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Abstract

The evolution of Wavepackets is investigated in a cold-ion plasma model

with sheared magnetic and velocity fields. Wavepackets may be amplified by
the drift Kelvin-Helmholtz mechanism even when the velécity shear is such
that normal modes are stable. It is shown that the logarithm of the convec- |
tive amplification can be an order of magnitude greater than the logarithm
of the steédy—state amplification often taken as the measurevof convective
instability. For:a, giveﬁ wavenumber, the maximum of eithér of these ampli-
fications decreases only as the inverse of the pefpendicular component of the '

velocity shear.




I. INTRODUCTION

It has recently been established that shear in the plasma flow velocity,
when directed perpendiculdr to the inagrietic field, has a stabilizing effect
on the most common drift-acoustic instabilities.!~® This effect is counterin-
tuitive, given that the velocity gradient constitutes a supplemental source
of energy. It is uilderstood by recalling that the existence of unstable eigen-
modes requires the presence of a potential well capable of supporting a stand-
ing wave. The velocity shear acts by levelling this well, thereby increasing the
energy necessary to establish a standing-wave patteril and thus stdbilizing
the eigenmo‘des. ﬂ

| Since the stabilizétion mechanism acts on the reﬁectioh properties of the
waves, rather than on the :rneéhafriism,driving :tl_ie instability, one anticipates
that fluctuations may .con:tinue fo tra,nsport.érie.rgy écross the equilibrium
gradierits‘ even in the absence of unstable eigenmodés. This seems particularly
likely in applications where the spatial variation of the dielectric permittivity
i§ weak, so that travelling wavepackets retain coheience during many periods
of oscillation. In such applications, it can be argued that the stébility of
propagating waves is of greater relevance than.that of eigenmodes.

The stability of propagating waves has traditionally been investigated by
neglecting entirely the spatial variation of the permittivity, in a procedure
referred to as the local analysis. The sinriplicity of this procedure permits the

analysis of complicated but important kinetic effects.® The spatial variation of
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the perrrﬁttivity does play a role, however, in limiting the time during which
a wavepacket may remain in resonance and receive energy from the plasma.”®
In order to judge the importance of wavepackets for transport, it is necessary
to consider their complete evolution and the maximum amplification they
may experience.

In the present paper, we describe a new technique for evaluating the
amplification. Our technique is based on the observation that the weak
spatial dependence allows two important simpliﬁcafions. First, the method
of phase-integrals may be used to determine the response to a localized,
fixed-frequency excitation of the plasma (Greene’s function).”® Second, the
method of stationary phase may be used to evaluate the inverse Laplace
transform.

We apply our technique to evaluate the amplification of drift-acoustic
wavepackets in a plasma with sheared equilibrium velocity. For simplié-

ity, we consider the Drift-Kelvin-Helmholtz (DKH) instability in a cold-ion

plasma:®*° this model allows both the eigenfunctions and the phase-integral

(WKB) solutions to be eQaluated exactly. The DKH eigenmodes have been
shown to be stabilized when the perpendicular component of the velocity
shear is greater than a critical threshold indefendent of the (destabilizing)
parallel component of the belocz’ty shear.® The ;critical\velocity shear is such
that the lateral phase velocity (perpendicular tq B and Vn) is constant. We
recover this result here with the method of phase integrals. ‘We then show



that substantial convective amplification may persist above the threshold for
eigenmode stabi]jzatioﬁ, and that this amplification decreases only as the
inverse of the perpendicular component of the velocity-shear.

This paper is organized as follows. We begin in Sec. II by formulating
the initial value problem. In Sec. III, we describe the case where the coef-
ficients of the wave equétion are constant and the solutions consist of plane
waves. The more general case of slowly varying coefficients (that is, 6f weak -
magnetic and flow shear) calls for the application of the mqthod of phase .
integrals. We review this method in Sec. IV before applying it in Sec V to
the study of eigenmodes. The steady-state and convective amplifications are
then evaluated in Sec. VI. Section VII concludes with a discussion of our

results.

~

II. THE INITiAL VALUE PROBLEM

We consider a plane slab geometry with a magnetic field and equilibr-ium :
flow velocity lying in the (y, 2) plane and varying in the transverse direction
z. The velocity shear vector is denoted by W = dV/dz, and the magnetic
field is taken to be B = By(Z + ¥ z/L;s). The electron response is assumed
to be adiabatic, fie = enoqg/Te, and the ion response is determined by the

equations of continuity and momentum conservation,
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The rotation shear frequency is assumed to be comparablé to the drift fre-
quency in ~the standard drift-ordering, W ~ w, < Q; and L;! ~ ku <L ky,
where w, = kyup is the drift frequency and §); is the gyrofrequency.

