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Abstract

We consider stability problems arising in fluids, plasmas and stellar systems that contain
singularities resulting from wave-mean flow or wave-particle resonances. Such resonances
lead to singularities in the differential equations determining the normal modes at the so-
called critical points or layers. The locations of the singularities are determined by the
eigenvalue of the problem, and as a result, the spectrum of eigenvalues forms a continuum.
We outline a method to construct the singular eigenfunctions comprising the continuum for

a variety of problems.
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I. INTRODUCTION

In theory of fluids, plasmas and stellar systems, we frequently encounter the question of
the stability of equilibria. The answer is provided in part on determining the evolution of
an infinitesimal disturbance away from equilibrium, an approach that usually goes by way
of a normal mode expansion. This approach can at times be very powerful, and amounts
to solving an eigenvalue problem. It can, however, run into difficulty in circumstances for
which that eigenvalue problem is, in some sense, irregular.

What we might call regular eigenvalue problems involve the solution of a set of ordinary
differential equations with regular coefficients on a domain of finite size. As illustrated by the
classical Sturm-Liouville problem, the eigenvalue spectrum turns out to be composed of an
infinite number of distinct points. Like the characteristic frequencies of a vibrating string,
these correspond to the distinct, normal modes. One might say that the set of irregular
problems consists of everything that doesn’t fall into this category. F'or many examples, the
eigenvalue spectrum retains a éimple form, but in general it is not the case, and the spectrum
may consist of only a finite number of discrete modes or continuous intervals.

Here we are concerned with situations for which the eigenvalue problem is irregular and
the resulting spectrum is at least partly continuous. This kind of a spectrum can arise
as’ a result of solving the problem on an infinite domain, in which case there is simply no
quantization condition. Of more interest are problems in which the set of ordinary differential
equations is not autonomous and contains coefficients that become singular at points within
the domain.

In physical situations, singularities in the equations governing the evolution of an in-
finitesimal disturbance can result from a variety of effects, and they do not always affect

the form of the eigenspectrum. An important class of problems for which the singularity



has direct repercussions on the eigenspectrum occurs in fluids, plasmaé and stellar systems.
These are ideal problems in which there are wave-mean flow or wave-particle resonances
which result in the creation of a continuous eigenvalue spectrum. In these circumstances,
coefficients in the differential problem are formally singular at the point at which resonance
occurs. Moreover, that point is determined by the speed of a wave-like perturbation or,
equivalently, the eigenvalue.

The existence of a continuous spectrum for an inviscid, shearing fluid was known to
Rayleigh,! although he was not directly interested in it. In this context, an explicit solution
for the spectrum was given by Fjgrtgft and Hgiland in the 1940s for the special case of
incompressible Couette flow (see Ref. 2). The complications associated with finding the
eigenvalues surround the presence of the singularity in the equations, which occurs where
the advection of the perturbation exactly cancels its natural speed; a layer in the channel
associated with such a singularity is commonly referred to as a critical layer.

In plasma theory we have an analogous situation at the points in phase space for which
the equilibrium particle velocity matches the phase speed of the disturbance. This led
to a classical problem in plasma theory that was eventually solved by Landau, leading to
the celebrated phenomenon of Landau damping. That solution went by way of Laplace
transforms which is naturally tailored to the initial-value problem. The parallel procedure
using a continuum variety of normal modes was proposed by Van Kampen,® and considered
in fluid contexts by Case.* In this paper we follow the directions indicated by Van Kampen
for more general problems than the relatively simple plasma and fluid equilibria considered
by Van Kampen and Case. |

In what follows, we first describe the general method (which is discussed in greater detail
and applied to parallel shear flow by Balmforth and Morrison®). Then, in the general context,
the problem of plasma oscillations is reviewed. The remaining sections on parallel shear

flow, shear flow in shallow water theory, incompressible circular vortices, and differentially
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rotating disks, are the bulk of the paper. We conclude with a discussion of the uses of

singular eigenfunctions.
II. METHOD

An important feature of the solutions that compose the continuous spectrum is that
they are not regular functions; they can contain kinks, discontinuities or singularities at
the critical layers. Finding the solutions with standard numerical techniques for regular
ordinary differential equations is then problematic. Here we describe an aiternative method
to construct the singular eigenfunctions. Related procedures have been used in neutron
9

transport theory,® scattering theory,”® and plasma physics.

