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We present a generalization of the relaxation theory based in the canon-
ical momentum of each species fluid in a multicomponent plasma. The gen-
eralized helicity, as a topological quantity, has a lifet.ime' larger than the
lifetime of the energy. The proposed variational principle suggests vortices
structures. We study localized solutions, assuming the existence of a sep-
aratrix. Two-dimensional and three-dimensional solutions are studied for
an electron-positron-proton plasma. Ideal magnetohydrodynamic (MHD)

" three-dimensional localized vortices are studied as well. Possible cosmologi-

cal implications are discussed.



T, INTRODUCTION
A. Motivation

The observations of Galactic Magnetic Fields (GMF) of order 107¢ G in
contrast from the intergalactic magnetic field < 2x 1078 G for N, < 4 x 107°
electrons/cm?® brought to the astrophysicist an ovutstanding problem which
concerns the origin and nature of these fields. For a review see Asseo and
Sol report! and séme of 918 references therein, and one by Kronberg.? Essen-
tially there are two schools of fhought, one believing in a primordial cosmic
magnetic field from the Big Bang and another one in a generating magnetic
field from a certain dynamical mechanism such as dynamos. Over the long
period of time (about 10*s) between the symmetry breaking of GUTs and
before the recombination epoch in which electromagnetic plasma existed in
the expanding and cooling universe, it is of considerable appeal to study if
plasma phenomena played a role in the formation of struétures that led to
seeds of what we see today, such as galaxies and clusters of galaxies. An-
derson and Kulsrud® discussed that it is difficult to make preséntly observed
galactic magnetic fields through the dynamo mechanism after the recombina-
tion epoch. Ratra* discussed magnetic field generation during the inflation
epoch. Tajima et al.>® and Coles” discussed about magnetic fields during
‘the plasma epoch. In particular, Tajima et al.5 found that a large amount of
magnetic fields with a minuscule spatial size exist even in a primordial plasma

/
(such as t ~ 1072 sec) in a thermodynamical equilibrium, i.e. magnetic fields
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form tiny “bubbles.” Furthermore, the recent work by Lai and Tajima® in-
dicates that in the electron (positron) neutrino (antineutrino) plasma in an
even earlier epoch (such as ¢ ~ 10™* — 10~2 sec) electrons and neutrinos tend
to separate their phases to form “bubbles.” It is thus of interest to consider
what are natural forms of magnetic and plasma topologies for such a plasma
in a relaxed state.®® That is, what is the likely direction of evolution of tiny
bubbles of plasma magnetic flelds created in such a plasma over some re-
laxation time (somewhat shorter, sometimes substantially shorter, than the
collisional time). Therefore we consider the formation of structures such as
vortices and/or solitary waves of magnetic fields.

" During the radiation’era (after the leptonic era) ionized matter consisted
essentially of protons, electrons and positrons. Electromagnetic forces are
dominant over gravitational force during this period. We assume slight asym-
metry between electrons and positrons density, balanced by a backgroulid
fluid of protons. In this work we also assume that the fluid velocities of elec-
trons and positrons are equal due to strong coupling of photons to these two
species of particles. Because of the observed isotropy and uniformity of the
microwave background radiation emitted at the recombination epoch, it is
reasonable for us to assume that the plasma is in isothermic equilibrium. As
one of the main features of the cosmological plasma we assume no external

field boundary conditions (no field at infinity).



B. Formulation of the problem

We seek localized solutions of electromagnetic fields in spatial magnetic
field that do nof cause charge separation. The localizability is required in
virtue of the no external field boundary condition. Mathematically, at spatial
iﬁﬁm’ty the fields must vanish. We may require thfa existence of a separatrix
beyond which the fields decrease fast enough to have the total field energj
finite. These solutions must be stable. The relaxation theory is appropri- .
ate to investigate this problem because of its self-organization feature which
is in the spirit of self-generated and/or self-maintained configurations in a
cosmological plasma, as we expect no ‘external’ energy source or sink.

