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ple taking advantage of the simplicity of the charge-exchange (CX) operator
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dering. Further, a non-variational, analytical solution providing a full set of
transport coefficients is derived by making the realistic assumption that the
: prodﬁct of the CX cross-section with relative velocity is constant. The effects
of neutrals on plasma energy loss and rotation appear in simple, sensible forms.
The presence of ionized impurities in the plasma are also considered, and the

effects of CX drag and ion-impurity collisions on plasma flows in the short A,
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regime are presented. Finally, the long A\, regime is analyzed in slab geometry
by finding an appropriate Green’s function for the neutral kinetic equation and
by solving recursively for the neutral distribution function. Our results are

found to agree favorably with previous work.
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Chapter 1.

Introduction

Conventional transport theory of high-temperature plasmas treats
only completely ionized plasmas with no significant numbers of neutrals. How-
ever, the bulk transport is significantly affected by the edge, where the plasma
is not completely ionized. Edge neutrals, whose motion is not affected by the

magnetic field, interact with ions through charge-exchange (CX) and impact

ionization. During a CX collision a neutral and ion exchange identities. It

thus appears as if the neutral has scatteréd, suddenly changing its speed and
direction. A neutral méy continue this CX “scattering” many times before it
is finally ionized due to impact with an electron. As Sacharov [1] first pointed
out, it is in this 'Way that low energy neutrals near the wall can gain energy
through frequent CX scatterings and penetrate into the plasma interior, where
they may affect plasma‘transport and rotation. Furthermore, CX may be an

important mechanism for cooling the divertor plasmas of future fusion reactors.

Although it would be desirable to solve the full plasma-neutral inter-
action problem analytically, the near equality of the plasma and hot neutral
density scale lengths makes 'it very hard to do so. Most analytic solutions
available [1-7] work only in a one-dimensional slab geometry. They also as-
sume prespecified, fixed, uniform plasma density and temperature profiles, as

well as a uniform external neutral source. Neither the effects of the neutrals

on the plasma nor the changes in the external neutral source due to changes

1



. in plasma flux are calculated. These restrictions severely limit their use in

experiments.

We will show that the scope of the analytical solutions can be broad-
ened considerably. We can solve the neutral-plasma interaction problem in a
self-consistent manner without assuming any spatial symmetry, and without

neglecting the effects of neutrals on the plasma. This is achieved as follows:

After reviewing neutral kinetic theory, we will show that CX obeys
an H-theorem. Then the simplicity of the CX collision operator is used to
set up a general variational principle for the solution of the neutral kinetic
equation. Although general, this method is somewhat cumbersome sirice the

forms involved are spatially nonlocal and not self-adjoint.

In the short CX mean—freé—path (Az) regime, the process of finding
an extremal solutibn is then simplified by using the smallness of the ratio
of the ionization to the charge exchange mean-free-path. To each order in
this small parameter, x}ariationally accurate transport coefficients for neutral
particle, energy and momentum fluxes can be read off from the extremized

entropy production rate.

Furthermore, upon making the realistic assumption that the product
of CX cross-section with relative velocity o,|v — v/| is constant, we calculate
the neutral entropy production and present the full set of neutral transport

coefficients. A similar calculation is given by Vekshtein and Ryutov [8].

We then discuss the effects of CX on ion fluid behavior and transport.
Momentum and energy moments of the ion and neutral kinetic equations are

analyzed in the short A, regime. The effects of neutrals on plasma energy loss



and rotation appear in particularly simple, intuitively sensible forms. After
examining the contribution of neutrals to'ion viscosity, we find that neutral
viscosity dominates ion viscosity everywhere, and in the edge region by a large

factor.

Since the rotation measured in tokamaks is that of ionized impurities
and not that of hydrogen ions, we include impurities in the neutral-plasma
interaction problem and present a simple drift-kinetic derivation of expressions
for the poloidal ion and impurity flows in the presence of CX drag and ion-

impurity collisions in the short A, regime.

Finally, we examine the plasma-neutral problem in the case where
the ratio of the ionization to the CX mean-free-path is large. After finding
a Green’s function for the exact neutral kinetic equation in slab geometry, we
introduce suitable expansions and calculate recursively the neutral distribution
function in this long CX mfp limit. We find that our results compare favorably

with previous work.




Chapter 2.

Neutral Kinetic Theory

To begin we briefly review neutral kinetic theory [9]. Neutral particles

are subject to three inelastic processes:

1. Charge-exchange (CX) collisions locally conserve both ions and
neutrals; in effect, only energy and momentum are exchanged. We write the

CX operator as

X(f,9) = [ oy VIV - F)g},  (21)

* where f and g are the ion and neutral particle distribution functions respec-
tively. Charge-exchange occurs with frequency v,. o, is of course the CX

cross-section. Notice that

2. Impact ionization, a neutral sink, is proportional to ¢ and to n.,
the electron density (impact ionization due to ions is negligible). We suppress
dependence on the electron distribution and write the impact ionization rate

as V,g.

3. Recombination, a neutral source, is proportional to the product of
f and n.; we denote it by v, f. Other neutral sources, such as from gas puffing,

are distinctly local.




Neutrals are not subject to mean forces, and their elastic collision rate

is negligible. Hence the kinetic equation for g is

ot

This is instructively compared to the corresponding ion kinetic equation,

%+V-Vf+a'g—é“ (f)=—X(f,g)+z)zg—vrf- (2.4)

Here a is the acceleration due to electric and magnetic fields and C the Coulomb
collision operatbr. The point is that ion population changes due to recombina-

tion or impact ionization precisely balance neutral changes.

’ In discussing charge-exchange, it is advantageous to track the charge
flow, rather than individual particles. Thus a CX event is viewed as an ex-
change of momentum and energy between a neutral and an ion, each particle
maintaining its species identity. Because the initial momenta of the colliders
are not correlated, CX yields large-angle scattering events. From this point
of view a neutral will survive any number of CX “scatterings”; it disappears
only upon impact ionization (or wall interaction), so that the neutral lifetime
is 1/v,.

Chapter 4 of the present work provides a variational principle for the
general solution of (2.3). However, most of our results, including the explicit

transport formulae, pertain only in the special case
Vy L Vg (2.5)

in which each neutral suffers many charge-exchanges in its lifetime. In typical

tokamak experiments ionization is indeed slower than CX although not always

@+v-Vg=—X(g,f)—vzg+Vrf~ | (2.3)




by a large factor. For example, in TEXT [10] v, exceeds v, by factors of 3 to

5. (The recombination rate v, is typically somewhat smaller still.)

