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Abstract

We derive an exact result on the velocity fluctuation power spectrum of an incompressible

two-dimensional fluid. Employing the fluctuation-dissipation relationship and the enstrophy -

conservation, we obtain the frequency spectrum of a 1/f form.
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1/f noise has been observed in a'wide variety of physical systems including current
fluctuations in metals and semiconductors,? changes in the volume of musical notes,? and
the arrangements of bases in DNA strands,? to name a few. The 1/f spectrum is special in
that it lacks any specific time scales of the system and-it diverges in its infrared (low) and
ultraviolet (high) energy integrals. Despite ‘;he numerous manifestations of this phenomenon,
1/f noise still defies general explanation. It is dgscribed successfully only in particular
systems and, even then, only by phenomenological models. A review of some of the models
of 1/f noise in metals and semiconductors is given in Ref. 2. Analytical approaches seem to
be few and far between. Two examples of which we are aware are those of Klimontovich,?
who derives 1/ f noise in diffusive systems, after introducing a minimal physical volume over '
which physical quantities are averaged to obtain measurable quantities, and of Jensen,® who
finds 1/f noise in diffusive volumes with white noise boundary conditions.

In this paper, we show that incompressible fluid films exhibit 1 /f noise in their velocity
power spectra. The result is purely analytical, making use of only the following assumptions:
the linearized equations of motion of an incompressible fluid, the fluctuation-dissipation
theorem, and certain unique but well established results of thermodynamics applied to two-
dimensional fluid motion. First we outline our procedure for obtaining this result. Then we
discuss possible applications of this result to systems which may be mathematically similar
to the two-dimensional incompressible fluid.

We compute the frequency fluctuation spectra of the velocity in two-dimensional incom-
pressible fluid motion. We follow typical fluctuation-dissipation theoretical procedures for
dissipative, thermal equilibrium systems.”® The starting point is the equation-of motion of

an incompressible, viscous fluid, driven by a stochastic thermal process:

v+ v Vv = f%ﬁ bV +a(x,t) (1)



where y is the fluid viscosity, p is assumed to be constant, and a(x,t) is a random Gaussian
field producing accelerations in the velocity and magnetic fields. The stochastic acceleration
a(x,t) represent a variety of external influences such as quantum mechanical fluctuations
and thermal fluctuations from some heat bath in contact with the plasma and of internal
influences arising from nonlinear coupling of the second term on the left-hand side of Eq. (1).

The spirit of the fluctuation-dissipation theorem is to look for the system’s linear response
in a thermal equilibrium, relating the linear response to system’s fluctuations that include

nonlinearities of the system.® The equation (1) is thus linearized to
v
Opv = ——f +uV3iv +a(x,t) . (2)

We now assume incompressibility. [This assumption is well fulfilled in low-frequency (in-
frared) regimes|. In this case the pressure gradient in the linear approximation serves only
to cancel the compressive part of the stochastic accelerations acomp(x,t). This can be seen
by taking the divergence of both sides of the linearized momentum equation. Therefore, we
can drop the pressure gradients and the compressive stochastic acceleration from Eq. (2) to
get

OpViot = #V2quf. + aret (X, 1) , 3)
where the subscript “rot” indicates the rotational (i.e. divergence-free) part. From hereon,
it is understood that we are dealing with an incompressible fluid, so the subscript “rot” will
be dropped.

Fourier transformation of Eq. (3) leads to
(—iw + pk?)v(k,w) = alk,w) .

We multiply both sides of this equation by their respective complex conjugates and ensemble

average the result. The relation obtained is

4K (), , = (), B
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(Here, v* can refer to the total velocity magnitude or the magnitude of one component of
the velocity; the same can be said for a®. The spectra to be calculated will differ only by
a factor of two, as long as the two quantities are defined consistently with each other. We
take v2 to represent the magnitude of one component, for example v* = v3.)