Section II presents a generalized theory of relaxation for a multicompo-
nent plasma and conclude that the formation of vortices is a possible equi--
librium configuration.

In Sec. III we study static and stationary vortices in an electron-positron-
proton (ee™P or eeP for short) plasma and present possible solutions. That
is, we assume the existence of a separatrix beyond which the magnetic field
vanishes (in some cases asymptotically vanishes). A similar technique'! has
been proposed to find vortices of electron magnetohydrodynamic (EMHD)
fluid in a uniform background proton plasma. In Sec. IV we present possible
three-dimensional solitary vortices in ideal magnetohydrodynamics (MHD).
These solutions have a preferred direction of interaction so that in an en-

semble they have the tendency to form filamentary structures. In this way



the theory provides a possible framework that there is a hierarchy of for-
mation of large-scale structures in a plasma, beginning with spatial scale of
thermal fluctuations in an eeP plasma up to large scales in an MHD plasma.

Discussion of applications to cosmology is presented in the final section.

II. GENERALIZED RELAXATION THEORY FOR
MULTICOMPONENT PLASMAS

A. YVorticity equation

The macroscopic equations of a plasma with N species are:

V.B=0 (1)
N _
V-E= 4% > ot (2)
a=1
dr X léj
VxB—?;qanava-i—EE (3)
VxE—v-——iB ' (4)
' ~ cot |
~§n + V. (ngva) =0 (5)
ot et 4
V.v,=0, (6)

NaMlg (%) Va = alla <E + v—: X B) —ngMeVoa— VP, +Ra, (7)
where (d/dt), = 0/0t + va - V and '

Ra = o V3va — Mgng Y V5 (Va — Vb) (8)
- A
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with the viscosity p, and the collision frequency for different fluids v¢,. We

assume an equation of state P, = Py,(ne). |
Let the electric and magnetic fields be given by their potentials E =

~V¢—08/cOt A and B =V x A. If we use the canonical momentum

Pa = mdv; + _ch A (9)

of each of the species of the plasma and eliminate A in favor of p, and va,

we get from the equation of motion (7)

0
apa="'Vaan_V€a+ra, (10)

where the generalized vorticity is

QaE—VXpa=—manva—%‘*B, (11)
€, is the energy of the component a:
—1 2 Pa
€a = 5 MaVa + Qud + Madc + — (12)
a
and
R P,
ra=-———"2V(logn,) . (13)
a na

Applying the curl on (10) we get an equation for the vorticity:

0

Eﬂaz'Vx[vaan]—Vx(&)._ (14)
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In the limit of low-viscosity-high-density and low interfluid collision fre-

quency
Ha « mmin [Lma'ua; 2k B] (15)
Ng c
. . [va s an}
Ja b, | 16
Va.b<<mlnl:L)L7mac ) ( )

where L is a typical length in the problem, we can neglect ra and Ra. In this
limit the equilibrium configuration will be the one in which ¢, is the level

surface function for field lines of v, and 2a:

va X 2 = Ve, (17)
 VaX Ve, =0 (18)
Qo Ve =0. (19)

The energy is constant along the streamlines of both the velocity and the
vorticity fields.

Except possibly in subdomains where Ve, = 0, the streamlines of v, and
2, lie on surfaces ¢, = const. The topology of these surfaces is determined
by the topology of the sets of points at which Ve, = 0: these points may be
isolated, or they may fill three-dimensional subdomains.*

Let us consider a stationary solution ‘propagating with some velocity u,

for which §/0t = —u - V and we get from (13)
[(va—1u) X 5] = —V(e, — u- pa) (20)
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instead of (17). Now the divérgenceless fields 2, and v, — u lie on the level
surfaces of ¢, — u - pa. For localized solutions v, — 0 and B — 0 as r — oo.

We conclude that outside a separatrix

€e—U-pa=0, (21)

and so

Q2 = aa(r)(Va—u), (22)

-such that ag(r)u approaches zero at the spatial infinity. Note that ag(r)
is constant along (va — u) since the fields in (22) are divergenceless. So, a

sufficient condition for existence of vortices is a = 0 outside the separatrix.

