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An investigation is made into the electron temperature perturbations associated with
tearing modes in tokamak plasmas. It is found that there is a critical magnetic island width
below which the conventional picture where the temperature is flattened inside the separa-
trix is invalid. This effect comes about because of the stagnation of magnetic field lines in
the x./icinity of the rational surface and the finite parallel thermal conductivity of the plasma.
islands whose widths lie below the critical value are not destabilized by the perturbed boot-
strap current, unlike conventional magnetic islands. This effect may provide an explanation
for some puzzling experimental res'ults. regarding error field induced magnetic reconnection.
The critical isiand width is foﬁnd to be fairly substantial in conventional tokamak plasmas,
provided that the long mean free path nature of parallel héat transport-and the anomalous

nature of perpendicular heat transport are taken into account in the calculation.

PACS Nos. are: -52.35.Py, 52.55.Fa, 52.40.Hf, and 52.30.Jb.




I. Introduction

Oscillatory low mode number helical perturbations of the magnetic field, temperature,
and density are often observed in tokamak plasmas, especially during the current ramp up
and ramp down phases.!">® These perturbations are usually identified as a type of filamenta-
tion instability of the plasma current known as a ‘tearing mode.”* A saturated tearing mode
is expected to form a magnetic island structure which locally flattens the plasma tempera-
ture and density profiles, thereby degrading the overall energy andv particle confinement.>®
In general, the island rotates in the laboratory frame due to the presence of a radial electric
field in the plasma. Diamagnetic effects also give rise to island rotation. The uncontrolled

growth of tearing islands with different helicities is predicted to give rise to rapid stochas-

tization of the magnetic field, with an associated catastrophic loss of confinement.”® For

many decades, tearing mode theory has provided a fairly good qualitative explanation for
most large scale instabilities observed in tokamak plasmas.® Unfortunately, no conclusive
quantitative comparison between theory and experiment has ever been performed, mainly
because of the great difficulty of accurately measuring the internal (i.e. inside the plasma)
structure of tearing modes.

Magnetic pick up coils located outside the plasma yield little detailed information about

the internal structure of tearing instabilities.’® Generally speaking, the equilibrium current

profile is not known to sufficient accuracy to permit the projection of edge measurements ,

back into the plasfna, with any degree of certainty.

- The internal structure of tearing modes can be investigated more directly using Soft
X-Ray (SXR) emission data.!! Unfortunately, SXR observations are generally restricted to
the plasma core (i.e. well inside the ¢ = 2 surface) and are, of course, chord averaged.
Tomographic reconstruction of the emission profile is possible but, in practice, extremely

difficult to achieve.1®13

An Electron Cyclotron Emission (ECE) detector gives a direct localized measurement of




the electron temperature at a known and adjustable position inside the plasma.l*'3 Clearly,
this diagnostic has far greater potential for probing the internal structure of tearing instabil-
ities than either a magnetic pick up coil array or an SXR detector. The aim of this paper is
to establish the relationship between the magnetic structure of a saturated tearing mode and
the associated helical perturbation of the electron temperature profile. .It is demonstrated
in Sec. III that this information can be used, in conjunction with experimental ECE data,
to determine the structure throughout the plasma. It is also shown that a temperature
flattened magnetic island possesses a unigue ECE signature. The heat flow pattern around
such an island is calculated in Sec. IV. The effect of the perturbed bootstrap current on
island stability, taking into account the finite parallel thermal conductivity of the plasma, is
investigated in Sec. V. Section VI discusses the implicatiohs of some of the results obtained
in this paper for ohmically heated tokamaks. Finally, some important conclusions are drawn

in Sec. VII.

II. Basic Tearing Mode Theory

A. The plasma equilibrium

The analysis is performed in cylindrical geometry with the usual right handed polar
coordinates (r, 6, z). The equilibrium magnetic field is written B = (0, By(r), B,), where
B, is the constant ‘toroidal’ field strength. The equilibrium ‘toroidal’ current density takes
the form g J,(r) = (rBy)'/r, where ' denotes d/dr. It is convenient to define the ‘safety
factor’ q(r) = rB,/RyBs, where 21 Ry is the assumed periodicity length in the z-direction
(Ro is the simulated major radius). The standard large aspect ratio tokamak orderings,

By/B, < 1and r/Ry < 1, are adopted.'*

B. The outer region

Consider a saturated tearing instability with m periods in the poloidal direction and
n periods in the ‘toroidal’ direction. The perturbed magnetic field is written in the usual

manner as 6B = V A (¢ Z) = Vi A Z, where the perturbed poloidal flux 7 takes the general

3




form
¥(r,0,2,t) =(r)cos( . (1)
Here,
C—m@—ni—/tw(t’)dt' @)
Ry ,
is the helical phase angle of the mode, and w(t) is its instantaneous rotation frequency.

- According to ideal magnetohydrodynamics (MHD) (i.e. linearized force balance in an

incompressible, inviscid, massless, perfectly conducting fluid) the magnetic perturbation

1d( dp\ m? po J, 3 | |
%) @

in cylindrical geometry, where g, = ¢(rs) = m/n defines the position of the ‘rational’ flux

obeys

surface.'® In ideal MHD theory a tearing mode is simply an incompressible helical displace-

ment & of the equilibrium magnetic flux surfaces. The radial displacement is written

6 = £(r) cosC | | @
where ‘ '
o h(r)
€)= Bo(1—q/qs) | )

C. The mégnetic island

In the vicinity of the rational surface
Y(r) =¥ ' (6)
for tearing instabilities, where ¥ > 0 is termed the ‘reconnected flux.” Equation (6) is
equivalent to the well-known ‘constant-¢’ approximation.? In principle, if ¥ # 0 both Egs. (3)
and (5) become singular as 7 — 75. Unphysical behavior is averted by the formation of a
magnetic island. |
It is convenient to define the ‘helical flux’®

X(r,¢) = ——/T: (1— qi) .Bgdr—i—w(r)cosC . (7) |

3
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It is easily demonstrated that (B +6B)-VX = 0, so the contours of X map out the perturbed '
magnetic flux surfaces. Close to the rational surface Eqs. (6) and (7) yield .