Most informally we can speak of a system governed by an equation of the form,
(x - x*)£az¢ = Mw¢7 (1)

for some eigenfunction ¢, and differential operators £, and M,. The point z, is contained
within the domain, D, and is really the eigenvalue. The operator £, contains the leading
derivatives in the problem, and consequently the equation is formally singular at the critical
point = = .

Our method follows Van Kampen'’s treatment of plasma oscillations in the Vlasov-Poisson
equation (we give his solution in the next section). We first divide through by the coefﬁcient
Z — 4. Such an operation is not mathematically defined, however; the resulting equation has
a right-hand side which is not a well-behaved function of position. We attach meaning to
the expression by interpreting it in a distributional sense, and we use the Cauchy principal

value, P, to handle the singular term. Then,

Mz

CU—:E*

Lyp="7P +C(z4)0(z — z4), (2)

where C is an arbitrary amplitude and 6(z) is the delta function.
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The solution of a differential equation like (2) with a delta-function inhomogeneous term
is most easily found by converting that equation to an integral equation. In order to achieve
this result, we introduce the Green function of the operator £, which we denote by X(z, z').

Then we can write (2) in the form,

é(z) = P/D K(z, x')%M‘dx' + C(z4)K(z, 24). ' (3)

ey
Equation (3) is an inhomogeneous integral equation. Its kernel, (z' — z.) " K(z, z') My, is
singular at the critical point, and we could use the methods of singular integral equation
theory®? to solve it. However, as yet, this is no clear simpliﬁcétion of the problem, but we
have not specified C. At our disposal is a normalization condition. If we fix the normalization

of the eigenfunction, we determine C. Certain normalizations lead to simplifications in our

problem. In particular, if we require that

/D Loddz =: A, | (4)
we observe that
cen_p [ M 4 (5)
D T — T

If we substitute this relation into our integral problem (3), we see that
b= AK(z,2.) + [ Fou(z,d)o()d, (6)
D

where

) My (7)

Fa(2,2) =
is a kernel with a parametric dependence on z,. This is another integral equation, but,
whereas (3) was singular, (6) is not. In other words, our normalizing operation (4) has
regularized the integral problem. In fact equation (6) is a standard Fredholm equation.'!

Fredholm theory tells us that equation (6) has two kinds of solutions. If there are homo-

geneous solutions that satisfy
=1 [ Flz,o)d(e)ie, ®)
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for certain values of A, and if there are no values of z, for which A\ = 1, then there are no
homogeneous solutions to (6). Fredholm theory then demonstrates that there is a uniciue
particular solution. If homogeneous solutions do exist with A = 1 for certain values of z,,
then a solution only exists if the inhomogeneous term satisfies an additional relation (the
so-called Fredholm Alternative), and it is not unique.

Provided, we have no homogeneous solutions, then, the method allows us to construct
singular eigenfunctions by solving a simpler, regular problem. Moreover, it would establish
the existence of a unique solution of the kind we seek. Sometimes it can be verified directly
that no such homogeneous solutions exist; also, numerical techniques can be used. Should
homogeneous solutions exist, precautions must be taken to assure a unique and bounded
solution to our original problem. One way to do this is by suitably scaling the amplitude
of the singular mode, A. In particular, we can select A = D(m*)K, where the function
D(z,) vanishes at the eigenvalues for which there exists a homogeneous solution (it is the
Fredholm determinant), and A is bounded. This scaling forces the inhomogeneous term to
vanish whenever a homogeneous solution appears, and so we always find a unique, bounded

eigenfunction.
III. PLASMA OSCILLATIONS

We first apply the method to the one-dimensional, Vlasov-Poisson equation, which repro-
duces Van Kampen’s original solution. In this problem we have an equilibrium described by
a distribution function, fo(v), where v is the phase-space velocity coordinate. Infinitesimal
perturbations of the distribution function, f(z,v,t), satisfy the linearized Vlasov equation
together with the Poisson equation for the electric field, E(z,t). Because the equilibrium is
independent of the spatial coordinate x, we can Fourier transform the equations, or, equiva-
lently, look for solutions where the perturbations of the distribution function and the electric

field are, respectively, of the forms f(v)exp[ik(z — ut]) and E exp[ik(z — ut)], where k is a
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wavenumber and u is the wavespeed. The governing equations are then,

ek dfo _ .
(U—U)f‘*';%— 9)
and
k2E = —4re /0 * fw)dv, (10)

