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Deduced from Weinberg-Salam electroweak theory, a Boltzmann equ;cz-
tion and subsequent fluid equations are derived for the primordial electron-
positron-neutrino-photon plasma. A collective instability that separates the
phases of electrons (and positrons) and neutrinos (and anti-neutrinos) is dis-

cussed. Cosmological implications are mentioned.
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The primordial plasma in the epoch approximately between 10~%sec to
1 sec after the Big Bang is believed to be made up primarily of electrons,
positrons, neutrinos and anti-neutrinos, and photons (with a small amount
of baryonic matter).! During this epoch (particularly its early part) elec-
trons and positrons not only coupled strongly with photons through electro-
magnetic interaction, but also coupled with neutrinos (and anti-neutrinos)
through the weak interaction. After the temperature of the plasma dropped
below the rest mass of W* and Z bosons,? by integrating out the boson prop-
-agators and using the Fierz transformation,? we have an effective Lagrangian
for the e — v interaction. Then, the effective Lagrangian for the e — v parts

is:

o
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and the electromagnetic interaction Lagrangian is L2 = 4(igvy,e)A,, where
G is the Fermi constant and 6, is the Weinberg angle in the Weinberg-Salam
theory (sin® @, ~ 0.25). Our present approach is to start from Eq. (1) in a
semiclassical way to systematically derive classical hydrodynamic Lagrangian
of the electroweak plasma. We will then arrive at the Boltzmann equation
and its associated moment hydrodynamical equations. These equatioﬁs allow
us to analyze collective modes of the electroweak plasma.

The classicalization is done by suppressing the handedness and by reduc-
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We then obtain the interaction Lagrangian as

Ly = /Acint.dsx = 'Z‘Ve . A(xe:t) - Q¢(xe: t)
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fof a single electron and a similar one for a single neutrino, where n,(x) =
6(x —x;) (0 = e, v). The equations of motion for electrons and neutrinos
are obtained by the Euler-Lagrange equation.

The Euler-Lagrange equation thus derived defines the characteristics of
each species of particles and thus allow us to construct the Boltzmann equa-
tion: —f— + Vs Vxfo+Fo:Vpfs = C,, where C, is the appropriate collision
operator including the annihilation and creation of particles. By making the
velocity moments and summing over many particles, we finally arrive at the

classical hydrodynamical equations

\/_ 2Gn.

V ‘ (nuvv)ve

nefl-&=neq(E+"CXB) VP, - VP, + Y2l

dt c
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and
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where a‘% is the Lagrangian time derivative, n, is now the density, 7, is the
collisional frequency of fluid species o with photons or bther fluid compo-
nents, and P. and P, are electron and photon pressures. Other equations
are the continuity equations for each species: %"f + V- (nsv,) = 0. We have
neglected the cosmological background expansion, as the Hubble expansion
time proves to be much greater than the growth time as we shall see.

Since the plasma is highly relativistic and opaque, we can safely assume
Py=P.=nJT, = ;:%gnﬁ/ 8 where o, = 45_;:73' We assume that the equilib-
rium of the plasma is uniform: .n. = 7 and n, = 7, and no large scale EM
fields and flows E = B = v, = v,, = 0. We then solve Eqs. (3) and (4) by

linearizing about the equilibrium and transforming these into Fourier space:

(—iw)MeVeTiebVe = TleqeSE — V/2GT,(ik)6n,, — ‘/gamm(—iw)av,,
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and similarly, for the continuity equations, where v, is the relativistic factor
for the species 0. These equations are coupled with Maxwell’s equations
for electric and magnetic fields. The determinant of the matrix of these

equations results in an equation f - g% = 0, which leads to two independent



dispersion relations f = 0 or g = 0, where f and g are given by

f=01-a)w+i(n +n,)w® — (b2k® - 2ac’k® + nen, + {.uz)w2

— iy (W? + bPk?)w — ac’k* =0, (7)
or
g=A— nenw?(W? — Ak®) +i(ne +n,)(W° — k%W®)
+ imy (b w — bPkPw® — wle®) =0, (8)
and |

A= (1 - a)® + (3ac®k? — bc?k? — Pk? — wlw* + (b — Ba)c*k*w? + ac’k® .