¢ X 2

z
Q_E—gﬁ_}_COSC, (8)
where z = r — 15, and
Roqs .
=4 v,
w B.s. (9)

Here, s; = (rq'/q)r, is the local magnetic shear, which is assumed to be positive.

Figure 1 shows contours of the normalized flux surface label {2 plotted in (z, ¢) space.
An island structure of maximum radial width W is clearly evident. The island O-point lies
at coordinates (Q = —1, ¢ = ), the separatrix corresponds to the {2 = 1 contour, and the
X-point is situated at coordinates (2 = 1, { = 0). The perturbed flux surfaces are, of course,

periodic in the helical phase ahgle ¢, repeating every 2m radians.

III. The Perturbed Temperature Profile

~A. Imtro duction

Heat flow in the plasma is governed by’
q=-sV|T -k V.T, (10)

where q is the heat flux, T' the (single fluid) temperature, ) and . the paré.llel and

perpendicular thermal conductivities, respectively, and

VT =(b-VT)b,

V. T=VT-V,T, , (11)

with b = B/|B| ~ B/B,. Note that V-b ~ 0 in a large aspect ratio tokamak.
In regions of the plasma where there are no significant sources or sinks of heat (i.e. ev-

erywhere apart from the plasma core and the scrape-'off layer),

V.q=0, | (12)




so Eq. (10) yields
H”VﬁT +rViT=0 ' (13)

(assuming that «y and k. are constants, for the sake of simplicity), where
VT =b-V(b-VT),
ViT=V’T - ViT. | (14)

In the vicinity of the rational surface

b.vg—<£o3;)x5% (152)
. [19T's Q ,
e | -
2 )
Vi ~ T g (15Db)

in the thin island limit W < rs, so for a resonant perturbation (i.e. 6T ~ 1/z) the first term

in Eq. (13) dominates the second whenever

' 1/4 1/2
|x|>>xc~<”—l> (R"’"‘"’) . (16)

K,” nsSs

Thus, far from the rational surface (i.e. |z| > z.) the parallel thermal conductivity forces
the temperature to be a function of the perturbed flux surfaces. Conversely, the temperature

is not necessarily a flux surface function close to the rational surface.

B. The outer region

In the outer region (i.e. |z| > ., W) a tearing perturbation reduces to a helical dis-
placement of the magnetic flux surfaces, and the temperature remains a function of these
surfaces. Let Typ(r) be the unperturbed equilibrium temperature profile. It follows that the

temperature perturbation associated with a tearing mode is given by
8T(r, () ~ —VTy-& = 8T(r) cos( | (17)

where

8T(r) = —=Ty(r) €(r) - (18)
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C. The island region

Let ,
T(r,¢) = To(rs) + T(z,() (19)
in the vicinity of the island. To lowest order the function T is antisymmetric about the
rational surface, |

T(—.’I?, C) = —T(IZ?, C) ) ) (20)

since it satisfies the antisymmetric boundary condition

!

T(z,{) =Tl 163

for W < |z| < 75 (see Eqgs. (5), (9) and (18)). Here, T; = Ty(r,) is the local equilibrium

(21)

temperature gradient. The island temperature profile is assumed to be symmetric about the
O-point,

T(z,~Q)=T(z,Q), (22)
and periodic in the helical phase angle,

T(z,¢ +2m) = T(z,() - (23)

Close to the magnetic island the heat diffusion equation (13) is conveniently written

1 29 2T |
Z{(%) sm{ 38(} T+ (9X =0, - (24)
where
. _
X=dor. (25)

Equation (13) can also be written

of
(XY 2 /a 219 Ja- . 2
1 (W) FA A e ag 5a =" (26)
In Egs. (25) and (26) the scale island width W, is defined '

Ke=¢§(”_i>l/4( L )1/2 ) e

Ts K €38N

where €, = r5/Rp. Clearly, W, is closely related to the quantity z. defined in Eq. (16).
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D. The small island limit

Consider the small island limit, W <« W,, for which the temperature is not a function of

island flux surfaces according to Eqs. (16) and (27). Suppose that
T(X’C) = ZT,,(X)COSI/C ) (28)
v=0 ’

where v is an integer. This automatically satisfies the symmetry requirements (22) and (23).

It follows from the expansion of Eq. (24) in the small parameter (W/W,)? that

d*Th
dx? 0,
2T X%~ 1 /W\?_ dTp
T heilm) X (29)
to lowest order, where B
T, W%
Lo <_) 30
7 W (30)
Application of the boundary condition (21) yields
- !
To =~ Wel, X, (31)
and
~ WT!'W
~ S — 2
where
'd2 f y2

The physical constraints on the solution of Eq. (33) are f(0) =0, and f — 0 as |y| — oo.
Figure 2 shows f(y) evaluated numerically in the region y > 0. The function reaches a

maximum value fmex =~ 1.44 at y ~ 2. For y < 2,
f@) =12y, (34)

and for y > 2, »
fly) =~

@ |
—~~
w
ot
~—

co




In the small island limit, W <« W,, the perturbed temperature is ‘linear’ throughout the
plasma (i.e. it is everywhere dominated by the principle (v = 1) harmonic). According to
Eq. (30) the overtone harmonics (v > 1) are smaller than the principle harmonic by at least

a factor (W/W,)?%. In the outer _regiori

w2 Ss 4/gs

6T(r,¢) = T(r Q) = Tolr) = 75 To(r) 2 77 = 9(r) cosC, (36)

where use has been made of Egs. (5), (9), (17), and (18). Here, 9(r) is a solution of
the cylindrical tearing mode equation (3) (for the m/n mode), subject to the normalizing

condition 9(rs) = 1. In the vicinity of the rational surface,

WT, W z .
6T (z,¢) ~ 1.2 T W cos¢ (37)
for |z| « W,/2, and
WT’ w
8T (z,¢) =~ (38)

for |z| > W,/2. Note that Eq. (36) connects smoothly onto Eq. (38) for W,/2 < |z| < 7s.

E. The large island limit

In the large island limit, W > W,, the temperature is a function of the island flux
surfaces according to Eq. (26), so .