WeAa.ssume that the random accelerations have no correlation in time. They, therefore,

exhibit a white noise frequency spectrum independent of w:

(W* + 1K) <U2>kw - <a2>k,w - <a2>k 8 | (5)
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We wish to find (v%), . To accomplish this, we first find (a?),.
(a2), can be related to (v?), = 1/(27) [dw (v?)y . Specifically, from Eq. (5) and the

definition of (v?),, we have

do 1 2
(e % §:r_)w2+u2k4 - giuig =)y

The quantity (v2), need not be calculated: it is given, very generally, by ‘thermddyna.mics’
of discrete or continuous fields. For example, (v?), will often follow the equipartition law
5o that (W) =T/p, Wﬁere T is the temperature of the fluid. (If v? is referred to the total
velocity magnitude, then (v2); would equal 2T'/p, henee the aforementioned difference of a

factor of two.) (a®), is then determined. Substituting it back into Eq. (5), we find

k? .
<U2>k,w - JTT%I <v2>k B : (6)

We are now in a position to calculate the frequency spectrum (v?),, = 2/(2m)"™ [ d"k (V)
n being the dimensionality of the fluid. (The leadingt factor of 2 is included to compensate
for negative frequencies, which are experimentally indistingujshable from positive frequen-
cies and will contribute équally to any measured value.) If equipartition is assumedA,v (),
behaves qualitatively as follows: We specify two different scale lengths L and I. L represents
 the spatial extent of the fluid and [ represents the scale at which the fluid theory breaks down.
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For instance, | could be a multiple of the average inter-molecular spaeing in the fluid. It can
be shown that if w < (27)2u/L?, the spectrum is nearly constant. Also, if w 3> (2r)%u/I%,
the spectrum falls off as w™2. In the range (27)2u/I? > w > (27)?u/I?, the result depends
on the dimensionality of the ﬂl.Ild. Specifically, if n = 1, (v _)w falls off as w™?; if n = 2,
(v?),, is nearly constant; if n = 3, (v?),, increases as w'/?. Conventional equipartition does
not produce a 1/ f noise spectrum.

However, thermodynamics does not always require that (v2), equal T'/p. The equiparti-
tion law rests on the assumption that energy, momentum, and directly related quantities are
the only conserved quantities in the system to be studied. A two-dimensional fluid, however

has an additional conserved quantity. This quantity, denoted “enstrophy,” is given by
'Q:/fva@%

When thermodynamics is treated so as to account for this additional conserved quantity, the

resulting wavevector spectrum is

(), = ———(ﬁ“akz) > (7)

where 8 = 1/T and « is the inverse of a generalized temperature corresponding to the en-
strophy.'%! This hydrodynamic mode approach is appropriate for fluids in the low frequency
limit.°

Since equipartition is so familiar and very much expected in this type of study, perhaps
we should justify our departure from it before presenting our frequency spectrum results.

The equipartition distribution is derived from the partition function

Z=> P,
T

where  is a label indicating the possible states of the system under study, and ¢, is the energy

of the state r. The partition function is commonly derived 'by considering the interaction of




a system under experimental study with a larger heat bath. The energy of the total system
(i.e. studied system + heat bath) is taken to be constant. This returns the above partition
function. |

In the case of a two-dimensional fluid, however, the equations of motion not only allow,
but actually demand that a second quantity, namely enstrophy, be conserved. .It' can be

shown that enstrophy conservation changes the partition function to
7 = Z 6—(,Bek+ak26k) ,
k

where k is the wavenumber of a Fourier modé of fluid motion. A derivation of the energy
distribution, which parallels the standard derivation of the equipartition law, will show that
the new energy distribution is given by Eq. (7).

If we wished, we could average over an ensemble of systems (or over various domains)
with differing values of enstrophy and regain equipartition. This is, however, unnecessary.
Moré to the point, an average over enstrophy results in a loss of useful information, since a
single two-dimensional fluid conserves its own particular value of enstrophy.