The rates v, and v, are conveniently measured in terms of the cor-
responding meag—free—paths, A = v, /v, where v, is the thermal speed of the
neutral population. We shall refer to Ay = v,/v, as the CX mean-free-path; it
is measured in centimeters in most tokamak discharges. The impact ionization
length A, is a measure of the total path travelled by a neutral; notice that in
our case this path is far from linear since (2.5) describes a neutral that changes

direction several times before ionization.

The third length of interest is the scale length L for neutral density

variation. A random walk argument [9] using (2.5) shows that

Lo (k) (26)

and therefore that

de KL <A, (2.7)

In other words, the ordering (2.5) is consistent with the short CX mean-free-

path regime. In Chapter 5 we focus attention on the short mean-free-path

limit. Our argument will show that these are self-consistent orderings.



Chapter 3.

H-theorem

Here we adopt classical arguments to establish some important prop-

erties of the CX operator (2.1).

Consider the bilinear form

G}X(GZ, 9, (3.1)

Ny

@[Gl,Gg] = /d3’U

where G; and Gs are any two neutral distributions, n, is the neutral density

and f is an ion distribution normalized to have unit particle density:

F=L.

n .
It will appear presently that if g is the solution to (2.3), then Olg, g] is the
rate of neutral entropy production. Our notation is to use ¢ for the solution to
(2.3); upper-case G will refer to an arbitrary neutral distribution function or

trial function. We refer to ©[G1, Go] as the “CX bilinear form.”
First we show that
O[Gq, Go) = B[Gq, G4] . . (3.2)

This symmetry forces the neutral transport coefficients to have Onsager sym-
metry.
The demonstration follows a conventional pattern. We use “Boltz-

mann notation,” f' = f(v'), so that (2.1) becomes
X(£,9) = [ dvorlv' - vi(fg ~ f'9)

7



From (2.1) and (2.2) we have

0[C1,Go] = — [ vy Z v - v|%(f6”2 _ )

n

or, after relabeling integration variables,

n

Oz Gl '
@[Gl, Gz] = —/CZ3’U d3’Ul;L—|V/ - V|7\Il(f Gz - ng) )
and symmetrizing,

U !
O[Gy, Gy = %ni/d‘gv d%'%]v’ —v|ff (% - %) (% - %) (3.3)
from which (3.2) follows.

We also use (3.3) to express the quadratic form ©[G, G| as

‘ 1 (G &\
@[G, G] = =N / dS’U ds’l)lﬁlvl - V|ffl (-z - ?) (3.4)
2 Ty, f
showing that it can vanish only if g/ ]? is independent of velocity. Thus we have

-~

Olg, 9] = 0= G(x,v) = N(x)f(x,v) (3.5)
for an arbitrary spatial function N.

It is obvious from (2.1) that the CX operator vanishes when g = N f;
the interesting feature of (3.5) is that g = N f is the only solution to X (g, f) =
0.

Finally (3.4) yields the inequality
O[G,G] >0  for any G . , (3.6)

This with (3.5) completes the entropy theorem (“H-theorem”) for CX. We see
that G relaxes, through charge-exchange, to have the velocity dependence of
the (not necessarily Maxwellian) ion distribution. © is evidently the entropy

production rate.



Chapter 4.

General Variational Principle

With some simplification (for example, the assumption of constant
CX cross-section), the uniform temperature, one-dimensional version of (2.3)
can be solved analytically for any mean—free-péth ordering by singular eigen-
function techniques [6]. It is likely that a generalization of these methods
could treat three-dimensional cases [11]. However, singular eigenfunctions are

not easily adapted to allow for temperature variation.

‘We present here a complementary approach to neutral particle physics,
based on a variational principle. The variational approach allows for arbitrary
'temperature variation — an important improvement in realism since 'tempera—
ture variation can be steep near the tokamak edge. It also allows for arbitrary
energy dependence of the CX 'cross-section as well as three-dimensional geom-
etry. More importantly it provides relatively simple aéymptotic formulas for

various quantities of interest in limiting parameter regimes.

On the other hand, it should be emphasized that the variational prin-
ciple has its own complications, especially at long mean-free-path, where global

trial functions are called for.

We derive the general variational principle in this section. Its special-
ization to the short-)\, case — a much simpler and more obviously practical

formalism — is considered in Chapter 5.
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We begin by introducing the scalar product,

{Gy, G} = /d3a; d%Gl—C;? = {Gs,G1}, (4.1)

n

where ]? is the normalized ion distribution as in Chapter 2. We also introduce

the spatially integrated CX bilinear form
[ & 06, Go) =8 = {G1, X(Go, )}
Now consider the steady-state version of (2.3):
v-Vo+ X0, f)*rg=nf (42)
It is combined with its adjoint‘

.—-fV'V<-gj-;>+X(gT,f)+Vng=I/rf,‘ . (43)

in a conventional way

t _
{g',v-Vg} - {9, fv-V <97>} +20[g", 9] + 2v.{g", g} = {f, 9 + ¢'} ,

to construct the form
SIGT, Gl = V[G", G+ B[G, G] + v{G', G} — 1, {f,G + G'},

where .
t
VGt 6] = {%GT,V - VG} - {%G fv-v (%)} .

Here G and G' are to be viewed as trial functions for the solutions to (4.2) and

(4.3) respectively. After evaluation at the exact solutions g and gf, we obtain

_ 1
Slg, ¢"l = 5* = V[g', 9] + B[g', 9] + v.{g", 9} = —swlfig+d}.
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This relation is essentially an entropy production law; the terms involving ©,
v, and v, measure entropy production by CX, ionization and recombination

respectively. The first term, V, describes entropy flow.

After recalling (4.1) we find that

5V 1
ﬁ = WV . VG N
and similarly
1% 1 Gt
e ap v (F)
Moreover, because of (3.2),
6 1 8 1
- = — = X(G1
Gt nan(G, )5 - (G ),
whence
59 1
58 1 GT
2| —fu- V[ =)+ X(G )+ Gt —uf| .
o=z |0V (§) +xen f
Thus the variational principle »
8 _,
SGt
reproduces (4.2), while the principle
55
5"

yields (4.3). We summarize these facts by writing

6S=0. | (44)

A normalized version of (4.4) is easily constructed. One finds that

SH=0, (4.5)
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where

o (/,G+G1p
H(G.G) =My a2 810 o+ vile a)

This functional has the extremal value
" = 45* .