T =T(Q). (39)

On flux surfaces situated inside the separatrix (Q < 1) Egs. (20) and (39) imply that T = 0,

giving the well known result that the temperature is flattened within the island separatrix.1®

On flux surfaces outside the separatrix Eq. (26) can be averaged over the helical phase angle

dQ (%'V gc jg) ’ | (40)

where use has been made of the periodicity constraint (23). Equation (40) and the boundary

¢ to give

condition (21) yield!®

7r WT!
16 kE(1/k?)

WT’

—cos( (41)




for Q > 1, where k = V(1 +Q)/2,
w/2
E(l) =/0 V1= 12sin? o do

is a standard elliptic integral,?® and the = signs denote z 2 0, respectively.
The perturbed temperature close to the island is conveniently written
6T (z,¢) = > 6T, (z) cos v ,
v=1
where v is an integer. It follows from Egs. (19) and (36) that
~ d¢.
6T, (z) = ZfT(a:, ¢) cosyC% ,

where the integration is performed at constant z. Integration by parts gives

iWTS’ /OCc cos (v —1)¢ —cos (v +1)¢ i

6L (e) = B/

T T 16y

where use has been made of Eq. (41). Here,
(e = cos™}(1 — 82%/W?)

for |z| < W/2, ¢, = = for £ > W/2, and

¢ 72
k= \/00525 —i—élﬁ/,—2 X

In the asymptotic limit |z| > W/2, Eq. (45) yields
WT, W

5T1(£B)‘2 16 Z

3
Tyi(z) 2 WT. x O [(g) } .
In the opposite limit, |z| « W/2, Eq. (45) reduces to

A3
6T, (x) ~ —gWTs’ <%> :

(44)

(45)

(46)

(47)

(49)

Note that Egs. (43) and (48) match smoothly to the outer solution (36) when W/2 < [:CI <

Ts.
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Figure 3 shows 67, (z) = 6T, (z)/WT, for v = 1 to 4. It can be seen that inside the
separatrix the overtone harmonics (v > 1) are almost as large as the principle harmonic
(v = 1). In this respect, the perturbed temperature is ‘nonlinear’ in the island region. The
overtone harmonics die away rapidly for |z| > W/2. Thus, the observation of a localized
overtone harmonic content of the perturbed \temperature (using an ECE diagnostic)iis an
unambiguous indication of the presence of a pressure flattened magnetic island. (Recall from
the previous section that an island which does not flatten the temperature proﬁle'leéuds to
virtually no overtone harmonics content of the perturbed temperature). The radial extent

of the region of significant overtone harmonics is a good measure of the island width.

F. Discussion

In the outer region (|z| 3> W, W,) the temperature measured by an ECE diagnostic -

focused on plasma located at coordinates (¢, ., 2) can be written
T(t) = To(re) + 6T (re) cos(mbe — nze/ Ro — wt — (o) (50)

in the presence of a uniformly rotating (m/n) tearing mode. Here, (o is an arbitrary (con-
stant) phase angle. Clearly, both Tp(r.) and §To(r.) can be determined by observing the
temperature variations over many rotation periods. The profiles To(r) and §T(r) can be

8 or, alter-

evaluated using an array of ECE detectors tuned to slightly different frequencies
natively, by sweeping the cyclotronv resonance position by slowly ramping the toroidal field
strength?' (the toroidal current must also be ramped in order to keep the edge-g constant).
According to Eq. (18) the displacement eigenfunction in the outer region is given by

_ OT(r)

€)= ey (D)

The poloidal flux eigenfunction takes the form

o) = Lol (-q—“ - @) € (52)

C2ma \q g
(see Eq. (5)), where a is the plasma minor radius, g, the'edge safety factor, and I, the

total equilibrium ‘toroidal’ plasma current. The displabement eigenfunction can clearly be
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constructed directly from ECE measurements. However, the construction of the flux eigen-
function requires a knowledge of the safety factor profile. Fortunately, the accuracy to which
the g-profile must be determined is far less than that needed to solve the cylindrical tearing
mode (3) directly. The crucial poiut is that the direct solution of Eq. (3) requires a knowl-
edge of the current gradient profile, which depends on the second derivative of the g-profile
and is, consequently, extremely difficult to determine accurately from experimental data.

If the island width is much less than the scale width W, (see Eq. (27)) then there is no
flattening of the temperature profile and Eq. (50) is valid in the inner region (|z| < W,). The
perturbed temperature profile §7(r) is antisymmetric about the rational surface, reaching

local extrema of amplitude

. .
o = 0.00 W|T| 7= (53)
at r+ ~ 7, £ W,/2 (see Sec. IIL.D). Thus, the island width W is given by

0.09 [T7]

If the island width is much greater than the scale width W, then the temperature profile

(54)

|

is flattened inside the separatrix and

T(t) = To(rs) + To(re) + 3, 6T, (re) cos [y (mB — nze/ Ro — wt — Go)] (55)

v=1

in the vicinity of the rational surface (see Secs. IILD and IILE), where To(r) — T (r —7s)
and 6T,»1(r)/8T1(r) — 0 for rs > |r—rs| > W/2. Thus, the presence of overtone harmonics
8T,,>1 localized close to the rational surface is an unambiguous indication of the existence
of a magnetic island which flattens the temperature profile.?? The principle harmonic profile
8Ty (r) is antisymmetric about the rational surface (as are the overtone harmonic profiles),

reaching local extrema of amplitude
8T ext =~ 0.13W|T| (56)

at 74 ~ ry &= W/2. Thus, the island width W is given by

W ~ 5Tlext

~ . 5
0.13|T] (57)

12




The (temporal) Fourier analysis of ECE data T (t) produced by a plasma containing a
hbn-um’farmly rotating tearing mode (e.g. a large mode in the presence of a field error) can
'produce spurious overtone harmonics.® However, these signals can easily be distinguished
from the overtones. associated with temperature flattening because they are nonlocalized. In
fact, in this case the nonlinear distortions seen on ECE data emanatirig from inside the

plasma ought to match those seen using magnetic pick up coils.

