision frequency v,(z,) are de-
fined in Ref. 2, and we have used the Jacobian \/g = (V¢ xV8-V( )7L, the major radius R =

|V¢|! and the safety factor ¢. In the large aspect ratio system, we have 81n B/86 ~ esin 6
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with the inverse aspect ratio € and we also assume that {5‘(122) — <§SZ2)>} / <ﬁgz”> ~ €.
For the plateau regime €¥/? < (wreTas)™ < 1, the ordering ¢ ~ 7Y% <« 1 and the pertur-
bation expansion with respect to €/7%/® are used® to solve Eq. (A11) and the lowest order

solution is given by

— : 1,
ha = 67;1/3 &_B Ugy + E@ (xz _ §> faO + i / <D¢(1l22)> dé
’UTa 5 pCL 2 Va 0

x [ arsin(o - 7; o) (A13)
0
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APPENDIX B: ANOMALOUS EFFECTS BY THE ITG MODES
WITH (w — WE)/k”'UTz' = 0(1)

The dispersion relation for ion-temperature gradient (IT'G) modes given by Eq. (48) is
given in Kim et al.*®1% here we simply analyze the limit of small wp/kjvr;. Assuming that
the response of the electrons to the electrostatic fluctuations is approximately adiabatic,
the drift kinetic equation and the quasineutrality condition yield the following dispersion
relation

Z;iT, 1

20+ T L+ 2O+ o [+ (¢ - 5) 2@ =0 By

1+ Wie

kyjvri
where Z(¢) is a plasma dispersion function and ¢ = (w —wg)/kjvr;. Furthermore we assume
that the density gradient is small w,, =~ 0. From the above dispersion relation, we find that

instabilities occur when

Wxeli
kyjvrs

> {2 (1 + de>]1/2. (B2)

The adiabatic response of the electrons, which is assumed in the dispersion relation in
Eq. (B1), yields no anomalous contributions to the heat generation rate, the particle and
heat transport fluxes and the parallel viscosities for electrons. Then the ion particle flux
also vanishes according to the ambipolarity resulting from the quasineutrality. Thus, we
treat the anomalous contributions to the heat generation rate, the heat flux and the parallel
viscosities for ions only.

For |wyen:/kjvrs| > 1, we obtain the typical slab ITG mode instability with
w — wp = |k Awam|? (0w + V/34) /2. (B3)

Here ¢, = (Z;T,/m;)"? denotes the ion sound velocity and

wati _ kxn-Vy 9T/0%
lwams| |k x n- VY| |0T3/ 09|

(B4)

Owi =
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the sign of the ion diamagnetic frequency. Then, we have |(w—wg)/kjvr;| > 1 and therefore

the fluctuation-induced forces K;; and parallel viscosities ¥;; (j = 1,2) for ions are small.

Now, let us consider the unstable modes with |(w — wg)/kjvr;| & O(1). These modes exist

near the marginal point |w.emi/kjvri| ~ [2(1 + Z;T./T;)]*/? and their real frequencies are

given by

W — Wg 1 ( ZT)T/2
T Y0« |z 1 = 04i60-
oplors ~° [2 T 7ito

Then, from Eqgs. (51) and (69), we have (H;) ~ 0 and

Z;T,

Ti_l <Qi . v¢>anom — —dg C exp (‘Cg)

OT; /9

7 1 ‘ o |2 :
y § (Gl Vol ()., 5775

(B -Kp) = —27r1/2

(-&) Xk:’o*i (kB (I16x*) )

}/;1 3/2€2pw TB C/mdme—mf x;,l 1
va i{WiTii00 G0 0 % TiiVi(xi) (mg_%>

, 2T J ens
X zk: Tk [yl (zi,Co) + i (”“CO)] <T—f

2 4
Wi Vi Tii o —22__ T
=T Co d:cie K
Wiz By 0 TV (%s)

(1= 32)

2T; e;
X Z 0sik [yl (i, o) 7T, (:ci,g‘o)} Tﬁnﬁ

(B5)

(B6)

(B7)

(B8)

(B9)

where Y represents the summation over the wavenumber region where |wseni/ kH'UT?;l ~

[2(1 + Z;T,/T;)]*? and the functions 1; and 1, are defined by
(5,7) = =6z — 7) + =5 (472 — 61* — 3)H(z — )
n(@7) =g 7) + 554z = 6y v
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ya(z,y) = %( 2—;) §(z — )

* 161m2'{7(8x3 = 20z) — (127" + 6)2” +30y* + O}H(z — ). (B10)

When Z,T,/T; = 1, we obtain Eq. (71) from Egs. (B6)—(B9).
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