- where e and m are the particles’ charge and mass. If we take a solution of the form (2) for
f, by dividing equation (9) by (u — v), we obtain,

f=34,E%

m u—-v

+ C(u)é(u — v). (11)

If we integrate this expression over v, and use the normalization indicated by equation (4),
we find that,
2 o f! v
C=A—i—:%7>/o %d@. (12)
In this problem, there is no dispersion relation; solutions exist for all eigenvalues, u. The
associated eigenfunctions are given by (11) with (12). It is not necessary to solve a Fredholm
problem in this case because the Poisson equation has the simple, “degenerate” kernel, K = 1.

The kernel of the Fredholm equation therefore vanishes everywhere, and ¢ = 1.
IV. INCOMPRESSIBLE SHEARS

A slightly more complicated example is the problem considered by Rayleigh.? He studied
an inviscid fluid configuration consisting of a shear flow contained within a channel. If we
denote x and y as the spatial coordinates along and across the channel, then a flow with
velocity profile U(y) within the doma,m —00 < z < o0 and —1 < y < 1 exists as an
equilibrium of the two-dimensional Euler equations. Infinitesimal perturbations about this
equilibrium can be taken to be of the form, u(y)expik(z — ct), v(y)expik(z — ct) and

p(y) exp ik(z — ct) for the two velocity components and pressure fluctuation. The eigenvalue



is ¢, and there is a critical layer at y = ., at which point U(y) = U(ys) = c. The

perturbations satisfy the equations,

k(U — ¢)u+ U'v = —ikp, (13)
ik(U — c)v = —p/ (14)

and
iku+v' =0, (15)

where the equilibrium density has been set to unity. By representing the perturbation’s ve-
locity field in terms of a stream function, ¥(y), we can formally manipulate these expressions
into Rayleigh’s equation,
U = )@" = k) =U"y. (16)
Rayleigh’s equation is a relatively well-studied equation.? Various integral relations éan
be derived from it. These indicate that there are no discrete eigenmodes unless there is
an inflexion point, U” = 0, somewhere within the flow. Such modes are either purely real,
in which case their critical layers lie exactly at the inflexion point, or they are complex,
indicating decaying/growing pairs. All other neutral modes must have critical layers that
lie within the channel; they are intrinsically irregular and we expect them to comprise a
continuum, i.e. the singular, continuous spectrum.
Rayleigh’s equation is clearly of the form of equation (1), provided U(y) is a monotonic
function. If we assume this to be the case, then the generalization of the Van Kampen

eigenfunction is,

o) =P GUN 1y -p [ E oy gty ), (17

which is the vorticity fluctuation, and 1) satisfies the Fredholm equation (6) (but in the

variable y), with

Falind) = SPLZ ) ), (18

8



and K(y,y') being Green’s function of the two-dimensional Laplace equation, i.e.

—sinh k(1 — y) sinh k(1 + ') /ksinh 2k for y > ¢/,

N —
K(y,y') = { —sinh k(1 — ') sinh k(1 4+ y)/ksinh 2k for y <9/ (19)

Some solutions to the Fredholm problem are shown in Fig. 1. These are computed for
the flow profiles, U(y) = y + 43/10 and U(y) = y + ¢°. The continuity of fluid elements
requires that 19 remains continuous across the channel, but it does have a discontinuity in
slope. In these cases, the absence of homogeneous solutions to our Fredholm problem can
be established numerically by constructing the Fredholm determinant.'* Hence, we set A to
unity.