IV. Heat flow across a large island

A. Introduction

| The large island model outlined in the first paragraph of Sec. IIL.E has been widely dis-
cussed in the literature.®'® Unfortunately, as it stands, this model possesses one extremely
unsatisfactory feature. Outside the separatrix there is a finite heat flux flowing across mag-
netic surfaces, driven by the cross surface temperature gradient, whereas inside the separatrix
there is zero heat flux because the temperatufe profile is flat. The model offers no explana-
tion for how heat is transported from one side of the island to the other. In the following, it
is demonstrated that the heat is actually transported along a boundary layer located on the

island separatrix, and flows across the rational surface in the vicinity of the X-points.

B. The boundary layer on the separatrix

Consider the limit W > W,. Let

.
Q=1+4(YV—“) v,

w
p=cos((/2), (58)
then Eq. (26) reduces to : ) .
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on the separatrix (i.e. y ~ O(1)), well away from the X-points (i.e. /1 —p? > W/W). In

* the region z > 0 the boundary conditions are

~ T A
Ty, m) = 7 WT, (W) y (60)

asy — 0o, and T — 0 as y — —oo (see Sec. IILE).

Suppose that

T m ! W 2 = '
T(y,m) = FWT (52) (ol +Twm) BENGY
where
T(""y) .U‘) = f(y’ ,U/) )
with R
OT(y, ) _ o '
By -0 (63)
as y — 00, and R o
aT(O-H )u') —
oy 1. (64)

It follows that T(y, 1) satisfies all of the physical boundary conditions, plus the symmetry
requirement (22), and is continuous up to and including its second derivatives.
The function T'(y, 1) satisfies Eq. (59). This equation can be solved by separation of

variables to give the general expression

Tl )= ;,/21(21
+l=1 \/r_)Pm exp(—,/zz @+ 1) |y|) )

- Qus(w) exp (—y2 = D) Iv])

which satisfies all of the above constraints provided

[0y P (1) — asz—l(P)] =1. ‘ (66)

NgE

l

||
-
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Here, the P; and the Q; are standard Legendre functions (where j is an integer).23 Note that

Eq. (66) can be satisfied by choosing the a; such that

(o]

> @ Qo) = -1, (67)
_ =1 .

in which case the well-known orthogonality property of the P; functions yields b, = 0 for all

[ > 1. Now,*

/_11 Qa1 () Por (1) dp = —F _—1}2)@ g (682)
/_ 11 P (1) dp = 26x0 (68b)
so Eq. (67) reduces to :
> = = ko (69)

(0 —k—1/2)( +k)

o~

=1
fork=0,1,2,---

Consider the behavior in the vicinity of the X-points, which are located at ¥ = 0 and
p = £1. Close to |u| = 1,4

Quaalw) = = [my T+ - n2+9(21)] |
Po(u) =1, | (70)

where 7 is Euler’s constant and ¢ is a standard digamma function.?® Tt follows that as

2
T(y=0,/,b)——>%WTs' (%) A(ln\/l—uz—i—B) , (71)

lu| — 1,

where

x> .
A=
; V/21( 21—1)

B=7 1n2+A'12—aﬂL (72)

21(20 — 1)
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then Eq. (26) reduces to

Suppose that the summations in Egs. (69) and (72) are truncated at | = lnax. Equa-
tion (69) then becomes an lmax X Imax matrix equation which can easily be inverted numerically
to give the a; for [ = 1 to lpax. The a; can then be summed, with the weights speciﬁed in
Egs. (72), to give the parameters A and B. Figure 4 shows A and B evaluated as functions

of L.y in the range 1 to 50. It can be seen that to an excellent approximation,

A =1.401 + 0.626 In lax ,

B =0.296 + 0.482 In lmgx - (73)

Clearly, both A and B diverge with increasing lmax, iImplying a singularity in T at the
X-points. In fact, unphysical behavior is averted because Eq. (59) is invalid close to the
X—péints. Note that the series (65) always converges for y # 0 because of the decaying
exponential terms. Figure 5 shows contours of T = —(y + |y + T) (see Eq. (61)) plotted
in (y, u) space, where T is evaluated from Eq. (65) with lmax = 20 (this is sufficient to

ensure convergence everywhere except close to the X-points). The flux surfaces lying inside

" the separatrix are at y < 0, the separatrix is at y = 0, and the outer flux surfaces are at

y > 0. The contours of T are consistent with heat flow from the X-points to the outer region
(assuming T < 0, see Eq. (61)). As expected, the temperature profile is flat in the fegion
y < —1, and is a flux surface constant with non-zero cross surface gradient in the region

y> 1.

C. The X-point region

Consider the region in the vicinity of the lower X-point (i.e. || < W./W). Let
-3 ()
y= 2 W ’
W

C:Q(W—)z A, | | (74)

o ,
,/ el R 39~ —
48)\ + z+ A P 0. (75)
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Equation (75) can be transformed into the small |¢| limit of Eq. (59) provided that (W/W.)? >
Al > 1, \/|_z_| . It follows that (59) breaks down in the vicinity of the X-points when

2
— 2 _ ¢ ¢
J1—p2 g <W) + 37 ly| . (76) |

Note, in particular, that 611 the separatrix (y = 0) Eq. (59) is invalid for /1 — RS
(We/W)2.
Suppose that?