B. Generalized relaxation theory

Now we relate the equations obtained above with a generalized version
of fhe relaxation theory. The evolution of the fields, determined by (10)‘ in
the limit (15)—(16) and spatially constant density, preserves the generalized
helicity:

1*= [pa: Quds— §pa-dis fpa-diz, (23)

where the integration is over the whole spatial volume and the line integrals
appear for multiply-connected spaces. This definition is gauge independent.’

Indeed the time derivative of (23) is

o h :
_ — ?é —. 0 . _ . . 9
Ot Ia. [ €allda + (Pa Qa)va (Pa Va)ﬂa] as . ( 4)
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So, for the.boundary conditions Q,-n = 0 and va-n = 0, we have §/0t I = 0.
If we include the dissipation terms we find, assuming the above boundary

conditions,

9 1n 3 |
—8—tIa—2/ra-Qadm. (25)

We promptly notice a special cas.e for which ra'- Qa = AaPa - Qa so that
the evolution of the helicity is I*(t) = I™(0) exp[2 f* Ao (t')dt']. Therefore it
can increase, decrease, or be constant, depending on the behavior of A, (t) in
time.

~ The time derivative of the total energy
Eiotal = / lz namav -I— ( E?+ BZ) dx (26) :

is

= Etotal / ZRa vad’z . (27)
The total energy decreases in time mainly because of the viscosity térm in
(8). In the ideal limit neglecting Ra the total energy is, of course, conserved.
But in general both helicity and total energy can decay in time. From the
expressions (25) and (27) we conclude that the rates of decay of helicity and
total energy may be different. I’ are topological quantities and we have some
reason® to believe that the helicity does not decay as fast as the total energy
does.!® Indeed, since changing in helicity involves changing in the topology
of the lines, breaking and reconnecting them, it takes some time to happen

while the dissipation of energy does not have such a constraint.
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We estimate phenomenologically the lifetime for decreasing the total en-

ergy and the helicity as
Tenergy = i [1/0%; namaL?/ ] - (28)
Thelicity — Max [1/%5; namaL2//J’a] . (29)

The case 1/v§ < nam, L%/, is one in which the dissipation of the energy.
is through the interfluid collisions, usually at small scales compared to the
other case 1/v¢ > nymqL? /1, in which the energy is dissipated through the
viscosity of each ﬁﬁid species.

In any case, given the motivations above, a Qariational principle is pro-
posed as followé: minimize Fioa1, Subject to thé constraint that 3, I* =
const. Let 8¢,8A,6pa be the general variations of the electrostatic poten-
tié,l, the vector potential and the canonical momentum, reépectively. Then

the ‘stationarity’ condition

§ <Emtal -2y Ij:) =0 (30)
leads to
V-E=0, (31)
N
VxB= ég > GaTaVa (32)
a=1
Qa = —% Va . (33)
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The first two equations above are of no surprise. The last equatibn is a
special case solution for Eq. (17). In this case the generalized vorticity field
lines are frozen in the fluid. A

To check the stability of these configurations, we make a second variation

on (30), use Egs. (31)—(33), and integrate by parts. We get

62 (Etotal - )\ZIS) | = /ds.'E [Z na;na (5’00,)2
a extreme a

+ % ((v5¢)2 + Z(BjéAl)z) —2X) 8(V X pa) - 5pa} . (34)

ij
If the last term does not change sign, we can make the configuration sta-
ble by appropriate choice of A. This term is called average perturbation
spirality in connéction to amplifications of vortex disturbances in planetary -
atmospheres.!3
Combining (32), (33), and (10), we get
VxB= ilcz [(2AZ%§> B+2)) (megV xva)| . (35)
a a
In the next section we study the more general equilibrium equation (17)
with planar and axial symmetry for an electron-positron-proton plasmaQ We
have been unsuccessful so far in finding an explicit solution for 3-d configu-
rations. It may be that localized filamentary structures are preferred for this

spatial scale.
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III. ELECTRON POSITRON PROTON PLASMA

We assume that the electron and positron fluids have the same veloc-
ity field v due to the strong coupling with the isothermal photon pressure.
Therefore the canonical momentum (8) and generalized vorticity (10) are:!