It is not necessary to assume that the profile is monotonic. If U(y) is multivalued in
.places, we have multiple critical layers for the corresponding wave speeds. This complicates
the construction of singular eigenfunctions, but it can still be done, with some modification

to the method.5

V. SHEARS IN SHALLOW WATER

A more complicated situation than Rayleigh’s problem is when the shearing fluid is
compressible. An example in which the two-dimensional character of the configuration is
retained is for the flow of shallow water through a channel, a physical situation of interest
in an oceanographical context.1%415

From a physical point of view, we expect a different spectrum for the stability eigenvalue
problem, because compressibility introduces an additional degree of freedom into the dynam-
ics of the fluid. In particular, in Rayleigh’s problem, there are only vortical motions. For
compressible fluid we also expect sound waves, or, in the shallow water system, surface grav-
ity waves. (The similarity between the acoustical dispersion relation of a two-dimensional
compressible fluid and that of the surface gravity waves of a shallow fluid system has led to

some confusion in the past.'6)



In addition to the singular modes, we therefore anticipate a new class of modes, and
from the earlier studies these are expected to compose a discrete portion of the complete
eigenspectrum.

The equations for perturbations to a shearing, shallow fluid of undisturbed, uniform depth
and velocity profile U(y) (using a coordinate system like above and assuming monotonic

velocity profiles), are'3

. ik
’Lk(U — C)U -+ UI’U = _W h,, (20)
) 1
k(U —c)v = ~ 73 I3 (21)
and
ik(U — c)h +iku+ ' =0, (22)

where the velocity components are again given by w and v, h is the y-dependent piece of the
depth pe\rturbation, and the dependence exp ik(z — ct) has again been introduced. These
equations have been scaled to make them dimensionless; this introduces the Froude number,
Fr, which is the ratio of the characteristic, mean flow speed to a typical surface gravity

wavespeed (or a characteristic Mach number of a two-dimensional, compressible fluid).

From these expressions we can derive a second-order equation for h; namely
(U =) {W" + K [Fr2(U — ¢)* - 1]h} = 2U'N. (23)
Another relation of interest comes from the vorticity and continuity equations,
(U - )" — k*v) — U"v = —ik[(U — c)?A]'. (24)

The incompressible limit, in which we should recover Rayleigh’s equation, is obtained by
taking F'r — 0 and h — 0, but with the ratio h/Fr? finite. Accordingly, (24) reduces to
Rayleigh’s equation since 1k = v.

The next step is to divide through by a factor of U — ¢, take a principal part and add a

delta-function. In our current example, we need to be a little careful about how we should
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accomplish this. In analogy with Rayleigh’s equation, we can clearly divide the second
relation (24) by U — ¢ and proceed along the lines outlined by the method. A similar
procedure for (23) does not seem to work for the following reasons.

Equation (23) contains a singular point, namely y = v,. About that point, we have

Frobenius expansions of the form®3

h ~ (y - y*)3 i an(y - y*)'n

n=0
and
K2U" X o) 0
B~ _ﬂ (=) log(y —ve) D an(y — v)™ + Y buly — vu)™ (25)

If, for the moment, we consider Couette flow, for which U” = 0, then we observe that the
singular point in the equation for A is entirely regular. In other words, it is a removable
singularity (in fact the equation for v in this case contains no singular terms). Moreover, the
solutions of (23) form a complete basis set of regular functions (the surface gravity modes).
There does not seem to be any need, then, to include singular eigenfunctions. However, in
order to determine the evolution of the fluid, we need to represent both an initial height
and an initial velocity field. This requires two independent sets of basis functions, and the
surface gravity modes alone are in general insufficient. The singular mode spectrum is still
therefore needed in order to complete the problem.

" Even though there is no principal-value singularity in equation (23), we could nevertheless
add a delta function on dividing by U — ¢. This leads to a particular solution for A that
might represent the singular eigenmode. Indeed, that solution generally has a discontinuity
in its first derivative of h. However, such an eigensolution is ruled out if we use the physical
requirement that the pressure gradient be continuous. Even were this objection not to
preclude such solutions, we would then be forced to work with highly divergent vorticity
fluctuations (in the sense that the singularity at the critical point is not just a simple pole).

Moreover, these appear to be of no relation to the singular modes of Rayleigh’s equation,
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yet Rayleigh’s solutions should be recovered in the incompressible limit.