E=N+vz+a?,
n=[A-vz+2A?, (77)
then Eq. (75) transforms to
LTEmn =0, (78)
where ) .
(.0 0 g 0
L= (f-éz—?’]a—n) + <52_—8_ﬁ) . (79)

The symmetry requirefnents (20) and (22) become

T(¢,m) = —T(n,¢€) (80)
for n > 0 (i.e. inside the separatrix), and |

T(&,m) = T(=n,—¢) (81)

forn <0 (i.e. outside the separatrix). The boundary conditions (60) and T — 0 as y — —o0

transform to

~ T W.\*
| T(en) » -3 WTL (32) &0 L ®
as &n — —oo, and T'/én — 0 as &n — oo.
It is easily demonstrated that
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LIF(E)] = LIF(m)] = 0,

LIF* &) = LIF* ()] = 2, (83)
where |
F(z) =sinh 'z =In[z +vV1+2?]. (84)
It follows that
T(&,n) = T1(&,n) + Ta(&,m) + C[F(€) — F(m)] , (85)
where C is an arbitrary constant. Here,
m ! Wc ‘ 2 2
T =15 WTi (2) [2en+F*©) + F(n)] (86)
for n < 0, and
nem = —wr (%) [r2e) - 72 (®7
() = T WL (35) [F2(6) - F*(o)] )
for n > 0, with T3(¢,7)/én — 0 as |€n| — oo, and
T2(§) n= 0) =
aTz =0+ _ ™ . ! Wc 4
[%} T —s W (W) .5 . | (88)

The function T5(£,7) must also satisfy the symmetry requirements (80) and (81).

D. Aéymptotic matching

According to the previous section, the behavior of T on the separatrix (n = 0) is given

by
Ty =0,0) =~ W, (1)’ <Sm;l—1 [(%‘V/—c)zlcq)zwsmhfl [(—V‘%)Zlq] (89)

close to the lower X-point. Thus, the asymptotic behavior of the X-point solution in the
limit /T — 22 3> (W,/W)? becomes

4
Ty =0,u) ~ —TGWT'(WW/}) [ln\/l—,u +21n<§//>+21n2]
+C’[1n\/1—u +21n<W>+21n2] . (90)
W,
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The logarithmic singularities in Eq. (90) at 4 = =£1 are resolved for /T — i < (W,/W)? in
Eq. (89). The ana1y81s of Sec. IV.B can be corrected to take this into account by shifting the
limits of integration in the variable p from +1 to £1F O(W,/W)*. Tt follows that each term
on the left hand side of Eq. (69) acquires a small correction of order (W,/W)*In(W/W.,).

These corrections are cumulative, and the net correction becomes of order the right-hand

. @

at which point the series is assumed to effectively truncate. It follows from Egs. (71) and

side when

(73) that to lowest order the asympf,otic behavior of the boundary layer solution in the limit
|u| — 1 is given by

2
, ’f’(y =0,u) — %WTS’ (%) X 2.51n (—3/7) [ln 1—p2+4+193In (%)] , (92)

where it is assumed that In(W/W¢) > 1.
In the limit W/W, > 1, the asymptotic solutions (90) and (92) match up provided

o () n ()
C—O..98WTS(W n (37 ) o (93)

The fact that there is only a small (3%) residual difference in the coefficient of In(W/We) (in-
side the square bracket) between the two solutions suggests that the truncation prescription

(91) is essentially correct. Thus, to lowest order the function 7' reduces to

T(¢,n) ~ 0.98 WT, (g)zln( c) sinh™! [EM—n 1+£2} (94)

in the X-point region (i.e. [y| < 1 and /1T — 1% < 1).

E. Summary

The boundary layer region is sketched in Fig. 6. ‘The layer is centred on the separatrix
(Q = 1), attaining a maximum width of order W, in the vicinity of the X-points, and a
minimum width of order (W,)2/W half way between the X-points. The layer expands in

width as W, approaches W, eventually allowing cross flux surface temperature gradients to
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establish themselves inside the separatrix. The temperature gradients prbbably first appear
in the X-point regions, and only reach the O-points when W, ~ W. Of course, for W, > W
there is no flattening of the temperature profile (see Sec. IIL.D).

The net heat flux flowing around the boundary layer is given by
=1+ q-ZzAVQ dQ

@O= [, T A (95)
In the thin island limit (W < r5) this expression reduces to
LT , (b-V()? ( )
Q) = Fy M VT garee () e o w0, (96)

where use has been made of Eqgs. (10), (58), and (61), and the upper/lower signs correspond
to z 2 0, respectively. Further analysis yields

Q) = 23 1= 1) 5 [ Tl dy (o7

with the aid of Egs. (8) and (27), where p = cos (/2. It follows from Egs. (62), (65), (66),

ﬂ'K:J_

and the properties of Legendre functions, that

/°°T( u)dy =D +1n(1 — p2), (98

-0

where D is an arbitrary cohs'tant. Thus,
7I‘ .
@;(¢) E:F;z-lﬁ_;_’l",lTé cos(/2 . (99)

Heat is channeled to each X-point region via two separatrix boundary layers, so the net heat

flux flowing across a given X-point (¢ = 0, say) in the +r direction is
' 2m
QX—point "E K1 rsT/ (100)

The net heat flux flowing across magnetic flux surfaces outside the separatrix is given by

q-VQa d¢ | oT ¢
o= f o g =S M o

According to the analysis of Sec. IILE, the cross surface heat flux attains a constant steady

. state value

2
QL —Rﬂ wkrrsTy . (102)

A comparison of Eqgs. (100) and (102) reveals that on the rational surface (z = 0) the whole

of the cross surface heat flux flows through the X-point regions.
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V. Bootstrap Driven Magnetic Islands

A. Introduction

One of the most important conclusions of neoclassical theory is that radial gradients in the
plasma, pressure can drive a noninductive ‘bootstrap’ current parallel .to the magnetic field
when the plasma is sufficiently collisionless.?” In fact, substantial bootstrap contributions
to the equilibrium plasma current have been observed expe.rimen’cally.z&29 The perturbed
bootstrap current can, in principle, profoundly affect the stability of tearing modes.'®30 This

effect is investigated in the following.

B. Analysis

In the vicinity of a constant-i) magnetic island the perturbed Ohm’s law takes the form®!

/f o
3t 08¢ +bVo = —nilry) (6: = 82:) (103)

where ¢ is the perturbed electrostatic potential, 7,(r) the parallel resistivity, 67, the total
perturbed parallel current, and 53; the non inductive part'of the perturbed parallel current.