We linearize these equations and look for solutions of the form ¢(z, t) expli (k. 2+
kyy)]. The Laplace transform of the ion momentum equation is solved for

the perturbed velocity ¥ = Vg + Vp 4 V||, where
V(z,w) = /0 dt ¥ (z, t)e™"
for Im(w) > 0. It follows

Tomw) = (%) Bx V)daw),

/

Vp(a,w) =i QicB) (a¥ + b, W1R)3(@,w) + V(2,0)]

c - ~
7)(z,w) = [(-g) (k) — kyW))(z,w) + 7y (x, 0)] / wa
where wg = w — k - V(z) is the Doppler shifted frequency. Consistent with

the drift ordering, all terms of order higher than first in the series-expansion

of the Doppler shift are neglected:

wg=w—k-V(0)—k,W.z.



This approximation may be compared to the neglect of the transverse vari-
ation of the drift frequency in the investigations of static plasmas.!! Hence-
forth, we will ignore the uniform Doppler shift k - V(0). Note that the effect
of the second derivative of the equilibrium vg on fhe local sﬁability properties
has been investigated by Migliuolo and Sen.® ‘
Substituting these results into the Laplace transform of the continuity

equation yields the initial value equation

d* w knc K22\ _ _
2 _ 2 2 We f1Cs I ™s —
Ps 322 + ( (14 kyps) + o kypsW) 2 + %l )qé D(z,w). (1)
The initial conditions enter through the function
o) = o | (14 K - i) B 0)+ PHED]

Using ps and 1/w, as units of length and time, the initial value equation

takes the form

a2 1 sz §*x?\ -
a?-i-(—gky-i-a;-—w"w—g-l-—&?)(b—r(m,w)- (3)

where gey = 1+ k2p% wg = w —wix; 5 = Ln/Ls; wy = L,W,/c, and
w) = ”LnW”/ ¢s. The most important feature of tilis equation is that the
perpendicular component of the flow-shear appears only as a Doppler shift
of the frequency; it has no effect on local stability.

This equation may be solved in terms of Greene’s function,

G(x,2,w) = [4(x,w)¢-(3,w) H(z — F) + 6, (&, w)$_(z,w)H(E ~ z)] /D(w) :
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Here @, and ¢_ are the solutions of the homogeneous equation vanishing at
+00 and —oo respectively, and H(z) is the Heaviside step function. D(w) is

the Wronskian of these solutions,
D(w) = §..(z,w)d_(x,w) — ¢, (x,w)F_(z,w) ,
where the prime indicates derivation with respect to z. The solution is
— o0 —~ ~ ~
Ba,w) = [ d8G(5,3,w)T(@w),
The response at time ¢ is then

% 1 cotHie —iwt’ L ‘
¢(.‘L‘,t) = % i dwe ¢(IZ¢,L«J) )

where the Laplace inversion integral extends over the well-known Bromwich

contour lying above all the singularities in the integrand.
III. PLANE-WAVE SOLUTIONS

Consider equilibria such that the plasma velbcity—shear is everywhere di-
rected along a constant magnetic field: B = ByZ and V = V,(z)Z + Vj0o¥. In
* such equilibria kj and wy are constant, and plane—wa,\?e solutions of Eq. (1)
may be obtained by Fourier transformation in the transverse (z) direction.
The dispersion relation/depends on the transverse and lateral components
of the wavevector jointly through the 'constant ge =1+ k2 +k2 = giy +

k2. It is convenient to introduce the dimensionless wave parameters K =




kycs/ (kypsW)) and Qg = grwa/ws. In terms of these parameters the disper-'

sion relation is®

GK)— 1)K+ Qq— 02=0,
and the stability properties are determined by the single parameter G =
9k (kypsW) /wy)?. The dispersion relation is a quadratic in the frequency Qq
as well as the wavevector K. Unstable roots will exist when its discriminant
is negative,
1+ 4G(K" — 1)}—(” < 0',
or for parallel wavevectors lying in the range

L= (1—1/0)")/2 <Ky < [1+ (1 —1/G)V?/2.

For G < 1 the unstable range of K| disappears. The stability condition is
thus ‘ \ '

(1L+k%02) (Wi—Ln> <1.