The resolution of this difficulty lies in equation (24) and the fact that (23) was derived
from the continuity equation (22). The continuity equation contains information only about
the divergence of the velocity. In deriving equation (23) we therefore omit crucial, singular
details of the vorticity field. That field evolves according to (24). Applying our procedure

to this equation gives,

Fr2k2 Uy
v — K2+ 2U’ e [(U—-cW —Uv]="P T +C8(y — ys)- (26)
where
"K? =k [1— Fr¥(U — ¢)?]. (27)

This is the shallow water version of Rayleigh’s equation. In writing this equation, we have
introduced another singular term, namely the term with a denominator of K2. That quantity

vanishes at the points y = yi, for which

V() = e o (28)

These singular terms have no counterpart in the equation for h, (23), reflecting how they
are removable singularities (the Frobenius expansions for v about these singular points are
both purely regular). Formally we can write the equation for v in the form of equation (2),
thence solve it according to our method. This requires us to build a Green function for the
operator on the left-hand side of (26), but then our Fredholm problem is straightforward to
solve.

Buried in equation (26) are both the eigensolutions of the continuum, and the discrete
modes which correspond to the surface gravity waves. In addition, should the flow profile
violate Rayleigh’s criterion, there may be discrete solutions related to the vortical instabilities
of the incompressible problem. When the Froude number is very small, we expect that the
two types of solutions are well separated on the spectral plane. For larger values of F'r, the

distinction may not be so clear.
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This particular problem is interesting in that it provides an example where we have to
be a little careful about simply writing down principal values and delta functions in order to
find singular eigenfunctions. Applying the method to the equation for A produces ambiguous
results; the equation for v seems to be the best way to go. None the less, there is a certain
amount of freedom in choosing which equation to work with, or into which physical quantity
we should introduce a principal-value singularity or delta function. At the end of the day, it is
how well the resulting eigenfunctions behave as a unique, complete basis set that determines
the optimal choice.

The problem also highlights another ambiguity. We decided not to treat the singularities
occurring equation (26) at the points y = yi by the method since they were removable (of
zero dividing zero form) and so no principal-value piece was necessary. However, for linear
shear in both compressible and incompressible fluid, U” = 0, and there is no principal-
value singularity in the equation for v even at the critical layer. In Rayleigh’s equation, the
delta function piece must still be added into the equation in order to find a solution (this
is Hgiland and Fjgrteft’s result?). Similarly, in the shallow W.ater equation (26) we could
also retain the delta function, but now there is no distinction between the importance of the
critical point, and the other, removable, singular points y = yi¥. In principle, then, we could
add alternative terms, £6(y — vi), to the equation. This would lead to another two sets of
singular eigenfunctions.

In practice it is unlikely that the new sets of solutions are as useful as the original one
because we expect continuum eigenfunctions for every wave speed that matches the mean
flow. From (28) we see that this would give solutions with singularities outside the channel.
From a physical point of view, we interpret yi© to be the turning points for the surface gravity
Waves (the points for which these waves are reflected). There is no obvious reason why we

should allow the eigenfunctions to be irregular at these points.
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VI. INCOMPRESSIBLE VORTICES

As a prelude to discussing an astrophysical application of our method we now discuss
another simple situation. This is the incompressible, two-dimensional vortex. Kelvin!” con-
sidered such conﬁgurations with piecewise continuous vorticity distributions. These equilib-
ria support interfacial-type discrete modes which were of interest to Kelvin, but not directly
relevant to the continuum modes we derive here. More recently, the stability of a two-
dimensional, incompressible vortex has regained importance since it has become feasible to
experimentally simulate the dynamics of such a configuration with an electron plasma.'®

In polar coordinates, (r, 8), we have an equilibrium given by an angular velocity distribu-
tion, V(r) = rQ(r). For the sake of simplicity we again take monotonic profiles for Q. Pertur-
bations to the vortical structure can be described by a streamfunction, ¥(r) exp im(0 — vt),
where m is the azimuthal quantum number, for which the perturbed velocity components

are given by
1o _o
U= ; %‘ and v = 87‘ . (29)

Then Rayleigh’s equation for ¢ can be written in the form,

@) |1 vy - o] = v (30)
where the mean vorticity is given by
¢==("9). | (31)
A straightforward application of our method yields the singular eigenfunctions,
w= —?% —Co(r — 1), (32)

where 7, denotes the critical ring, or the co-rotation radius, for which Q(r,) = v. The

streamfunction 1) satisfies the Fredholm equation,

o K(r, ") — K(r,74)
#0) =A%) + [ = e

¢'(r)(r)ar, (33)
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and the Green function of Laplace’s equation in these coordinates is
/ * n dk
K(r,r') = — /O T () Im(fr') == (34)