The total current is related to the standard tearing stability index A’ via

1 . dw Tot _ 2 dc Ts+ L
A= [dr] s_/‘I’——g j{ 57;/“ o 05z cos ¢ dr . (104)

It is heIpful to define the flux surface average operator (-}, where

a,Q§
£ 2,0) }g mg‘zw (105)

for 2 > 1, and

(72,0 = /:'"“ Mef g IEnRe s (106

for < 1. Here, 0 = sgn(z), {o = cos™!Q, and f is a general function. It is easily

demonstrated that
(b-Vf)=0 (107)
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[see Eqgs. (8) and (15)(a)]. Equations (104), (105), and (106) yield

o W
/ —
A= \/— T < [65:(0, 2, ¢) + 852(~0, 2, )] cos) dQ2. (108)
By definition, a ‘nonlinear’ magnetic island has a much greater radial width than a linear

Jayer. In conventional tokamaks the characteristic layer width is given by?®%?®

1/6
b () -

Ts TVTR

where Ty = (Ro/B )/ 1op(rs)/nss, To = por2/n.(rs), and v = rZp(rs)/pi(rs) are the

hydromagnetic, resistive, and viscous time scales at the rational surface, respectively. Here,
p(r) is the plasma mass density, and py(r) the (anomalous) perpendicular viscosity. It can |
be demonstrated that the perturbed current is a flux surface constant in the vicinity of a

nonlinear island,'® so that

8js = 652(02) . (110)

In fact, a viscous boundary layer of characteristic width m develops on the separatrlx
in‘ order to resolve the current and flow patterns for Q 2 1 [cf Sec. IV, where a similar
boundary layer resolves the temperature profiles on either side of the separatfix].34’35 Note
that the perturbed current is not necessarily a flux surface function for W' < Olayer- 1t féllows

from Eqgs. (9), (103), (107), (108), and (110) that the temporal evolution of a non linear

island is governed by!®:3!
d (W\ ., 16 7y Rogs [ {#to(87)+)(cos)
_ 1
Lre g ( ) ATs+ V2 W B,s, /_1 (1) d, (111)

where, (55;)+ is that part of the perturbed non inductive current which is even across the

rational surface, and3*

=3 / szsDC dQ = 0.8227 . (112)

The perturbed bootstrap current satisfies®®

rul s 65 e .
57, ~ —1.46 \/EEB ai (113)
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close to the rational surface, where §p.(z) is the perturbed electron pressure. Suppose, for
the sake of simplicity, that the density and electron temperature profiles are similar in the
island region (i.e. the ratios of the parallel to perpendicular transport coefficients are about

the same for density and temperature — a more realistic model is discussed in Sec. VII). Tt

follows that
) /
6pe(z) ~ —% 6T (z) (114)
8
for the single fluid model adopted in this paper, where pj is electron pressure gradient at the

rational surface. In the small island limit (W <« W,) Egs. (37), (113), and (114) imply that

/ 2
(87:) = —0.438 -5—86_8 %’: (%) (cos¢) | (115)

whereas in the large island limit (W > W,) Eqgs. (8), (41), (113), and (114) yield

=\ ~ gs DPs ,
(87:) ~1.46 /=B, (1) (116)
for < 1, and |
— g py 1 A
~ 1. Ze 4 2. 117
(83:) = 162 & B, KE(/RD) L6 = B, (v (117)

for ) > 1, where k = /(1 + Q)/2. Equations (111), (115), (116), and (117) give

d W 7 ! TSW
—— )~ . s — 1
L <7~) Nr+2886 2 (118)
in the small island limit, and |
d (W , ! T :
— | — )~ s 2 s — — 119
IlTRdt(TS) ATs+9 5\/6—83W | (119)
in the large island limit, where -
5\ ? HoTsP
By =— (g—) £ OB‘; : ’ (120)

is a measure of the equilibrium pressure gradient. Note that §; is typically of order the

poloidal beta. In the above, use has been made of the results

/_olo (cos¢) d2 =0, . (121)
and : ~
I <°?1S)Q . E?Skz) = 05054 (122)
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C. Discussion

According to Egs. (118).and (119) the nonlinear island width evolution equation can be
written

d
IITR dt <_W—/> o Al'f's + Aboo1;(VV) (123)
where .
rW 2

Wd 1 + (W/Wd)2 ’
with W, =~ 1.8 W, (see Eq. (27)). Clearly, for conventional tokamak plasma, profiles (i.e. p; <

Avoon (W) ~ 4.63 fﬁ' (124)

0 and s, > 0) the perturbed bootstrap current has a destabilizing effect on magnetic islands.
The destabilizing term Apoot (W) initially increases with island width, reaching a maximum
value
ax_463\/_§; I;;d | - (125)
at W ~ W, and then starts to decrease. The non monotonic behavior of the destabilizing
term comes about because the finite parallel thermal conductivity of the plasma effectively
sets an upper limit on the perturbed pressure gradient in the island region.
Suppose, for the sake of simplicity, that the variations of A’ with island width are rel-
atively unimportant. It is easily demonstrated that magnetic islands decay away to zero-

width when A'ry < —Amax. For —Apax < A'ry < 0 there is a critical island width
W.=W;(A=VA2-1) < Wy, (126)

where A = Apex/(—A'rs). Islands whose widths are less than the critical value decay away,
whereas islands whose widths exceed the critical value are maintained in the plasma by the

perturbed bootstrap current and eventually attain the steady state width
We=WsA+VA2-1)>W;. (127)

The scale length W is the minimum steady-state island width which can be maintained in
the plasma by the perturbed bootstrap current. It is concluded that an intrinsically stable

magnetic island (i.e. A’ < 0) cannot be destabilized by the perturbed bootstrap current alone
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(assuming, of course, that the calculated value of Wy is significantly greater than the linear
layer width): some other effect is required to force the island width above the critical value.

