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Abstract
‘ We discuss several quantum mechanical potential problems, focusing on those
which highlight commonly held misconceptions about the existence of bound states.
We present a proof, based on the variationalbrinciple, that certain one dimensional po-
tentials always support at least one bound state, regardless of the potential’s strength.
We examine arguments concerning the existence of bound states based on the uncer-
tainty principle and demonstrate, by explicit calculations, that such arguments must be

viewed with skepticism.
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Ivﬁhmroducﬁon

One of the first types of problems encountered by students beginning a study of quantum
mechanics is that of finding the eigenstates of a potential. Such problems form the basis
of understanding for a great many physical systems, and so are important not just as
pedagogical exercises, but also as real world models in solid state, nuclear, atomic and
molecular physics. In addition, simple one and two dimensional potentials form the basis
of our understanding of low dimensional structures such as quantum well devices.!

There is a substantial folklore concerning these simple potential problems. In survey-
ing a variety of standard introductory (or even advanced) quantum mechanics texts, one
finds various fragments of this folklore but rarely are they presented in a comprehensive
fashidn which would allow the reader to apply them to more general problems or, for that
matter, to understand their physical and mathematical origin. This situation is made
worse by the fact that some of these so called standard results are wrong. Our purpose
here is to present an organized view of a selection of this folklore, expunging the €rIoneous -
results along the way. |

Before proceeding, the reader is asked to apply his or her knowledge of this folklore
to the following questions: How would you modify the statement “Every potential has at
least one bound state.” in order to make it true? (Not comprehensive, only cofrect.) How
would you prove it? Can the condition for the existence of at least one bound state in a
spherical step well be related to the Heisenberg uncertainty relation? If so, does such a
relation also apply to the one dimensional step well? How does AzAp béhave as a potential |
well is made deeper and additional eigenstates appear?

To focus the discussion of the issues raised above, we consider the spherically sym-

metric step well:

-V raq |
V(r) = o 1
(r) { 0 r>a, ( )
which supports a bound state only for
ﬁZ 2 .
Vo> ——r (2)

8ma?

This is a generic feature of three dimensional central potentials. Numerous authors®3 have

attempted to give a physical explanation of this by means of the uncertainty principle. The
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essence of the argument is as follows: Assuming Az ~ a, from the uncertainty relation one .

obtains "
Ap ~ —, : (3
5a ( ')
For the states under consideration it is reasonable to assume

~ 2Ap. ' (4)

p max

Since the particle is bound,

2 2
Pmax _ _I
Vo> om 2ma?’ (5)

which is not all that different from the correct threshold value. So it appears that one can
understand the bound state behavior of the spherical step well in terms of the uncertainty

principle — As the well becomes narrower, it must also become deeper to “contain” the

particle which has ever increasing momentum uncertainty.
The above argument is not specific to three dimensions and thus should be equally

applicable to one and two dimensional potentials. As we shall demonstrate below, this

leads to a contradiction, indicating a flaw in the rea,soniﬁg that led to (5).

ITI  One Dimensional Potentials

As a starting point for our detailed analysis we consider a general one dimensional potential,
V(z), subject only to the condition that, as  — Foo, V — 0 sufficiently fast that all

required integrals exist. Further consider the Hamiltonian
P’
H=2 1V(). : 6
2m +V(z) ‘ (6)

We can obtain an upper bound on the energy of the ground state of this potential using
the variational principle: for any normalized function ¢, Ep;, < (¥, H1) (see Schiff*). To
this end take for our trial wavefunction, ¥, a normalized gaussian,

bal@) = (&) o2, a0, (m
and evéluate
E(a) = (Yo , Ha) - » (8)
3
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Using the Hamiltonian (6), integrating by parts in the first term gives

: |
B(0) = 1 (W, 9) + (Wa, Vo) - ©

Notice that the first term in (9) is positive definite. Evaluating the integrals, we find

E(a) = % + \/g /_ ~ V(z)e ™ dz. (10) -

We now examine the sign of the quantity

Ela A2 .

——\5_0_‘) = R—ﬁ%— I(a), (11)
where

I(0) = % /_ " Vi) do (12)

is a continuous function of @. As o — 0, E(a)/v/a — I(0). Therefore, if I(0) < 0,
then Je-> 0 such that I(e) < 0 for o € [0,€). That is, for a sufficiently small value
of a, F(a)/+/a < 0 and hence the energy of the ground state is negative. The sole addi-

tional condition on V for at least one bound state to exist is then
/ V(z)dz <0, (13)
—0o0

which depends on the shape of the potential, not its strength. That is, if (13) is satisfied,
then €V will support a bound state for all positive e. (It is then obvious that all purely
attractive potential in one dimension always supports a bound state regardless of how weak -

and/or localized the potential.) We summarize our results thus far in

PROPOSITION I: For all one dimensional potentials such that

/ V(z)ds < 0,

€V supports at least one bound state for all € > 0.

Proposition I is a statement of sufficiency for a class of potentials to have bound

states; it is not a statement of necessity for a given potential to have a bound state. In
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particular, it is not true that if [V (z)dx > 0, the potential has no bound state. As an

example, consider the potential
V=V(z)+ V- X), (14)
where V~(z) < 0 for |z| < a, V™ (z) =0 for |z| > a and

V+>‘/V“da: .