(Ve=v_=V)
. e
pizmv:I:-C—A (36)
: ﬂi:—pri:—mva:}:-z-B (37)

and similarly for the protons

Qi:—VXp¢=—m¢vai—-ZB. (39)

The displacement current is neglected: 8/cOtE <« V x B and assume the
quasineutrality condition: n; = n_ — n, = én*. We consider én* constant
and the ions velocity much smaller than the electron-positron velocity: v; <

v. Therefore from Ampére’s law (3):

Cc .

Configurations in which this relationship between v and B holds are called

“magnetic vortices.”® Let us use some appropriate units:

spatial coordinates = w_c* (41)
P

for the electrons (—), for the positrons (+) and for the protons, or ions, (i).
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=c 2
time B, (4 )
4drén*e?
w;f = — (43)
B .
H=—. 44
i (44)

%Qﬁ:vx [0 x (V x H)] . (46)

Adding and subtracting the previous equations we get:

%H_Vg[HX(VxH)] (47)
% VH=V x [(VH) x (V x H)] . (48)

The first equation above tells us that cE = —v x B and therefore the as-
sumption 8/cOtE <« V x B is validated. It also gives us the range of validity

for the neutrality condition:

1 B3 2 2
- V. F=—2"9__(H. H H)*) . 49
4drebn* B drén*mc? (H -V +(V x H)Y) (49)

Therefore the neutrality condition is satisfied either approximately for

BS o % o
L én"mc (50)
AT
or exactly for
H V°H=—(V x H) (51)
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Beltrami fields (the special case V x H = oH), are fields in which the

neutrality condition holds exéctly.

2-d case

_ Now let us solve Eq. (47) for the case in which one spatial coordinate, say
z, is ignorable. Physically it means that the typical length in the z-direction
is much larger than the typical length in the z-y-plane. (0A./0z < 0A./Oy
and 0A4,/0z <« 8A,/0z). Therefore we can write the magnetic field as:

H = [Va(z,y,1) x 2] + h(z,5,0)2 , (52)

equations (47-48) for the magnetic field (52) become
6,

S h=0, | (53)

0 o2 27y -

2 Vht (b V=0, (54)
S ot (hya)=0 (55)
at b - )

a 2 2

= Vot (h, V%) =0, (56)

where (f,g) = ’z‘.- [V f x Vg]. From (53)-(54) we get
V2h = PIh] .
For a vortex propagating in the z-y-plane with velocity u, the equations
(55)—(56) give us: |
Via=Qh+2z (uxr) (87)
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a=Rh+Z - (uxr)]. (58)

P, Q and R are arbitrary functions of the arguments in the brackets.
Let us solve a “linear” case a = h + uy, in which u is in the z-direction

and @ is given by:

(=E(h+uy) forr<m
Qla] = (59)
+d?(h+uy) forr>ro.
So we have to solve just
—c?(h+uy) forr<mg
V2h = (60)
A\ +d?h+uy) forr>rg.

The general solution for & (continuous up to the first derivative) is given

by:

e Forr<mrg

h=u l(% + BldK{(dro)> 'c?ii—cc:())) — 7"] sin ¢ (61) |

e Forr>rg

h=u ( K1Z)i?”o) + Bl> Ki(dr)sin ¢ (62)

where Ji(cro) = 0 and Ji, K are Bessel functions.
Another possible choice of the arbitrary Q[a] is:
—c(h+uy) forr<mo
Qlal =

0 forr>nmg
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gives us the solution:

b u(ﬁcro)‘fl(cr)—'r) sing forr <rg (64)
—ur2sin ¢/r for r > 7o
with Ji(cre) = 0.

Both solutions above are dipole-like solutions. The first solution has finite
total energy while the second has a logarithmic divergence.