Whichever form is used, the general variational theory has two disad-
" vantages. First, both forms are spatially nonlocal so that trial functions must
include both x- and v-dependence. Second, because the operator in (4.2) is
not self-adjoint, trial functions for both g and gt must be provided. Of course
one prefers a variational principle involving only velocity integration, and using

only symniétric (self-adjoint) bilinear forms.

Nonetheless, in any parameter regime that allows approximate ana-
lytic solution to (4.2) and (4.3), the variational principles (4.4) and (4.5) become
directly useful. For then we can obtain higher-order information from quite
simple integrals. For example, suppose that the CX rate is small: v, < v, /L.
Then (4.2) and (4.3) are, asymptotically, first-order partial differential equa- '
tions with well-understood Green’s functions. Substitution of the solutions into
H or S would provide an entropy balance law including CX effects through first

order in .




Chapter 5.

Short Mean-Free-Path Theory

5.1. Ordered kinetic equations

We now turn attention to a case where the Variationél theory is both
local and self-adjoint. Here we adopt the ordering (2.7). We define the small

parameter

>

L
A=le b
L )’

and expand the solution to (4.2) as
g=go+g1-+gx = O(AF) .

We also assume

vy ~ A%y, (5.1)

consistently with (2.5). Then, precisely é,s in Chapman-Enskog theory, we

obtain a sequence of ordered equations for the gy.

After writing (4.2) as
X(Q)f)+v V9+Vzg=fl/r

we see that the first three orders are given by

- A% X(go, f)=0; : (5.2)
A' X(g1,f)+v-Vg=0; (5.3)
A% X(g2, f)+v- Vg1 +v.90 = fvr . (5.4)

13
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The CX conservation law,

| / FoX(G,f)=0, (5.5)

for any G, provides a solubility condition in each order. Thus we must have,
from (5.3),
V- /dsvvgo =0, (5.6)

and from (5.4),
V- /d3v Vg1 = UpNi — V,Ng . (5.7)

In view of (3.5), (5.2) has the unique solution
g =no(x)f , (5.8)

where ng is the lowest order neutral density.

5.2. Variational principle for short A,

To make further progress one must specify the ion distribution. We

choose ]? to correspond to a Maxwellian moving with velocity V. Then
+ m
/= <27rTi>

[

(5.9)

mW—VW}

exp l— oT.

with

in order to satisfy (5.6). Thus f depends upon position through Vo(x) and
Ti(x). While (5.9) is not exact, it closely approximates the observed ion distri-
bution in most confinement experiments. The simple velocity shift, although

strictly consistent with neoclassical theory only in the isothermal case, is not far
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from theoretical predictions and allows for the rapid rotation observed in the
edge regions of some experiments. More elaborate non-Maxwellian corrections

could be included in the present formalism with some loss of simplicity.

Allowing for a change of frames from the lab frame to one moving

with neutral flow velocity V = Vy 4+ V1, we introduce the change of variables
w=v-—-V,
with the consequent transformation of the spatial derivative
V0]p=Vl]y—(VV) -V, .

Here V|, is the spatial gradient evaluated at constant v, while V,, is the gradi-
ent with respect to the velocity variable w. 'Clearly, Vu = V,. Note that the
gradients in (5.2)—(5.4) should be interpreted as V|s,.

Note also that we denote the neutral temperature by T' = Ty + 11

where Ty = T; due to (5.8).

Our first order equation has become

X(gbf) =QE_V'VQO ) (511)

where @ is found to be

-~

@ = —nof(w—Vy)- lV In p, + ( Vin T+ E(VVO) -w| (5.12)

mw?® 3
To

oTy, 2

and where we have used p, = n,Tp. We solve (5.11) via a straightforward
specialization of the general variational method developed in Chapter 4. We
recall the entropy production rate (3.1),

O[Gh, G| = [ d <i}> X (G, f)

Tn



and introduce the linear form
P[G] = / i 9
N f

to find that the functional

' H[G,G) =

is variational:

16

(5.13)

(5.14)

at G = g1. Since (5.11) implies O[g1, g1] = P[g1], the extremal value of H is

Hlg1,91] = Plg:] = ©[g1, 1] ,

the entropy production rate.

(5.15)

We now want to write H as a linear combination of thermodynamic

forces and fluxes. First, we define the first order neutral particle, heat, and

momentum fluxes by
r,= /d3v vg1 =n1 Vo +noV1
m
Qn = / d®v 5wzwg
D= / d*v mwwyg
'respectively. We define the neutral viscosity tensor as
— 3 1 2
7rn=/dv WW—E’LUI g.
We will make use of the identity

1
BV Vo = ST W 4V -V,

(5.16)
(5.17)

(5.18)
(5.19)

(5.20)
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where
2 —>

W = (V) — (V- Vo) T

is the rate of strain tensor, and where the superscript s denotes symmetrization;
i.e.

(VV)i; =8V + 0,V .

Using these definitions with (5.15), (5.13), and (5.12), we find

1 ' 1
Hlg1,91] = —=noTo V1 - <V In po + ﬁVo . VVO) — —Qnp-Vin Ty
TO TO To
—Ti()%?l: W - TionoTlvo -V (% InTo—1In no) . (5.21)

The second and third terms in (5.21) are conventional, and the first term lends
itself easily to a force-flux interpretation. The unconventional fourth term is a

bit tricky, however. Introducing the zeroth order entropy

3
TE
s=In (——Q—) ,
o
and using (5.10), we can write our generalized thermodynamic forces as

A = (v In py+ 2V, - vv0>
0

T
A2=V].1’l To
1 —
) A;:,-;)-W
1

A= —— (VonosVo) T,
Ny

and their conjugate generalized thermodynamic fluxes as

Fy =nyV;
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1
Fy = TO'Qn
_ Y e
F3 o ™!

T1<——>
Fy=nouvy— 1

in terms of which the neutral entropy production (5.21) becomes

4
H=3 AF, (5.22)

i=1
where the product in (5.22) refers to complete tensor contraction.
In turn, near equilibrium the fluxes can be written in terms of the

thermodynamic forces as

4
Fj=)_ LiA;
j=1
where the transport coefficients L;; are scalars. Substituting this into (5.22),

we see that the entropy production can be written in the form

4 4
H=> Y Ly;AA;, (5.23)

i=1j=1

a quadratic form in the thermodynamic forces. The point is that once an
expression of the form (5.23) is found for H, the transport coefficients can
be read off by inspection. This formalism, like (5.21), follows the pattern of

conventional transport theory.