In these expressions, we include the viscosity effect u by lumping 7+ pk? in a
simple 7, where we can approximately evaluate as 7 = cficoxn and p = m—f:—K;,
with the Klein-Nishina cross section oxn = H:—’c-%%w— A dimensionless coupling
coefficient a between electrons and neutrinos is defined as

_ 2G*7.T,

a =
cimem,

and a dimensionless coupling coefficient b between electrons and photons is

5 8 /m.\V3 1
_5(0—,) mec?

The dispersion relation f = 0 gives rise from the longitudinal mode (i.e. the

electric polarization E is parallel to k), while the dispersion relation g% = 0

from the transverse (E L k) (g2 = 0 since two polarizations). Each relation
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reduces to the familiar form of w? = w2+ bc*k? (plasmons) and w? = w2 +k2?
(polaritons) respectively, when the electron-neutrino coupling a — 0 and
collisions 7 — 0. Note that the coefficient a is mass (m,) dependent (we
tobk the form for m, # 0; for m, = 0 case appropriate modifications to
nonsingularize the present equations can be carried out).

We seek analytical solutions for Egs. (7) and (8). Let I' = —i% (normal-

ized growth rate). The dispersion relation becomes respectively from (7)

1Aty et s _ el (QY 2
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and from (8)
g(T) = (1—a)T*+ b+1+(‘”) — 3a ) T4+ (b—8a)[2 — g+ L T(T2 4. 1)
, ck c2k?
+ Bt lera e 4 ) + 2T (b4 B0 + (ﬂ)zl“2 =0.  (10)
ck ck

In our plasma, the coupling coefficient a is a small parameter(a < 1) and
the parameter b > a. We already know the high frequency behavior of these
equilibrium plasmons and polaritons. We thus focus on low frequency behav-
iors of collective modes which are influenced by the presence of electroweak
coupling: || < 1.

From f(0) = —a < 0, f(oo0) > 0 and g(O) = —a < 0, g(oo) > 0 we know
that there exists at least a solution with I' > 0. Recalling the definition of
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I', we immediately realize that this is an unstable (exponentially temporary
growing) mode. We can solve for small I" by neglecting higher order terms

like I'6, I'® and I'". For the transverse modes g(I') we have

M\ p2 | Myn g a
(o4 2 )2+ Zor —amo. (11)

Solve I as I'(k). Find the wavenumber value for maximum growth &, ~ \/%
“such that % (knmg) = 0, where we now express 7 and p explicitly. And the
méximum T value I'pax = ['(kmg) =~ % Then the maximum growth rate
is given By

Ymex = Ckmgl'max = % : (12)
For the longitudinal modes f(I') we have similar results.

From Egs. (5), (6), and (11), along with the continuity equations, it is
evident that the Fourier components of density perturbations én. and én,
are 180° out of phase (optical phonon-like). For example, the negative gradi-
ent of the neutrino fluid exerts a weak force to reinforce the positive density
gradient of the electron fluid and vice versa. This mutual reinforcing force
leads to the instability. The reason why both the transverse and longitudinal
dispersion relations f = 0 and g = 0 produce the same instability is now
cléa.r. That is, the origin of this instability is not related to photon cou-
pling but to the weak coupling (or weak collisions). The latter is blind to |
the optical polarization and comes in equally in transverse and longitudinal
equations. On the other hand, the mode that moves the neutrino and elec-