The stability criterion for the vortex is simply that ¢’ not vanish. This also excludes any

discrete modes in the spectrum. -
VII. DIFFERENTIALLY ROTATING FLUID DISKS

Compressible generalizations of Kelvin’s vortices have lately prompted interest regarding
noise-generation problems in aerodynamic contexts'® and in disk theory in astrophysics.20:21
In the latter situations, we consider slender configurations like the shallow-water shears con-
sidered above. These disks are essentially two-dimensional, being hydrostatically stratified
in the vertical, and variations in thickness provide the most important effects of compress-
ibility. Equilibria are determined by a surface density distribution, X(r), in addition to the
rotation rate, (r). If we consider barotropic configurations which are not self-gravitating,
but rotate about some central mass, then a disturbance can be represented (to leading or-
der in thinness), in polar coordinates, by the velocity components u(r) expim(6 — vt) and
v(r) exp im(6—vt), and by perturbation in the enthalpy, h(r) exp im(f — vt), in the midplane

of the disk. The equations of motion can be written in the form,

im(Q — v)u — 2Qv = —HK/, (35)
im(Q—vv+Cu= —? h (36)

and
im(Q = v)o + -71; (rouy + 5 =0, (37)

where the surface density perturbation, o, is related to the midplane enthalpy by

2h

2 )
cs

(38)

o=
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with ¢ a function of the local vertical structure of the disk, or the local, surface gravity
wavespeed. The undisturbed vorticity has again been represented by ¢ = (r?Q) /r.

From these equations we can derive the relation,

1 /S ' m?D )Y 2 708\
Q B r D /> B 2 r <_> -
(2-v) [r <D h r2D h c? h} T\ h=0, (39)
where
D =2Q¢ —m?(Q —v)% (40)

This is the counterpart of equation (23) for the shallow-water shear. Like that equation,
it is singular at the critical point, » = r, (the singularities for which D = 0, the so-called
Lindblad resonances are removable; these are the analogues of the turning points (28) of the

shallow-water problem discussed earlier), except for the case in which the potential vorticity,

Q={/%, (41)

is uniform. Then there are two regular solutions at the critical ring. This case corresponds
to the Couette, shallow-water shear flow example. Like that example, there would therefore
appear to be no need for singular eigenfunctions, and the regularity of the pressure derivatives
in (35) and (36) precludes us from dividing through by 2 — v and adding a delta function.
In other words, once again we cannot straightforWardly apply the method to equation (40).

In order to find the continuum modes we first consider an inelastic approximation to the
equations. This is obtained by taking the limit ¢, — oo. Then, the surface gravity waves

are filtered out of the problem and the continuity equation becomes,
1 , o im
" (rZu) + . Yv=0. (42)

We can introduce a streamfunction, %, to solve this equation. It is given by

= and v= _1 . (43)

Y= >



In terms of this variable, we write the perturbed potential vorticity equation as

@) |1 (5v) - Sge| v (49
This is a Rayleigh-like equation which generalizes the incompressible version, equation (30).
Since the source of the singularity is now evident we can apply our method to (44) and derive
singular eigenfunctions for this inelastic approximation. In particular, we have
0= 2 (Lv) -2 y=p T esr—r) ()
r(—v)
for the potential vorticity ﬂuctuation, with ¢ determined from a suitable Fredholm equation.
To return to the full problem, we again write down the potential vorticity equation.

Without approximation it is,

r(Q-v) [% (5v) - 5= ] — QU+ (@-)S, (46)

where now ¥ = rXu, and

3=—7~{[r2(9—y)§ ] mr 2 } | (47)

c? c?

This is the generalization of the inelastic equation (44), and, on writing h and A’ in terms of
¥ and its derivative, corresponds to equation (26) of the shallow water example. In analogy
with the inelastic equati}on, we can divide (46) by Q — v, treating the singular term by its
principle value, and add a delta function. Eventually we solve a Fredholm problem for .