We emphasize that these solutions represent physically filamentary vortex
structures. -At a large enough scales this solutions are thin (ro very small)
“strings” that may eventually close itself. A good ensemble of this filaments
may form more complex structures in this large scale. As Petviashvili has

shown,'®* MHD equations resemble a set of equations for filamentary vortices

in unmagnetized plasmas.

3-d case

Now we present the basic steps toward a 3-d solution with azimuthal
angle symmetry. Let us assume an axially symmetric 3-d configuration in

which the magnetic field is given by
H=—[Vy(r,2t) x ¢+~ f(r, 1) (65)

Equations (47-48) become
d *
(- M%) =0, (66)
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4 (:Ff — AYf ) _ % [v (Tiz A*4) X V() — A*w)h .67

dt 72
where
A*:r%%i%—aa—;, (68)
e\ (69

For stationary configuration, moving in the z-direction with speed u we

have:
¢ _ligfv 70)
prie ~[Vfx V], (
F=f+3r (71)
A*op £ = Fulf] (72)
A*f+ f+ Fi[f]A%) = r*Pu[f] . (73)

Fy[f] and P.[f] are arbitrary functions of their arguments.

If we add and subtract the equations above we get:

_EA+FI _ o
ary= T (74)
v - g (75)
8*f+ Glic 1 = B oy (76)
+ K1t = P2 - g (77)
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which can be combined to form

af =2 (T - _,Cj[[f}] aif) +f§l,[[1;]] (78)
A*p = GIE[y] = S )

where K~ is the inverse function of K.
We were not successful in finding an explicit nontrivial solution for these
equations. We can show that we need just to solve Eq. (79) for % so that 7

becomes determined from 1.

A. Relaxed state

The relaxed state configuration obeys variational principle given in Egs. (32)-

(33). We conclude that for the electron-positron-proton plasma case

én*

H=—25V x H (80)
V2H = ”+z\”‘ V xH. (81)

Compatibility of these equations gives (4\)? = én*(ny +n_). Then we get
a Helmholtz-like equation for H:

T_ ‘|‘7’I/+
Nn- — Ny

V?*H = - H. (82)

. M == _g— . .
The scales of these solutions are /7= = = c¢/wp where wy is the plasma

frequency for the density n. +n.., which means the size is /Z—:_f—fj;— times the

collisionless skin depth of ee™ plasma.
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It is well known that.the general solution for the divergenceless fields

satisfying (82) is
H:mem+évXWwam» (83)
where m is a unitary vector, and u satisfies the scalar Helmholtz equation:
V2u = —c’u

where @ = /2=*%+  For the cosmological eeP, a ~ 10%. This estimate is

N.—Ny

based on the observed limits for the asymmetry of matter over anti-matter:
IV. IDEAL MHD

. As we discussed before, the eeP structures can combine to form larger
scale structures in MHD. Therefore it is appropriate to investigate localized

solutions in MHD. The set of equations used are:

B.-Vn=v-Vn=0 | (84)
V.v=0 | (85)
V.B=0 . (86)
d J
nm (—)vm—}-— x B— VP —-mnVeg (87)
dt c |
VxB:%J . (88)
9 B-Vx(vxB) (89)
ot ’
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where

d _ 0
aZ—a—t-!-(V-V). (90)

The equation of motion (87) can be rewritten as

?%v—[vx(va)] [Bx(VxB)]:-V(%+%v2+¢a> - (91)

+ drmn
We assume the density is constant. Then the time evolution equations

have the following three conserved integral:

I = / (v:t \/4]:_771_75) d’r (92)
L= / A Bdr. (93)

Let us look for static solutions:_

[vx(Vxv)]-— — [B x (V x B)] (94)
=V <%+%U2+¢G> (95)
Vx[vxB]=0. (96)

There are three possible vortices, depending on how v and B are related.

They are called parallel, magnetic and dynamic vortices. For parallel vortices

v=d+ M B : (97)
drmn
M2-1 P
——[Bx(VxB)]=V (Fzﬁ + 147 +¢G> . (98)



There is a degeneracy when the constant M=1and P/’Iﬁ?’b-l— %vz + ¢ =
const which corresponds to Alfvén vortices.