tron fluids together (acoustic phonon-like) is stable, as expected due to the

7



photon viscosity. The instability we found tends to separate the neutrinos
(and anti-neutrinos) from the electrons (and positrons) and each species into
small “bubbles.” The bubble size is approximately determined by the lower
threshold value of k as a result of the nonlinear evolution of this instabil-
ity. Various characteristics of this instability at representative cosmological
epochs are listed in Table 1. The growth rate as a function of the wavenum-
ber is shown in Fig. 1. Note that the present fluid theory fails to apply to
quantum mechanical wavenumber regime k > no1/33 The growth rate of
the instability far exceeds the Hubble expansion rate H for ¢ < 1sec, which
justifies the neglect of this effect in Egs. (3) and (4).
| A new area of investigation opens up as to how this instability grows in
its nonlinear evolution stages. It should be noted that the modes with wave-
lengths shorter than the neutrino mean free path will not grow nonlinearly
because of neutrino penetration. See Fig. 1. It is anticipated, as is the case
for this kind of hydrodynamic instabilities, that the mode with the minimum
wavenumber kni, of the unstable spectrum eventually dominates in its non-
linear evolution. It remains to be seen whether the bubble formation and its
surface tension help form coalescence of bubbles* and, if so, how fast.
What are possible observational relics of this instability? As the bresent
instability vanishes or the growth rate of the instability v becomes on the
same order of magnitude of the Hubble expansion rate H, most structures

embedded in the density of electrons and positrons also vanish. This is



because the weak interaction had sustained the phase separation, but the
weak interaction was fading at this epoch (¢ ~ 1sec). Thus it is unlikely
that these bubbles influence primordial nucleosynthesis.® Do neutrino fluctu-
ations due to bubbles show up in the neutrino flux “observed” at the present
epoch through a hypothetical neutrino telescope? This is similar to the ques-
tion if the photon fluctuations (Cosmic Microwave Background Radiation)
should be observable reflecting the electron-photon plasma fluctuations at
the time of recombination. The characteristic fluctuation wavelength at the
-present epoch that corresponds to the detached neutrino bubble scale length
is 1 — 10m, an awfully difficult scales even though low energy neutrinos
could be detected. The magnetic fluctuations associated with the plasma
fluctuations such as current have been studied for thermally stable primor-
dial plasmas.3® It was found that the level of magnetic fluctuations is rather
enormous, though the scale length is minuscule. It remains to be seen such
magnetic fields can lead to structure formation.”® In the present investiga-
tion, however, we have found that weak interaction can induce fluctuations
through exponentially growing unstable modes. This will certainly enhance
the magnetic fluctuation level found in thermally stable situations,® as the
former (unstable) case allows far beyond the thermal critical opalescence
“level.® Such enhanced magnetic fields and associated fluctuations, albeit with
small scales, are worth investigating their consequences in later epochs.1011

It is also possible for the present theory to impact on magnetic or other fluc-



tuations generated prior to the epoch.!? Finally a comment is due on the
role of this instability in supernova explosion: in spite of the parameter a
being near the cosmological plasma at t = 10~2sec, the mean free path of
neutrinos is greater than the typical bubble siie and thus cannot contribute

to the explosion of the outer shell of dying stars.
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Time (s) t=10"* t=10"2 t=1
Temperature (eV) T =108 T =107 T =108
Density (cm™3) n =6 x 10% n=>5x 103 n=4x 10%
a 1.132 x 1078 7.859 x 10712 5.03 x 1018
b 668.45 62.9 5.839
ok (cm?) 1.275 x 10~ 1.275 x 10~26 1.275 x 1072
p(cm?/s) 0.131 15.682 1960.21
n(s™) 2.292 x 10% 1.91 x 10*° 1.53 x 10Y7
wp(s™1) 6.183 x 10% 1.785 x 10%2 5.049 x 10%°
F(@) = 0, Ymax(s™1) 1.164 x 10 7.16 x 10° 0.3949
f(T) =0,kmg(ecm™)  6.872 x 101 8.59 x 10%° 5.369 x 10°
(1) = 0, Ymax(s™1) 1.164 x 104 7.16 x 10° 0.3949
| g(T) = 0, kpg(cm™1) 1.323 x 10! 1.104 x 10°

8.835 x 108

Table 1. Growth Rates of the Instability ih a Primordial Plasma.
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Figure captions

1. Growth rate of the phase separation at early cosmological epoch of
electron-neutrino plasma. |
(a) a log-log plot of growth rate y(sec™') at t = 10~*sec after the Big
Bang as a function of wavenumber k(cm™!).
(b) a log-log plot of growth rate y(sec™!) at t = 10~2sec after the Big

Bang as a function of wavenumber k(cm™!). The labels “mfp” mark the

wavenumber kpg = ,\2—’;, where Ang is the neutrino mean free path.
m
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