Note that our unconventional fourth term in (5.21), call it Hy, may
be written as

01 = 217 . (nesVy) | (5.24)
Ty

Thus, we may interpret (5.24) in the following way: neutrals born at T, =
Tp + 71 move to produce a divergence of entropy density thereby contributing

to the total entropy production.
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In second order we need only the solubility condition, (5.7). Since the

‘neutral particle flux is defined to be
o= [Foa,
in view of (5.10), (5.7) can be expressed as
V- -T,=vn—vng . (5.25)

Since the ion parameters n; and T; are presumed given, (5.25) should be viewed
as a constraint on the neutral density profile. We note that the time derivative
term can be included straightforwardly in (5.25),

ong,
_at_+v'rn=yrni'—7/zn0)
provided we use the self-consistent ordering 8/8t = O(A?).

Our results (5.29) will show that
. .
I, =~ (@> Y SE WA T
Vm n
We substitute this estimate into (5.21) to obtain the ordering
.
Aft ~ U ARy,
as anticipated in (5.1). Thus our orderings are internally consistent.

We conclude this section by showing that the extremum of H is in

fact a maximum. Let G = g + 0¢ and define the quantities
601 = ©(ég,9) + O(g,69) ,
662 = @(6.9) 59) )

6P = Plég] .




20

Then we have, without approximation,
O[G, G] = O + 60, + 605 ,
(5.26)
P[G] = P* +6P..
Also, (5.15) implies ©* = P* where the asterisks denote extremal values, and
(5.14) implies
601 = 26P .

We use these facts to evaluate H[G, G], with the result-

50, 1(66:\
=H*{1- 2242 (=2 2
H {1 @*+4<@*) , (5.27)
correct through second order. As always, there is no first order term because

of (5.15).

Now consider the quantity, ©[zg+8g, zg+8g], where z is an arbitrary

constant. For this choice (5.26) becomes

Olzg + 6g,zg + 6g] = ©*2® + 60,z + 60, .

Since (3.6) does not allow the value of © to cross the real axis, the quadratic

equation

0*2% + 60,2+ 60, = 0
cannot have two real roots. Therefore its discriminant cannot be positive:
40*50, > (60,)?,

and (5.27) implies
H< H*,

the extremum is indeed a maximum.
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5.3. Constant o,|v — v/| assumption

In addition to the short A, approximation, the realistic assumption
that o,|v—v'| is nearly independent of velocity allows us to avoid the variational
approach. Similar results are obtained by Vekshtein and Ryutov [8]. Our
results differ in that we include flow in order to obtain an expression for the

neutral momentum flux.

Assuming now that o,|v—v’| is constant, we evaluate the CX operator

(2.1) and find that in first order it reduces to

X(91, f) = v /d3v’(f’g1 — 790) = vu(g1 — Fra) (5.28)

where we have taken

- v
oV — V| = /davfam|v—v'| ==,
: i
and where n; is arbitrary. Combining (5.28) with (5.3), we find the first order
correction to the neutral distribution function

C/n 1
o= (2= V)w, (5.29)

No Vg
where the lowest order neutral density ng is presumed known, and where n; is
arbitrary. We will see that n; will not enter into the calculation of the neutral

transport coefficients. However, n; would be needed if we wished to calculate

the neutral particle flux. Recalling (5.25), where
Ln=noV1i+mnVo,

since we will calculate V; presently, (5.25) could, in principle, be easily inte-

grated for the only remaining unknown n;.
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At this point we could take velocity moments of (5.29) to calculate the
neutral fluxes directly. Let us instead do something more instructive that gives
the same results.. We will calculate the neutral entropy production from it’s
definition. Since the entropy production will depend on the first order neutral
temperature and flow velocity, let us calculate these quantities first in a novel

way.

Denoting perturbations in the neutral density, temperature, and flow

velocity via
Np=ng+n1,

T=T+1,
V=Vy+V;,

since (5.29) is the perturbation to a Maxwellian, we may write the neutral

distribution function in the form of a general perturbed Maxwellian

9 =go+ gm1

where

d d d
— T — +V; —1 ) 3
'ng = < d o ——1In go + 1dT0 In go 1 av, n go) 90 (5.30)

Performing the derivatives in (5.30) and (5.29), and making the identification

gm1 = g1, we obtain the equation

T {mw? 3 m 1
Z1 _2 M. - V1
[To <2To 2) + TOW Vl] 90 ” (w+ Vo) [VInng

2 |
+ M—§ VinTp+ 7 (vvo) wl| go . (5.31)
o

We now take three velocity moments of this equation. Integrating (5.31) over

velocity space, we find

V- (’I’LoVo) =0
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which is just (5.10). Next, multiplying (5.31) by w and integrating over velocity

space, we find that the first order neutral flow velocity is
Tt
Vy=——" (vm po+ 2V VV0> . (5.32)
MUy To '

Thirdly, multiplying (5.31) by w? and integrating over velocity space, we obtain

for the first order neutral temperature

Tl = ——? (VO -Vin TO - %VO -Vin nO)
2 Ty :

We will also need the zeroth order neutral heat flux. Expanding go

for small § = V;/Vh, we may. write

3 2
m \2 m ) mw
go = Mo ('271_'—1;) (1 - ?OW . V1> exp (—W) . (534)

So, the zeroth order neutral heat flux, a perturbed quantity, is

m 5
@ = / d*v Zuiwgo = 2Ty Vs (5.35)

We now proceed to calculate the neutral entropy production, defined

as
O, = —/d%X(f, g)lng. (5.36)
Substituting g = go + g1 into (5.36) using (5.28) and (5.29), we obtain
1 1 |
On= Vi Pt W

,+<v1npo—§v1nTo) -/d% (ﬁgo—gl)v
2 “\Typ

1 3 02 (&1_ _ )
—|—T0V1nT0 /.dvzw(w-}—Vo) nogo g1

L | o ™Mo
+7=(VVo): / Bvmw(w + Vo) (nogo g1>, (5.37)
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where
F= /dsv mvX(f,g)=VP = —mngry Vi

is the momentum exchange, and where
— [ 3, T 9 3
W= /d VW X(f,9) = —§n0T1

is the energy exchange between neutrals and ions. Note that the ion entropy

production is

0, = —/d%X(g, fln f = —%Vl F - Tiow . (5.38)