Note that unstable waves always occur for sufficiently short wavelengths: this
is characteristic of fluid models.

The unstable root of the eigenfrequency is
Qz = {1 +i[4G(1 — K)) K — 1]*?}/2 .

A plot of the dis(persion relation is given in Fig. 1.

We calculate the maximum growth rate for later use: For fixed g, the

growth is maximized by K| = 1/2, independently of the particular value of
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gk. The maximum is
Y = (gr(kypWy/w.)? = 1) /295 .

This can in turn be maximized with respect to g at fixed k,. The maximum
lies at gk = 2(cs/LaW))?. For (LnWj/cs)® > 2, however, this corresponds
to an unphysical imaginary wavenumber: the maximum growth rate is thén
.reached for k =0.

In summary, for (L,W)/cs)?® > 1 the long wavelengths become unstable
but the growth rate maximum remains at finite wavelength. For (L,W}/cs)? >

/
2!/2 k = k, becomes the most unstable wavenumber.

IV. PHASE-INTEGRAL SOLUTIONS

In the case of systems with weak shear, s ~ w, < 1, the dielectric
permittivity for oscillations with finite frequency (w = O(s®)) varies slowly
on the scale of a wavelength. In this case solutions may bé obtained by the
phase-integral or WKB method. Equation (4) may be cast in canonical form
with the change of independent variable £ = sz:

d*¢

g o6 wE=0, | @
where
2
q(§,w) = —gry + wid — W) w% + 53

and wg = w — wyi&/s. The WKB approximation consists of retaining only

the two lowest order terms in the expansion of the solution as an asymptotic
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series in powers of s. A set of elementary solutions is
- 3
e =k e 2 (e 010 . @
(i}

Here & is an arbitrary reference point. The integrand k, = [g(€,w)]'/? is
interpreted as the local value of the transverse wavenumber. Note that the
variation in the amplitude of the'perturbation is determined primarily by the
imaginary part of the phase integral S; = Im[S(¢,w)], where

~

S@m=£m@w%.

It follows from the precise form of the error estimate in Eq. (5) that the
WKB approximation applies only along paths such that the amplitude of the
signal does not decrease exponentially. For the ¢, solution in (5), for example,
it is necessary that dS;/d¢ < 0 or Im(k,d{) < 0. As aresult, particular WKB
solutions apply only in restricted sectors of the complex plane. The object
of the phase integral method is to connect such solutions in order to obtain
a global solution valid on the entire real line. The most complete description
of this method may be found in a monograph by Heading.!? We summarize
the basic principlqs here.

The difficulty in extending the solution given by Eq. (5) is caused by the
occurrence of turning-points, where q(¢,w) = 0. Near turning points, the
WKB approximation is locally invalidated. The true significance of turning -
points, however, lies in their influence on the global structure of the solution:*?

First, they are bifurcation points for the level contours of S; in the complex
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£-plane. Second, they give rise to branch cuts in the argument of the phase
integral.

The global structure of the phase integral can be visualized with a Polya
plot of the k,(x,w) function.'® In this plot a complex function is represented
by a field of vectors on a lattice of points corresponding to complex values
of its argument. These vectors are directed at an angle equal to the phase
of the function, and are given an amplitude proportional to the logarithm of
its modulus. The Polya vectors for k%(¢,,&;) are everywhere tangent to the
lines of constant S; and pointed in the direction of increasing S,. Examples
of Polya plots will be given below.

The level contours of S; through the turning points, called anti-Stokes
lines, play an important role in the theory. At a simple turning point (|g¢| > 0
where g = (8q/ 0€)l¢,) one finds three anti-Stokes lines radiating outwards
in directions given by the roots of S; = 0, or (z — z) ™ = ¢¢/|ge]- Since a
monotonically nondecreasing path can only cross the anti-Stokes lines once,
these lines are seen to constitute boundaries for the region of validity of
the elementary WKB solutions. Extending the solution further necessitates
crossing the branch cut. It must be emphasized that the branch cuts em-
anating from poles correspond to an actual discontinuity of the solution,
while those emanating from turning points are only an artifact of the WKB

approximation.