Notice that
(M? —1)e=4n (P +mniv®+ mn¢g) (99)

is constant along the streamlines of the magnetic field. Let it be a 3-d axially

symmetric field:

rB = ¢ x Vi + ¢f[y] | (100)

and € = €[]

So we get the Grad-Shafranov equations:

A¥op=—ff —r2d (101) ",

where prime means derivatives with respect to the argument and A* =
r8/0r1/r8/0r 4+ 52 /022 |

Let the separatrix be a sphere of radius a. Then we take e[y] and f[i]
to be linear inside the sphere and zero outside of it. It turns out that ¥
vanishes outside the separatrix. The inside equation and general solution®”

are as follows:

A*p = —k*p + cr® (102)
W= %92,- 2+ 5 AC? <%> VR jn 1/2(kR) , (103)
n=2 .
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where R = /(r?+2%), C;;*/? are Gegenbauer functions and j,_1/» are spher-
ical Bessel functions. We impose continuity for 1 and its first derivative.

This procedure leads us to:

c

An=—b2 75 1/5(ka) (109
3ka
Therefore |
_c[, kR , \
w—p[l— j(ka)] T (106) .
je) = & _535 s &) | (107)

The first two roots of the transcendental are ka = 5.76 and ka = 9.11.
This is an example of a localized solution in MHD. It is continuous up to
second derivative of w which is zero outside the separatrix.

Other localized numerical solutions were found®? for f = \/2/(71—+1) o ti/2
and ¢ = —1) for n = 2,3. These solutions have a preferred direction of an-
tiparamagnetic interaction along, say, the z-axis, and of antiparamagnetic in
the plane normal to the axis. Therefore, this solitary vortices have a ten-
dency to form linear polymer-like structure. In turn these “polymers” may

form even larger structures and so on.!®
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V. DISCUSSION

We have found a series of localized relaxed solutions relevant for plasma
structure formation. Localized solutions for eeP were found in the form
of long strings (mathematically 2-d solutions). Filamentary eeP may form
localized 3-d solution in MHD. The localized solutions in MHD may also form
larger scale structures in a polymer-like. shépe. These solutions represeﬁt
additional and perhaps more natural equilibrium structures than ones found
in earlier work'® in one-dimension in electron positron plasmas.

In the quasi-two-dimensional limit of three dimensions, i.e. with the struc-
ture being a long string but not strictly straight cylinder, such structures can
meander in and weave through the plasma and occasionally crisscross each
other. It is known2?! that the direction of such crisscross and thus the
presence or lack of the strong magnetic. field in the plane of contact and per-
pendicular to the reconnecting field lines are a crucial factor in determining
the speed of possible reconnection of magnetic field lines. It is thus of much
interest to pursue the study of the evolutionary outcome of such preferential
reconnection in structure formation. Such interaction may be well described
by the approach by Pumir and Siggia'* in hydrodynamics and by Kinney
et al.1® in MHD. It is possible to speculate that a particular meandering and
linking of such strings which originally did not carry an overall helicity can

emerge to obtain a directed helicity as a result of reconnection.®

These structures may be of great importance to formation of isother-
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mal perturbafions during the radiation epoch of the universe. This scenario
provides one possible way for formation of structures of later epochs that
is consistent with the observed uniformity and isotropy of the Microwave
Background Radiation.5

Moreover, it is often said that the effort of achieving a thermonuclear
burning plasma is to copy astrophysical thermonuclear burning. (Conversely,
the recent experimental progress®? in tokamak fusion plasmas finds the pres-
ence of strong flows, a study of which may lead to more understandings of
plasma vortices with flows as discussed in the present paper). The absence of
external magnetic fields for these localized vortices suggests a poséible path
toward a fusion reactor without (so many) external coils. An attempt in that
direction may be found in Ref. 23. More analysis is necessary, however, to

check the feasibility of this option as a reactor.
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