In the presence of an m,/n field error the evolution equation for a locked island is written®®

d (W , Wo\*
I]_’T'R % (;:) >~ A s+ Aboot (W) +2m (W) y (128)

where W, is the vacuum island width associated with the external perturbation. Here, it
is assumed that there is relatively little plasma current outside the rational surface. In the
absence of bootstrap effects, the steady state width of the error field driven island is given
by |

2m

Wc = m WU . ’ (129)

Suppose A > 1, so that W_ =~ W,/2) and W, ~ 2AW,. It is easily demonstrated from
Eq. (128) that as W, is gradually increased from a small value there is a bifurcation of the

steady-state island width, from (2/3) W_ to W, when

Wc Z (Wc)crit =~ (130)

2
33 Ww_.
Clearly, in this situation a small error field can trigger the growth of a large magnetic island.
The final island is much larger than the purely error field driven island, and is maintained
in the plasma principally by the perturbed bootstrap current. This effect vmay offer an
explanation for some puzzling experimental results recently obtained on b(the Joint European
Torus) JET.3" It is found that the critical threshold amplitude for the phase locking of a
driven island by an error field (and, hence, for substantial driven magnetic reconnection in the
- plasma) is consistent with established theory,38 but that after locking the final island width
is much larger (by up to an order of magnitude) than expected. This effect is not observed
in low B, blasmas.ag'lt is speculated that the relatively low locking threshold expected for
(the International Tokamak Experimental Reactor) ITER,3 coupled with the relatively high
expected (B, (and, hence, strong bootstrap effects), will lead to a stringent upper limit on
the tolerable level of error fields (typically, berror/ B ~ 2 % 1075). If this limit is exceeded,

the error fields will lock the plasma and induce small error field driven islands, which will
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then trigger substantial bootstrap driven magnetic islands. This process is likely to severely

degrade the plasma performance, and may even lead to a major disruption.37:39:40

VI. Implications for Ohmically Heated Tokamaks

' The parallel thermal conductivity takes the form!?
K| ~ NeVee (131)

in a short mean free path plasma, where n. is the electron number density, ve the electron

thermal velocity, and A, the electron mean free path. However, in a conventional tokamak -

plasma the mean free path A, typicélly ezceeds the parallel wavelength Aj = 1/|ky| of helical
perturbations. The simple-minded application of Eq. (131) yields unphysically large parallel
heat fluxes. The parallel conductivity in the physically relevant long mean free path limit
(Ae > Ay) is crudely estimated as ,

K| ~ Nele A (132)

which is equivalent to replacing conduction by convection (i.e. nevyVT') in the heat flow
equation (13). For a magnetic island of width W the typical value of A is ns sW/Ry.
Perpendicular energy transport in tokamaks is highly anomalous, probably due to the

action of short wavelength electrostatic drift waves.*! Tt is, therefore, appropriate to use

the anomalous perperidicular transport coefficient to study the physics of long wavelength ‘

(low mode number) magnetic islands. Assuming, for the sake of simplicity, that x, is
approximately constant across the plasma, it is easily demonstrated that®

T G2

Ky~
6TE ’

where 7z is the global (anomalous) energy confinement timescale.
Consider the simple scaling model for ohmically heated tokamak plasmas outlined in
Ref. 33. The aspect ratio is a = 0.35 Ry, the toroidal magnetic field strength scales like

B,(T) = 1.38 R3"(m), the pressure profile is parabolic, the central temperature is estimated
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by balancing the ohmic heating power against anomalous losses calculated using the neo-
Alcator energy confinement timescale,*? and deuterium is the fueling ion species. The central-
q is 0.7, the edge-¢ is 4.5, and the line averaged electron number density is 2 x 10* m~3. For
the 2/1 mode, 75 = 0.66 @ and s, = 1.74. Table 1 shows the ratio of parallel to perpendicular
thermal conductivities at the g = 2 surface, the critical island width W (for the 2/1 mode),
and the parameter Apa (for the 2/1 mode), -estimated as functions of major radius using
this scaling model. |

Tt can be seen from Table I that the ratio of parallel to perpendicular conductivities
increases rapidly with increasing machine size, giving rise to a corresi)onding reduction in
the scale island width W,. Recall (from Eq. (27) and Sec. V.C) that W is the minimum
s’peady state i/sland width which can be maintained in the plasma by the perturbed bootstrap
current. For island widths less than Wy, bootstrap effects attenuate rapidly because the
finite parallel thermal conductivity of the plasma limits the perturbed pressure gradient
which can develop in the vicinity of the island. In particular, there is no flattening of the
plasma pressure inside the separatrix for W < Wy. In small tokamaks Wy is typically
about 10% of the minor radius, suggesting that only large magnetic islands are capable of

flattening the temperature profile. Conversely, in large tokamaks Wy falls to a few percent

“of the minor radius, suggesting that small to medium islands can modify the temperature

profile. The ciuantity Aoy, Which is the peak destabilizing bootstrap contribution to the

Rutherford island equation (see Eq. (125)), increases slowly with increasing major radius,

but is significant for both large and small devices.

VII. Conclusions

The electron temperature perturbations associated with tearing modes are investigated
for typical tokamak plasma parameters. It is found that there is a critical island width Wy

below which the conventional scenario where the temperature is flattened inside the island

‘separatrix breaks down due to the staghation of magnetic field lines (i.e. b-V ~ 0) in the

vicinity of the rational surface and the finiteness of the plasma parallel thermal conductivity.
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The critical width is easily estimated as the distance from the rational surface at which the

two terms in the heat diffusion equation (13) balance. Thus,
2 2
K| (b-V) ~ K] (V_L) y

giving (see Eqs. (15))
K (nss/Rors)” (Wa)® ~ k1 /(Wa)?

Wa | (s 1"‘( L)
Ts K| €sS85T ’

where Ry is the plasma major radius, 75 the minor radius of the rational surface, €; = 75 /Ro

and so

the local inverse aspect ratio, s; the local magnetic shear, and n the toroidal mode number.
The critical width is non-negligible in conventional tokamak plasmas ‘(see Table I). Islands
whose widths are much less than Wd'g.ive rise to no local flattening of the electron temperature
profile. Such islands have very different ECE signatures to conventional magnetic islands. In
principle, it should be possible to differentiate the two types of magnetic island 'using ECE
data and, thereby, determine Wy experimentally. It should also be possible to map out the
outer ideal MHD eigen_functions using ECE temperature measurements.