The principal features of Eq. (3) from the point of view of the WKB
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analysis are as follows: It has two turning points, given by the roots of the

quadratic equation
W(gkyw — 1) + (swy + w1 — 2gryww )€ — (5% — gryw? )E2 =0 (6)

and a double pole at { = sw/wy. Near the double pole ky ~ g/ (& — ),
where g, is a complex constant. Using (z — z,) ™! = (z — ,)*/ |z — %, we
see that the Polya vectors lie at fixed angle to thg lines radiating from the
pole, so that the pole will appear as a spiral sink. At large distances, the

squared local transverse wavevector has the asymptotic behavior
K2 ~ wi%(s? — gewd) + sudWd + swpws — 2w+ O . (D)

so that anti-stokes lines will logarithmically drift away from the real axis for

8% — gryw3 > 0, and from the imaginary axis otherwise.
V. EIGENMODES

Unstable eigenmodes occur when the Wronskian has a zero in the upper
complex w plane: such zeros indicate that the solution vanishing as £ — —o0
is proportional to that vanishing as £ — oo, or that there exits a globally-
well-behaved solution. Exact eigenmodes of Eq. (3). were given in Ref. 5
for arbitrary values of the shear, but it is instructive to see how this result
can be recovered with the phase integral method in the limit of weak shear.

This helps to understand the physical nature of the eigenmode stabilization
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mechanism, as well as the difference between the eigenmode and convective
instabilities.
It is necessary for the existence of eigenmodes that the frequency satisfy

the generalized Bohr-Sommerfeld quantization condition:

/j(()) ka6, w) de =71+ 1/2) , ®

where & (w) and &2(w) are the turning points in the complex plane and where

the radial mode-number [ (I = 0,1,2...) represents the number of nodes in
the solution. This condition is insufficient, however, to demonstrate the ex-
istence of an eigenmode. The Bohr-Sommerfeld condition merely asserts the
existence of two disconnected sectors in the complex plane where the solution
is well behaved, or subdominant. Only if the limit points of the real line are
shared among these two disconnected sectors will the solution be an accept-
able eigenmode. In subsection A, we solve the Bohr Sommerfeld quantization
condition perturbatively for small transverse mode-number. The asymptotic

behavior of the resulting solutions is then examined in subsection B.

A. Bohr-Sommerfeld quantization

The radial mode-number ! clearly plays a role similar to that of the trans-
verse wavenumber k. in the homogeneous case. By analogy one expects the
most rapidly growing modes to correspond to moderate mode numbers [ ~ 1.
For general w, however, the turning points are separated by a distance of

order unity, so that the phase integral in Eq. (8) will be O(1/s). The lowest-
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order modes are thus seen to correspond to values of the frequency such that

the two turning points merge to lowest order:

q(§w)=0; , (9)
dg(§,w) _ |
—z =0 (10)

For the DKH instability, Eqs. (9)-(10) describe the double roots of Eq. (6).
Equation (10) is applied to Eq. (6) to evaluate the position of the double

turning point &asp:
sw +wr(l — 2gxyw)
2(s* — gryw?)

Eliminating &, from Eqs. (9) and (6) yields’the dispersion relation

§2tp =

/

(swy +wyL — 2gkyww_1_)2 - 4(gky'w_2L — %) (gryw —lw=0.

This may be solved for the lowest-order approximation to the Bohr-Sommerfeld
frequency,

s+ wwig (1 — gryw])(s? — grwd)]?
25Gky |

Wo

Instability follows when the discriminant (1— geywf)(s®— giyw?) is negative.
The (w1, w)) plane may thus be separated into four regions bounded by the
lines 1 = ggywj and s* = gyywi, as shown in Fig. 2. A robust (i.e. v= O(s%))
growth rate is found in regions 2 and 4. In order to ascertain the stability of
regions 1 and 3, where the approximate Bohr-Sommerfeld frequency is real,

it is necessary to calculate the next order correction. The first terms in the
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expansion of the function ¢(£,w) as a Taylor series in powers of £ — & and

W — Wy are

Q(é.’ w) = %E(é - €2tp)2/2 + Qw(w - wO) +o
where g, = 8¢(§,w)/0w|utr, 80d gee = 0%¢(€,w)/0E o kn,- Using this
expansion in the dispersion relation, one finds -

w=wo+ (1 +1/2)s(~20¢¢) /o - (11)

We calculate

% _ 1—gwwi/s®
2 w«%%p T
s(1— gkywﬁ)1/2 |

=2 2 2\1/2 °
wd2tp(8 — grywi) /

Qw

where wagtp = wo — wiasp/s. Substitution into (11) yields
W — wy = i(s? — geyw? ) Y[s & (s* — geyw?)2(1 — geywy) 2]/ (2s9) -

It follows that the Bohr-Sommerfeld condition has weakly unstable roots
(y ~ s) in region 1 (i.e. for s — gw? > 0 and 1 — gywj < 0), but that
region 3 is stable. The contour lines for the imaginary part of the frequency

are shown in Fig. 2.