Using the definitions (5.16)—(5.18), and using (5.36) and (5.38), we write the
total entropy production © = 6, + ©; as

o= <v In py — gvm T0> (Vo —Ty)

1 7 3n 3
+—=VinTp- (-—1(10 —q+ __1va0 — —p1Vo>
To o 210 2
1
+?(VVO) (%?0 — (Fl + mn1V0V0 —_ mI‘nV()) . (539)
0 0

We want to write (5.39) in a form that exhibits Onsager symmetry. In our case,

 we will show that the transport matrix is diagonal. This is due to the simplicity

of our CX operator. Using again the identity (5.20), along with (5.32), (5.33),
and (5.35), we may write the total entropy production (5.39) as

lz___m”m 2+il Va (—7-r—>,<?>+i§n07/m
Tobmle ™ Ty 2nelp To2 Tp

0= —1—mn01/wV12 + T2, (5.40)

To
which shows explicitly that the transport matrix is diagonal.

We can also. write (5.39) in force-flux form which just reproduces

(5.21).
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For completeness, the neutral heat flux is

, .
Qn = /d3v —szzwg = _Smoly VT, (5.41)
2 2 mu,
and the neutral viscosity tensor is
— 3 w? —> nolo 2
wnz/dvm WW—?I g="m1=~-— W, (5.42)
e

We can now present a full set of neutral transport coefficients
le = Oélm’fbol/mAi ' (543)

where

and a, = 0 for [ # m.

The form of these neutral transport coefficients is consistent with our
physical picture. In any realistic plasma there will always be a population of
neutral particles that are not affected by the magnetic field. These neutrals |
may undergo many CX collisions before being ionized due to impact with an
electron. Each CX collision results in a random change of neutral momentum.
The result is that neutrals execute a random walk of step-size Aw and frequency

Vg.



Chapter 6.

Charge-Exchange and Ion Transport

6.1. Moment equations

Our discussion of ion fluid behavior and transport is based on two
moments of Eqgs. (2.3) and (2.4): the momentum and energy moments. The

momentum conservation law for ions has the form
0 —? -1

Here

| niViz/dSva

is the ion flow,

?i = /d3fu m;vvf

is the ion stress tensor,

F, = / Buvm;vC

is the collisional friction force on ions due to Coulomb collisions with electrons,

and
‘ FxE/dBUmivX(f,g)

measures the effective friction due to charge exchange. It is convenient to define

¥F,=-F;,+v,mn,V, —v,m;n;V; .
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We refer to F,, as the “neutral friction.” Then we have

% (min; Vi) + V - ?Z —en;(E+c¢'V; xB)=F,+F, . (6.1)

The corresponding neutral force law,

is obtained by changing subscripts, assuming m,, = m; = m and noting that
en, =0.

Next we consider pressure evolution. After multiplying (2.4) by mv?/2

and integrating over velocity, we find that ion pressure,

= By P v — V2
pz_/dvfg(v Vi)*,

evolves according to

% (gpi + %mnivi2> +V-Q=V; - Fe+en,E)+ W, +W, (6.3)

where
is the ion energy flux,

is the Coulomb energy exchange with electrons, and

2
W= [ PoX(f,0- + Vi Fy

/3 1 3 1 5
+ v, <5pn + §mnnVnz> —Ur (52% + imniVi2> ’ (6.4)
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is the energy gained by ions due to inelastic ion-neutral interaction. We denote
the first term in (6.4) by

mu?

W= [dox(fo) - (6.5)
it usually dominates the sum. The neutral counterpart to (6.7) is

8 /3 1 \
5% (—2—pn + imnnnVn> +V-Q,=-W,. (6.6)

Here Q, is related to the neutral heat flux by

1 3
Qn =dq,+ V'n : ?n + §mnnv;z2vn + §pnvn .

6.2. Perpendicular ion flow

Any change in ion momentum due to neutral interactions is balanced
by a corresponding change in neutral momentum. How do the neutrals dis-
pose of their changed momentum? In general, they might accelerate, or they
might propagate the momentum change to the walls by viscous dissipation. In
the short mean-free-path regime considered here, the net effect of momentum

exchange is to allow the neutral pressure gradient to act on ions:
Di = Di+Dn .

To see this conclusion explicitly, we add (6.1) and (6.2). Since V; =

V,, while n, < n;, the general result is

% (mniVy) +V - (Pi+ Pn) —eni(BE+c 'V, x B) = F, . (6.7)

A sharper result pertains in the short CX mean-free-path regime, where both

~ stresses are approximately isotropic. N ote isotropy of the neutral stress results
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from short CX-mean-free-path,

> — Az
Ppo=pnl +O<f) )

while that of the ion stress is an artifact of small gyroradius p:

By a conventional argument the acceleration and friction terms in (6.7) are also

O(p/L). Hence, after solving (6.7) for V; we have

'W=bw+l;bkaE+Wﬁ+%ﬂ‘ (6.8)

€

where b = B/B. Equation (6.8) shows that neutrals, although obviously un-
magnetized, contribute like a magnetized species to the didmagnetic drift. Since
* the neutral and ion pressure gradients are opposed in much of the edge region,

the observed effect of (6.8) is diminished ion diamagnetic rotation.

Since there is no corresponding effect on electron diamagnetism, the

perpendicular plasma current is affected by neutrals in the obvious way:

c

Ji= eBn;

b x V(pe +pi +pn) - | (6.9)

One implication of (6.9) is that experimental estimates of plasma beta must be

performed with care whenever neutrals may be present.

A final conclusion from (6.8) is that neutrals are unlikely to affect
ion particle transport. The radial particle flux in an axisymmetric system is

proportional to the toroidal component of the friction forbe, Frp. Since

1 Op,
Fn = _(an)T = _Ea_é.' )
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where R is the major radius and ¢ the toroidal angle, the axisymmetric effect
of neutrals on I'; vanishes exactly. But even with asymmetry the effect appears
small, because the flux-surface average will annihilate, or nearly annihilate

b X Vp,.