Clearly (13) is not satisfied, but this potential may still support a bound state. Equation

(15)

(11) now reads

E\;g) = ﬁ—zf + \}%V%‘“Xz + % /_ Z V= (z)e ™ d. (16)
Since V'~ satisfies (13) it supports at least one bound state, thus the sum of the first and
third terms in (16) can be made negative for small enough . Further, for large enough X,
the second term can be made sufficiently small that E(c) < 0. Intuitively this result makes
sense, since it is reasonable to presume that regardless of the strength of the é-function
spike, it ma,y always be moved far enough from the well so that it has a negligiblé effect
on the bound states. It is also easy to see that this result is not dependent on the use
of a §-function for V+ (z); we can just as easily replace it with a localized bump of the
necessary height and width, and the argument goes through as before. The significance of
the fact that we have violated condition (13) in constructing V' is that we can always find
an € > 0 such that €V has no bound state, not that any potential violating (13) has no
bound states. (In fact, Simon® has shown that if [ (14 z?) |V (z)|dz < co then €V has
a bound state for all small positive € if and only if [*._ V(z)dx <0.)

While on the surface, one might suppose that Proposition I generalizes to two and
* three dimensions, this is not so. The variational proof of the existence of at least one bound
state is firmly rooted in one dimension. The result is true in two dimensions® (with some
additional conditions on V) but appears to be unobtainable with a variational argument.
As we have seen above, in three dimensions the situation is even worse; a potential well

need not support any bound states at all.
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III Discussion

This apparent cbntradiction can be understood by considering the one dimensional square
well. (See Schiff* for a particularly lucid treatment.) This is the relevant example since the
ground state of the spherical step well corresponds to the first excited state of the symmétric
one dimensional step well which, of course, need not exist. (Recall that the requirement
that the wavefunction be finite at the oi:ig;in6 implies that states of the spherical well
correspond to the odd parity states of the one dimensional well.),

The flaw in the argument that led to (5) lies in the presumption that the width of the
potential is indicative of the value of Az. In reality, as the depth of the well approaches
zero, the ground state wavefunction becomes infinitely broad. The importance of this
result extends beyond‘ this example: Without solving for the wavefunction, one can not
determine the value of Ax. In particular, there is no justification for assuming that Az
will be comparable to some “characteristic” size of the potential.

While this explains why arguments based on the uncertainty relations fail when applied
to one dimension, it does not explain these same arguments give a reasonable estimate for
the value of Vj; necessary for the spherical well to have a bound state. One might suspect
that the ground state of the spherical well for Vj > 212 /8ma? is a minimum uncertainty
state, thereby explaining the successful prediction of the threshold well depth. In turns
out, however, that rather than being of minimum uncertainty, the ground state of the -
spherical well at threshold has infinitely large AzAp.

" Plotted in figure 1 is AzAp/# as a function of ma?V,/#?, for the first four states of

the one dimensional 'square well:

Vo lz| L g ,
Viz) = 17
(z) { 0 |z>a | (17)

For the ground state; AzAp always has a finite value, even for zero well depth, while for
the excited states this becomes infinite as the well depth approaches the corresponding
threshold value. At the threshold for a given state the energy of that state is zero. This
results in an infinitely broad wavefunction and thus infinite position uncertainty. For
all states, the momentum uncertainty goes to zero as the energy of the state vanishes.
However, the asymptotic behavior of Ap is different for the ground state than for the excited |
states. This can be seen explicitly by takihg the appropriate limits of the expressions for Az
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and Ap. For V near-the threshold for the n-th state,

ma* 1
(Az)? ~ —— (18)
42 e, ’
and " |
—€0) for n =0,
()t | (19)
pr= n2hr?

V€, , otherwise.

The additional factor of ,/€y in the ground.state expression for Ap is responsible for the

finite limit of AzAp as e — 0 compared to »th'e excited states where this limit is infinite.

8
6._
AzAp
R4

4 ’ 1.10_ ‘
24 ]
b 1.00-_ n=0
- 0.0 T T 05
0 — T 1+ ‘v 1 v > & r T T T 7
0 5 10 15 20
. ma2V0/ﬁ2 .

" Figure 1: AzAp/h for several states of the one dimensional square

well.

IV Conclusion

Summarizing, we have seen that in one dimension a potential Wﬂl always support a bound
state provided [dz V(z) < 0. However, in three (and higher) dimensions a potential may
not support a bound state even when [d"z V(z) < 0. Arguments that attempt to explain
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this by means of the uncertainty relation are fundamentally flawed; we have seen that
as V, approaches threshold for the spherical well, the product of the uncertainties becomes
infinite, thereby eliminating any hope of explaining the threshold for the existence a state
in the spherical well by invoking the uncertainty principle. The main point here is that
a priori one cannot reliably estimate the position uncertainty. To obtain a value for Az,
one must have the solution of Schrodinger’s equation. We feel that this point cannot be
overstressed: The characteristic size of the wavefunction, Az, need not in any way be

comparable to the characteristic size of the potential.
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