As in the shallow water problem, equation (46) contains two types of modes that are
easily distinguished in the inelastic limit. In the disk problem, one is tempted to call the
vortical modes either Rossby waves or » modes, in analogy with the nomenclature of theory
of geophysical fluid dynamics or stellar pulsation. These form a continuum delimited by the
range of rotation speed, but, as suggested by Schutz and Verdaguer,?? there may also be

some discrete modes as a result of topographical influences (gradients in surface density),
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which break the Laplacian structure of the left-hand side of (30). Moreover, when the
potential vorticity reverses sign, we violate the generalization of Rayleigh’s criterion?® and

unstable/decaying mode pairs may appear.
VIII. THE USES OF SINGULAR EIGENFUNCTIONS

Iﬁ previous sections we have constructed eigenfunctions of the singular continuum for a
variety of idealized problems. These eigenfunctions are characterized by irregular shapes;
principal-part singularities and delta-functions. As a result it is not possible to add a single
continuum mode with any finite amplitude onto the basic equilibrium state without imme-
diately leaving the linear regime and introducing singular behaviour at the critical layer. An
integral superposition of singular modes, however, with a distribution of amplitudes, A(z,)

say, such as

73/ (2 Mot (@i2s) o [ 73/ Mad(a';z) dx'} Alz),  (48)

T — Ty -z
need not be so pathological®* (principal-value integrals are well-behaved functions). We have
introduced a second dependence on z, into the arguments of ¢ in equation (48) to explicitly
reveal its implicit dependence through the Fredholm problem (6), and set A = 1 to make
the form of the superposition more transparent.

Integral superpositions like (48) can be used to represent an initial condition, which
enables us to consider the initial-value problem. In fact, methods borrowed from singu-
lar integral theory'® allow us to invert the integral relation (48), and to write amplitude
distribution, A(z), in terms of the initial condition, S(z). This procedure is typically com-
plicated by the presence of discrete modes, but often we can prove that the combination of
continuum and discrete modes can represent the initial disturbance.’? This establishes that
the combination of the discrete and continuous eigenfunctions form a complete set of basis

functions.
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Once we have a superposition like (48) to represent an initial condition, we can deter-
mine the evolution for all subsequent time and show the equivalence with the solution of the
problem using Laplace transforms.* This amounts to reinstating the temporal dependence,
- exp(—ikct) or exp(—imut) within the integral superposition (48). Integrals of various phys-
ical quantities over the domain (such as the total vorticity across the channel) then contain
factors of the form, exp ikU(x)t within their integrands. By the Riemann-Lebesgue lemma,
these integrals must vanish as ¢ — co (unless there is some additional irregularity), revealing
the usual phase mixing property of an ideal system. In many situations, the integrands can
be analyzed further to estimate the asymptotic temporal dependence. If this is exponen-
tial, we observe the fluid analogue of Landau damping, but in general, that phenomenon is
overshadowed by algebraic decay.

Another application of a complete set of singular eigenfunctions is in perturbation theory.
Superpositions like (48) can be posed as approximate solutions about which we can open
asymptotic expansions. We can then attempt weakly nonlinear theory and investigate the
ideal limit of some dissipative systems. These amount to avenues we intend to explore in
the future.

A final issue that we have not mentioned until now is Hamiltonian structure. The ideal
fluid or plasma equations can be recast as Hamiltonian field theories. Typically, these theories
are not canonical in the sense that they do not have a standard Poisson bracket.?* However, by
defining a transformation to Hamiltonian coordinates based on the amplitudes of the singular
eigenfunctions, the Poisson bracket can be transformed into a canonical form. Moreover, in
these linear “normal” coordinates, the Hamiltonian itself is diagonal and of action-angle
form.?5265 This indicates that the singular eigenfunctions are in some sense the intrinsic
degrees of freedom of the linear fluid or plasma system, like the normal coordinates that
describe the modes of vibration in the classical triatomic molecule. However, the degrees of

freedom are not discrete in our case; we have a continuum analogue in an infinite-dimensional
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Hamiltonian system.
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FIGURE CAPTIONS

Fig. 1. A selection of singular eigenfunctions, (y), for U(y) = y + a®, with (a) a = 0.1
and (b) a = 1. Also, k = 1. Streamfunctions of various modes with different critical

layers are displayed. The critical-layer amplitudes are indicated by stars.
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(a) Shapes of singular eigenfunctions
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