The frequency spectrum can now be found by substituting Eq. (7) into Eq. (6) and

integrating as

o _ 2 [ &k 2uk? 1
<’U >w - p/ (2m)2 w? + w2kt B+ 20k (8)

The integral can be evaluated exactly by means of partial fractions. The end result is

1w_ﬂm@@'
<U2>w = 4ap w;m;_ ﬂ_zlé.m

4a?

(9)

Note that, in the regime w > uB/a, w is dominant over (uf/7a) In(20w/ ), where we

find |
(@) = ——. (10)

- 4paw

Also, if the viscosity p is set to zero, we are led to Eq. (10) exactly for all w. We have,



therefore, analytically uncovered 1/f noise behavior in a two-dimensional, incompressible
fluid. The smaller the viscosity of the fluid is, the more dominant the 1/f noise becomes.
The limit of Eq. (10) can also be obtained by taking the limit 4 — 0 before performing

the integral in Eq. (8). When the integral is written in terms of v = w/ k?, the result is

<v2> 4 rodv p 1
w  plo dm 24 p? fr 420w
In the limit g — 0, (Ba + 20w)~! can be approximated by 1/2ow, since its contribution to

the integral will be cut off at larger v. The integral can then be rewritten to give

9 1 o dy w
<'“>w'=2a / P
pwlo wUri+ L

This gives our previous result of (v?), = 1/4apw.

These considerations actually open our result to a possible criticism: In the limit 4 — 0,
the high k& contributions (corresponding to the small v contributions in the above integral)
become increasingly important in determining (v?) . But the hydrodynamic modgl we have |
adopted throughout our calculations is inapplicable beyond sofne maximum k value Kmax
being the inverse of lehgth at which the particular nature of the fluid becomes apparent.®

We must, instead, integrate in k& from k = 0 t0 k = kmax. The result, to first order in 1 [k ox
(Kpax > B/or,w/p) is |

o - o) ()
w  4po ~w2—|-£‘4ai2

A 1/f spectrum will be found, therefore, in the range
pkZ . > w > ubla . (11)

Therefore, fdr 1/f noise to exist, kZ,, must be much larger than J /a.
1/f noise is well documented in thin metal films.»? If the conduction electrons in the

film can be modeled, on the right spatial and temporal scales, in a manner similar to the
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incompressible fluid, the present work may find applicability here. It is of interest in this
regard that the expression for the 1/f noise given here is inversely proportional to the fluid
density p, while the 1/f noise in metals is often inversely proportional to the nun'iber of
charge carriers in the sample. Hall effect 1/f noise is also measured in metal films!? aﬁd
may have common ground with the present work. Experiments have shown that high T,
superconductors exhibit 1/f voltage noise.’® If the two-dimensional vortex model of super-
conductivity in such materials proves correct, our work may have relevance here as well. In
addition, Fukuda’s tokamak experiments* appear to show magnetic field fluctuation spec-
tra with behavior close to 1/f, where we note that the main tokamak magnetic fluctuations
are two-dimensional in nature.’® With regard to plasma motiori, the work of Taylor!® has
interesting similarities with the results presented here. He uses the fluctuation dissipation

theorem to derive the electric field power spectrum of a magnetized plasma:*®

(B, T kb DK

8t 2nk®+ k% w? + (Dk2)?’

* where kp is the Debye wavenumber and D is a diffusion coefficient. This expression inte-
grates ovef d2k to give 1/f behavior. In fact, it is mathematically identical to the integrand
in BEq. (8). The physical difference is that, in Taylor’s work, the small wavelength cutoff
comes from Debye screening, while in our work it is a consequence of enstrophy conserva-
tion. In addition, if the fluid (or plasma) in three dimensions for whatever reasons contains
additional invariant(s), the appropriate statistics of thermodynamics of the fluid will devi-
ate from those yielding the equipartition and the white w-spectrum. Topological invariants

in high Reynolds (or other order parameters) fluids are such examples of additional invari-

ants. 117
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