Observe next that, according to (6.7), not just the scalar pressure but
the entire stress tensors of neutrals and ions act additively in ion dynamics.
This circumstance is significant because measurements of ion viscosity in the
tokamak are anomalously high. Thus the question arises as to whether CX can

account for anomalous viscosity. From (5.42) and

<

(?)n = —Tn w

the neutral viscosity is found to be

= (3) (23

and the ion viscosity [12] is

o <3> n; 1
= 10 \Q?Tz '

Here 2; is the ion gyrofrequency and 7; is the ion-ion collision time as defined

by Braginskii [12]. Using typical profiles from TEXT, we find that the quantity

e () (5

Uy T4 Vg
varies from 102 at the center to 10 at the wall 30cm away. Since ), varies
from 8 cm at the center to 13 cm at the wall, we are still within the window of

validity for short A\, theory. We therefore find that neutral viscosity dominates

ion viscosity everywhere, and in the edge region by a large factor.
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6.3. Ion energy transport

Similar physics applies to ion energy transport, except that here, in
the absence of a conservation law analogous to (5.5), the effect is large. After
CX delivers ion energy to the neutrals, it diffuses rapidly by neutral heat con-
duction, as described by (5.41). Since part of the neutral flux is proportional
to the ion temperature ugradient, the effect of ion-neutral energy exchange will

appear as enhanced ion heat conduction together with convection.

To estimate the importance of this heat conduction process, we com-

pare it to thé neoclassical ion heat loss,
2
Qne ~ vip? (%) Vpi
where v; is the Coulomb collision frequency for ion-ion collisions, B%, is the
poloidal magnetic field and a factor of (r/R)Y? ~ 1 is suppressed. The corre-
sponding measure of the new process is @,. Eq. (5.41) provides

2
On_, oV <A> , (6.10)

Qnc N Vi \ Pp

where p, is the poloidal gyroradius. This ratio exceeds unity‘in typical circum-

stances because its last factor is large.

The explicit calculation begins with the sum of (6.3) and (6.6). Since

neutral pressure changes no faster than ion pressure,

Opn 1 0P Opi
ot n; Ot ot ’
(at least after some relaxation time) and assuming that the speeds V; and V,,

are smaller than either thermal speed, the general result is

0
o n+ Y (Qit Qu) = Vi (et enE) + W, (6.11)
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Here all the terms in (6.11) are conventional, pertinent to a neutral-free plasma,
except Q. Thus, as anticipated, neutral energy transport simply adds, in the

ion energy balance equation, to ion energy transport.



Chapter 7.

CX Damping of Rotation with Impurities

In this chapter we give a simple drift-kinetic derivation of the expres-
sions for the poloidal ion and impurity flows in the presence of charge-exchange

drag and ion-impurity collisions.

Recent observations [13] in DIII-D [14] have identified a sudden in-
crease in plasma rotation as a signature of L to H transition. The disérepan—-
cies between experimental observations [15] and neoclassical predictions [16] of
plasma flows are generally attributed to neutrals causing drag on ion rotation
through charge-exchange (CX) collisions. Kim et al. [17] have derived neoclas-
sical expressions for ion flows using the moment approach [18], but without
the CX effects. We show that a simpler derivation (including the CX effects)

is possible directly from the drift-kinetic equation without having to use the

~moment approach.

For simplicity, consider a plasma of ionized hydrogen (1) with a small
concentration of neutrals (n), and one fully ionized impurity species (z). The
results can be easily extended to multiple species. Also make the physically
plausible assumptions that the ion density n; > n, ,n,, and that the CX
mean-free-path A\, and gyrofadius p K L the density scale length.
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The steady-state force-balance equations for the three species are

V-?i—eni (E'f‘%ViXB) =F,, +Fi,

AV (Fz — zen, (E + %Vz X B) = —F;, , , (7.1)
—
V-P,=-F; .

where F, ?, and V are the friction force, pressure, and velocity. The neutral
population is a mix of stationary, cold, primary neutrals generated from the
wall, and secondary, hot neutrals created in charge-exchange with ions. These
secondary neutrals have roughly the same temperature and fluid velocity as
the ions. In this chapter, we restrict our attention to the hot neutrals. Hence
our results are applicable only outside the very fhin, cold-neutral-dominated,
stationary boundary layer next to the wall. This layer is only a centimeter or
so thick in most machines. The experimental observations in Ref. [15] were
made more than 3 cm from the wall. In this hot—ﬁeutral—dominated region,
we can approximate the pressure of each species by a scalar, indicated by p.

Rearranging the force-balance equations we write the system to be solved as

' 1
V(pi + pn) — en; (E + EVi X B) =F;, (7.2)

Vp, — zen, <E + %Vz X B> —_F,. (7.3)

For large ion-impurity collisionality, we approximate the ion-impurity
friction force as

Fi, = -F, = mn,u,AV | - (7.4)

where AV = V; — V,, and v, is the ion-impurity collision frequency. After

appropriately manipulating (7.2)—(7.4), we obtain

(1-¢gbx)AV=Q, o (7.5)
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where b = B/ B,
-1
q=&(1 znz) %&,
Vy T Vy
and
_[c 1 1
Q = (63) q <TL_1V(pZ +pn) - Zn, va) .

The solution to (7.5) can be written as
AV = (14+¢*) M1+ ¢gbx)Q .

We find that, assuming small parallel pressure gradients,‘

Q) = (i> q [~1-V||(Pi +Pn) — . VP2

eB n; 2Ny
is very small for all ¢, and therefore that
Vi = Vs -
However, the perpendicular flows do not equilibrate. For the physical

case of large ¢ (2, > v,), we have

1
AVlzabXQJ_—I—O(qz)

c 1 1
~ (5) b x [V 2 - v
whose poloidal component is given by
AV, = (AV)), = — <p‘+p’ - p’) (7.6)
P P eBny P 2n, )

where primes indicate radial gradients. This result corresponds simply to inde-
pendent diamagnetic (and E x B) motion of each species. The physical point

is simple: large v, (¢ — 0, Q — 0) wants the two species to move together,
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while large 2, (¢ — o0o) wants the perpendicular velocities to be independent

and diamagnetic.

Our goal is to calculate the net poloidal impurity flow
Vp, =V — AV, . (7.7)
Since F;, does not affect perpendicular ion motion, from (7.2) we have

V= -b X [V(pi + pn) +en; VO] . (7.8)

eB
Note that the neutral pressure gradient term contributes additively to the ion
diamagnetic flow.