Nonzero temperature gradients inside large magnetic islands have recently been observed
on the Rijnhﬁizen tokamak RTP.*® Furthermore, a mismatch between the island width de-
duced from magnetic data and that obtained from electron temperature measurements has
been seen on the Wendelstein VII-A stellarator.** ‘In both cases, these effects are plausi-
bly explained in terms of field line stagnation and a large, but finite, ratio of parallel and
perpendicular thermal conductivities in the plasma. |

Islands whose widths are much less than W, are not significantly destabilized by the
perturbed bootstrap current, unlike convéntional magnetic islands. It seems, therefore, un-
likely that bobtstrap effects alone could destabilize an intrinsically stable (A’ < 0) magnetic
island. Some other effect is required to force the island width above Wy. In principle,

the growth of bootstrap driven isla.nds.could be triggered by coupling to other modes (via
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toroidicity and flux surface shaping) or interaction with external perturbations. Such cou-
pling or interaction is known to destabilize tearing modes, but becomes ineffective below a
certain threshold mode amﬁlitude due to the naturally occurring differential rotation present
in tokamak plasmas.33%5 It is concluded that under normal circumstances (i.e. in the absence
of mode locking) intrinsically stable tearing modes (i.e. virtually all tearing modes) are not
unduly affected by the perturbed bootstrap current. However, once mode locking has oc-
curred (triggered, for instancel, by the growth of an intrinsically unstable mode, an increased
error field amplitude, or a reduction in the plasma, viscosity due to a fall in plasma density)
the growth of bootstrap driven islands could be enabled (see Sec. V.C). This mechanism
offers a plausible explanation for some recent JET results in which mode locking induced by
a static error field (triggered by a drop in the plasma density) gives rise to the formation of
unexpectedly large static magnetic islands.3” There are no islands present in the plasma prior
to mode locking and, in most cases, island formation eventually leads to> a major disruption.
Similar undesirable behavior can probably oniy be avoided in the proposed ITER device if
the level of field errors is kept well below the critical value required to induce mode locking
(i.e. berror/ B 5 2 x 1075).%

In this paper it is assumed that the island lies in a region where there are no significant
sources (or sinks) of heat, so that V - q = 0. This is a reasonable assumption, but there are,
nevertheless, situations in which it is not appropriate. For instance, when electron cyclotron
radio frequency heating (ECRH) is tuned so that the resonance lies close to the rational
surface. Localized heating of the island region gives rise to two quite separate effects. The
first effect is due to local modification of the equilibrium current profile, and can be either
stabilizing or destabilizing.“®¢ The second, and far stronger, effect is due to the interaction
of the localized power input with the helical structure of the island and depends crucially
on the temperature being a flux surface function in the vicinity of the island.3! For islands
whose width is much less than the c_ritica.l width W, the second effect disappears whereas
the first effect persists. |

Finally, it should be'noted that the arguments used in this paper to investigate energy
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transport could just as well be applied to particle transport. For example, by analogy with

Eq. (13), a particle diffusion equation can be written
Dy Vine+ Dy V2in,=0.

Thus, all of the results of Sec. II onwards also apply to the density perturbations associated

with tearing modes, provided that xy /%, is replaced by Dy/D in the analysis. In particular,

Wd/ P_J; 1/4( 1 >1/2
Ts Dn €8s

below which the density profile is not flattened inside the separatrix. In conventional tokamak

there is a critical island width

plasmas n.D; ~ k3 and neDj ~ \/Me/m; k), where me is the electron mass and m;

the fueling ion mass.®7 In fact, in the long mean free path regime n.Dj ~ (m. Jm;)3/?

K
because of the dependence of Dy and ) on island width — see Eq. (132). For the ohmically
heated tokamak plasmas investigated in Table I (with deuteriurh as the fueling ion species)
Dy/Dy ~ 4.2 x 1073 k) /K, which implies that Wy ~ 3.9Wj. It follows from Table I that
flattening of the density profile by magnetic islands is only likely to occur for relétively large
islands in big tokamaks, and is unlikely to occur at all in small tokamaks. Note that only the
largest magnetic islands, with W > Wy or Wy, experience the full destabilizing influence of
the perturbed bootstrap current. Medium sized islands, Wy > W > W, only experience

that part of the bootstrap effect which is due to perturbed temperature gradients, and small

islands, W <« Wy, experience no effect whatsoever.
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Ro(m)|ky /K1 Wi/a Amax
0.50 (6.4 x 10° 0.105 3.8
0.75 (2.4 x 107 0.076 4.8
1.00 6.2 x 107 0.060 5.6
1.50 (2.3 x 108 0.043 6.9
2.00 [6.6 x 108 0.033 8.1
3.00 [2.4 x10° 0.024 9.5
4.00 16.2 x 10° 0.019 10.7
6.00 |2.5 x 10'°0.013 13.3
8.00 (6.0 x 109 0.011 13.8

Table I The ratio of parallel to perpendicular thermal conductivities, the scale island width
Wi, and the parameter Anqy, estimated as functions of the major radius (for the 2/1 mode) |
using a simple scaling model for ohmically heated plasmas
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Figure Captions

1. Contours of the normalized flux surface label Q2 plotted in (z, {) space, where z is the

radial distance from the rational surface and ¢ is the helical angle.

2. The function f(y) which characterizes the helical temperature perturbation around a

thin island for which the temperature is not a flux surface function (see Egs. (32)—(35)).

3. The potentials 8T, plotted as functions of the radial distance from the rational surface
z, for v in the range 1 to 4. The 6T, characterize the helical temperature perturba-
tion around a large island for which the temperature is a flux surface function (see

Eqs. (43)-(45)).

4. The points show the truncated series A and B evaluated as functions of the number
of terms [. The curves show the fits A = 1.401+0.626 In! and B = 0.296 + 0.482 In ..
The series A and B characterize the asymptotic matching of the boundary layer on

the island separatrix to the X-point region (see Eqgs. (71) and (72)).

5. Equally spaced contours of the temperature profile T (y, u), Which characterizes the
temperature variation across the separatrix of a large magnetic isla_nd (see Sec. IV.B).

The profile increases monotonically with increasing y.

6. Schematic diagram of the boundary region which transports heat across a large mag-
netic island. Here, z is the radial distance from the rational surface, and  is the helical

angle.
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