We also need V; to compute Vp;. Using the velocity variables (v,€& =
v)|/v), we write the linearized ion drift-kinetic equation as

w%-l—Mh Ch— Xh———Vd-VfM_Mfd‘l“de. (79)

Here 6 is the poloidal angle, Vg is the guiding-center drift,

f=fut+fath

is the ion distribution function,

2£’UV|,L

fa= fum

is the first order perturbation of a displaced Maxwellian,

_ v
w = —"""QR
is the transit frequency,
T W of
__Tw 42
M f 2R53m0(1 5)65
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is the mirror force, ' - ‘
Xf=—u, (f—i/d%f)
Ny
is the CX operator, v, is the ion CX collision frequency, and C' = Cj; is the

ion-ion collision operator.

For plateau ions, we order our operators according to
w>C+X>M.
To lowest order, for small viw, .the solution to (7.9) is
h=(?+w?) Hrsind —wcos)Qsfar , (7.10)

where v = v, + v, and

2 / / 2 /
_ Y e [B e (2 5\T 2

v} 2) T qR v}
Using (7.10), we return to the “exact” drift-kinetic equation (7.9),
multiply by m;v€, integrate over velocity and perform a flux-surface average

(here equivalent to a f-average). We obtain for the parallel ion flow
Vis = D Uneo | (7.11)
with the CX damping coefficient, D, given by
D= [1+i& (Eﬂ_ _ - (7.12)
Here Upe, denotes the conventional [16] neoclassical parallel flow

T, (p. e® T!
neo — — — | = — — k= y 1
v .Ml (pi - 1; kif}) (7.13)
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k = —1/2 for plateau ions, and ), is the ion poloidal gyrofrequency. From

(7.8) and (7.11)—(7.13), we obtain the net poloidal ion flow

c
eB Ny

V= o, + (1 — D)(t} + ens®) + Dkn TV, (7.14)

and from (7.6), (7.7), and (7.14), the net poloidal impurity flow

V= = | DI™ 4 (1= B)DT + (D — 1)ed’ — T, — L
P2 eB ‘n; : Fan, 2 F

We have therefore found that CX with neutrals causes the poloidal
ion and impurity flows to depend on the radial electric field. Note that D
approaches 1 in the limit of no charge-exchange. In this limit, our results agree

with those of Kim, et al. [17].



Chapter 8.

Neutral-Plasma Interaction: Long CX mfp

Let g(z,v) and f(z,v) denote the neutral and ion distribution func-
tions, respectively. In the half-space slab, z > 0, we consider a steady-state
plasma in which ions and neutrals interact through charge-exchange (CX) and
ionization. Assuming that the ionization frequency, v,, and the CX frequency,
Vp = Ny (amvr), are constants in both z and v, the neutral kinetic equation -
takes the simple form.

vﬁ%‘,’_) +uly(o,v) —n@f @] gz =0, (81)

where
n(z) = /d3v g(z,v)
is the neutral density, and

iy f(:I?,V)

Flov) =12

is the normalized ion distribution.

We want a Green’s function G(z — z/,v,) which satisfies

o 0G(z — ', vy)
¢ oz

where v = v, + v, and where §(z — z') is the Dirac delta function. The general

+vG(z —2',v,) = 6(z — 2') (8.2)

solution of (8.2) is

oo ny) = | AL O = x’)} 'exp [(m - :c’)y] |

Vg

39
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where ©(z — z’) is the Heaviside step function and A(v,) is arbitrary.

Since we want G(z — z/,v;) to remain finite over the range of its

arguments, we choose A(v,y) = ©(v,), and our Green’s function is

Glo—',v,) = | 2L2) = O — ""“7} exp [MJ L (83)

V(I} Z

Now, multiplying (8.1) by G(z — /,v,), (8.2) by g(z,v), and inte-
grating the difference over 0 < z < o0, we obtain for the neutral distribution

function the integral equétion
9(,v) = wsG(=2,0)g(0,v) + v, [ da' Gla' ~ z, v i) (V) (84)

where

9(0,v) = 94(0,v)O(vz) + 9-(0, v)O(—vs)

is a boundary condition on the neutral distribution function. Note that g, is

to be specified while g_ is to be calculated.

~ An instructive recursive procedure may be applied to (8.4). Using

(8.2), we substitute into (8.4)

1] 8G(z' — z,v,)

Gz’ — z,v;) = = | T §(z' — z)

The result is the exact expression

9(2,v) = %:6(=2,%.)9(0, ) + Zn(2)(z, V)

Vg ~

——v;G (=, v5)n(0)£(0, V)

v
. /ooda:'v Gz —z,v )i[n(x')f(x’ v)] .
v 0 Z y ¥ axl )
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Repeating this substitution indefinitely, we obtain the series

v

0(6,9) = G-, 0)9(0) + =y (-2 {%{n(o:)f(x, v)

- va(—w,vm)aa—;[n(O)f(O,V)]} (85)

which converges if [v,| < v/Lys, where Ly is the scale length of n(z) f(z, v). Ex-
pression (8.5) explicitly exhibits non-local transport since it involves all deriva-
tives of the distribution function. Note that (8.5) must still be solved for g(z, v)

which is buried in n(z).

For our present purpose, assume that we are far enough from the
wall that the boundary terms in (8.5) have decayed away due to the form of
G(—z,v;). Also assume that v, < v,. Keeping terms through k¥ = 1 we have

- Uy O

9(z,v) = n(z)f(z,v) - Zgin(w)f(x,‘f) :

This is precisely the 1-D specializatioﬁ of the result (5.29) given by our previous

short CX mfp theory.

Now, to make progress in solving (8.4), we choose

Ny v?
9+(0,v) = — anP (‘&)

and

@) = — <1+2V'U—Y(x)> exp (~§> ,

T2v? ¢
w .
where Ny, = n(0), V(z) is some ion flow velocity, and where the ion thermal

speed v; > v,, the thermal speed of neutrals from the wall. If we then assume

that the CX mean-free-path A, = v/v, is much greater than the neutral density
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scale length L, then the first term in (8.4) dominates, and we may proceed

recursively.

The zeroth recursive solution of (8.4) is
°(z,v) = v,G(~2,v;)9(0,v) ,

or explicitly,

N, v v? .
0 w o v :
g (z,v) W%vﬂ, exp ( " vi) O(vg) . (8.6)

Integrating (8.6) over velocity space, we find for the zeroth neutral density

| n®(z) = %fo (Z—D | (8.7)

where the functions
Fm = / dt t™ exp (—E - t2>
0 t

are tabulated [19].

For the next recursion, we substitute (8.7) into (8.4) to get

g@v) = '@ v) + 1 [ d G’ —2,0)n() fz, )

Explicitly, the first correction to g%z, v) is

Using the relation

Fale) = —Foalz) ,
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we can evaluate (8.8) by performing successive integrations by parts. This
results in two expansions: one for large |v,| and one for small |v,|. The con-

vergence of these expansions provides a constraint on Ly, the scale length of

V(z).

The expansion of (gt — ¢°) for large |v,| is

e () (Do) D)
Ero) b (3 5 (@) v

~EAn () [ @) () ) veel)

(8.9)

where ]; are binomial coefficients, and where the superscript (1) refers to

the I** derivative with respect to . The expansion (8.9) converges if vz > vy

and Ly > vy, /v = Ay.

"The expansion of (g* — ¢°) for small |v,| is

=== (%) o0 (-5) (oo () £ (-2) b0
(35 () ) o] -£ (2 (2)
S EOE @) e

The expansion (8.10) converges if |vy| < vy, and |v,| < vLy for z > 0, but it

has a logarithmic singularity at x = 0 for k£ > 0. Neutral-neutral collisions very

near the wall would prevent such a singularity and would Support the neutral



44

Maxwellian boundary distribution. However, their inclusion would make the

problem nonlinear. So we will instead ignore the mild singularity near z = 0.

Keeping terms in (8.9) through order v, /v, and Ay /Ly, we find

== 2 () () () o100 (-2

. [(1 A '1:27(0) + Uwﬁ:@évl(m] _2F, <x—:> [1 + %v—jzf(x)J
_ (%) % (%)v-V'(z)} | e

since 1(0) = 1/2 and F3(0) = /m/4.

Keeping terms in (8.10) of order unity, we have

(6~ )< =~z () exp (-—Z—z) {ﬁem)exp () [1-1-2"-_‘;(@}

T 92,3
2mivf \v z vf

oF, <£> [Hw” o | G

U v?
since Fo(0) = /7/2.

We have thus calculated a recursive approximation to the neutral
distribution function whose contributions are (8.6), (8.11), and (8.12). In prin-
ciple then, the neutral density, and the particle, heat, and momentum fluxes,
can be estimated by performing appropriate velocity integrals of these con-
tributions. Althbugh these integrals are straightforward, they involve several
special functions, and the appearance of the results is not particularly illumi-
nating. However, we will present the first recursive neutral density here since

it compares favorably with previous work.

Integrating (8.6), (8.11), and (8.12) over velocity space, using limits

of integration appropriate to the parameter regimes, for z > ), our estimate
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of the first recursive neutral density is
N, x 1 vv x
1 ~ Y - _—_rw il
nt(a) ﬁ{fo (Z)+ gt [ (£)
75 (n) + 55 (3)
7 B2 ,\w)+f‘1 e

where A\; = v;/v and where Ej is the second-order exponential integral. Note
that for £ — oo this looks like

- () e )]

This expression agrees with Connor [6].
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Chapter 9.

Summary

Taking advantage of the simplicity of the charge-exchange (CX) op-
erator introduced in Chapter 2, we demonstrated in Chapter 3 that CX obeys
an H-theorem. Then in Chapter 4 we developed a general variational principle
for finding the neutral transport coefficients. This general variational method
has the following advantages: it treats three dimensional plasmas with arbi-
trary temperature and density profiles; it includes the effects of neutrals on
the plasma; it allows for arbitrary CX cross-section and mean-free-path; and
it provides relatively simple asymptotic formulas for various quantities of in-
terest in limiting parameter regimes. However, this general variational method
. also has the following disadvantages: it is spatially nonlocal so that the trial
functions must include both x- and v-dependence; and it involves operators
that are not self-adjoint, therefore requiring dual trial functions. Nonetheless,
in any parameter regime that allows an approximate analytic solution, the
general variational principle becomes directly useful in obtaining higher-order

information about CX effects from quite simple integrals.

In Chapter 5 the special case of short CX mean—free—pafh (Az) was
found to provide an ordering in which the variational theory is both local and
self-adjoint. We found that this short A épecialization of the general variational
method may be used to obtain expressions for the neutral entropy production

from which variationally accurate neutral transport coefficients can be read off

46
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by inspection.

The realistic simplification that the product of CX cross-section with
relative velocity (o,|v — v'|) is constant allowed us, in the case of short A,
to avoid the variational approaéh and to find the neutral distribution function
directly. We then calculated the neutral entropy production rate and presented
a full set of neutral transport coefficients. Their form confirms our physical

picture of neutrals executing a random walk with step size .

In Chapter 6 our findings about neutral transport combined with
analysis of the momentum and energy moments of the ion and neutral kinetic
equations lead us to simple, sensible conclusions about the effects of neutrals

on ion fluid behavior and transport.

We found that the neutral stress simply adds to the ion stress in the
ion momentum balance equation. Since the ion and neutral pressure gradi-
ents oppose each other in much of the edge region, the observed effect on ion

perpendicular flow is diminished ion diamagnetic rotation.

Furthermore, because of the effect of neutrals on the perpendicular
plasma current (6.9), we concluded that experimental estimates of plasma beta

must be performed with care whenever neutrals may be pfesent.

We demonstrated CX causes neutral viscosity to contribute directly
to ion viscosity. Neutral viscosity was therefore compared to classical perpen-
dicular ion viscosity and was found to dominate everywhere, and in the edge
region by a large factor. Thus CX appears to be related to measurements of

anomalously high ion viscosity in the tokamak.

Similarly, we found that neutral energy flux simply adds to ion energy
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flux in the ion energy balance equation. Although ion particle transport was
shown to be unaffected by CX, the effect on ion energy transport appears
as enhanced ion heat conduction. The neutral heat flux was compared to
the neoclassical ion heat flux (6.10) and was found to be larger.in typical

circumstances.

In Chapter 7 we gave a simple drift-kinetic derivation of the expres-
sions for the poloidal ion and impurity flows in the presence of charge exchange
drag and ion-impurity collisions. We found that CX damps ion and impurity
rotation, and causes the poloidal ion and impurity flows to depend on the radial

electric field.

Finally, in Chapter 8 we treated the neural-plasma interaction préb—
lem in the long CX mean-free-path regime in slab geometry. An appropriate
Green’s function was found for the neutral kinetic equation and a recursive
procedure was used to find suitable expansions for the neutral distribution

function. The results compared favorablyiwith previous work.
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