2

B. Boundary conditions

The roots of the Bohr-Sommerfeld condition will correspond to eigen-

modes if the associated WKB solutions are well-behaved at +o0o. In order
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to determine whether the subdominant root at —oco is properly connected
to the subdominant root at +oco, we apply the Nyquist theorem to a closed
contour consisting of the real axis and a semi-circle sﬁrrounding the lower
half complex plane. In order to avoid having to discuss separately the case
when the real axis lies between the turning points supporting the standing-
wave structure, the contour is deformed so as to leave these turning points
on thg same side. By the Nyquist theorem, the image of this contour under
the map k2 = ¢(¢,w) will circle the origin a number of times equal to the.
‘number of zeros of ¢(¢,w) in the lower half of the ¢ plane. Since this number
is even, we conclude that the real line connects together the same roots of
k, at +00. Note that for any particular set of parameters, the connectivity
of the roots can be determined by inspection of the Stokes diagram. The
Nyquist analysis is necessary, however, to prove general results.

To determine if a solution connecting the same roots of k, at 0o corre-
sponds to a well-behaved mode, consider the asymptotic expansion for the
potential, Eq. (7). There is a critical value of the velocity shear, wy = sg,:yl/ 2

such that k, vanishes at infinity. We consider the cases of subcritical and

supercritical velocity shear separately.

Subcritical velocity shear:
For w; < sg,:yl/ %k, is real to lowest order. The imaginary part of k,

is determined by the next order term, and changes sign with £. The Bohr-
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Sommerfeld solutions will thus be well-behaved. The Stokes plot for this
case is shown in Fig. 3(a): The real axis is seen to connect two disconnected
Stokes sectors. The imaginary part of the phase integral in Fig. 3(b), shows

- the decay of the amplitude in both directions.

Supercritical velocity shear:

For w, > sg,:yl/ 2k, is imaginary and keeps the same sign as & — Fo0.
The Bohr-Sommerfeld solutions will thus be divergent. The Stokes plot for
this case is shown in Fig. 4(a): The real axis is seen to connect two adjacent
Stokes sectors. The behavior of the phase integral is shown in Fig. 4(b),
showing divergence for x — +o00.

In summary, unstable eigenmodes are found only for w; < sg;yl/ 2 in
regions 1 and 2. In region 2, the eigenmodes are robustly unstable: in region
1 they are only weakly unstable. No unstable eigenmodes are fimnd for

wy > sg,:yl/ 2 , independently of the strength of the parallel component of

velocity shear (regions 3 and 4).
VI. WAVE AMPLIFICATION

Initial perturbations may be amplified even in the absence of unstable
eigenmodes. The investigation of the initial-value problem is greatly facili-

tated by the existence of an analytic expression for the phase-integral. Takin_g
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care not to introduce spurious branch cuts, we find

2

1/2
S(Ew) = (w— _ gky) (562)M2(562)2 — (€1 + ) (56 + (662)/]

1/2 1/2 1/2 1/2
(/20172 | &2 (861)*% 4 & (68)Y
rarat [3’2«5&)1/2— %/2(652)1/2”

where 6§, = £ — & and 68, = £ — &e.
Two problems will be treated: The steady-state monochromatic point-

source, and the propagation of a localized initial perturbation.

A. Steady-state point source

The response to a steady-state monochromatfc point-source, or antenna,
is most easily evaluated: it is given directly by Greene’s function. By steady
state, it is meant here that the driving frequency has fixed real and irﬁag’lna.ry
parts, or that the amplitude of .the source increases at a constant rate.

. It is apparent from the exponential form of the WKB solutions that ex-
trema in the imaginary part of the phase integral will give rise to Gaus-
sian peaks of width s*/2 in the response. These peaks occur when S(¢) =
Im[k,(£)] vanishes for some real {. That is, they correspond to roots of the
local dispersion relation for real £ and k,. These peaks may appear to be
eigenmodes in numerical investigations using shooting codes: frequency con-
vergence studies are then necessary to discriminate between wave resonances

and eigenmodes.
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We consider three cases: The first corresponds to the critical velocity
shear for eigenmode stabilization, the second satisfies the condition for con-
fluence of the turning points, and the third corresponds to vanishing perpen-

dicular component of the velocity-shear.

1. Critical Velocity Shear

For resonant velocity shear (wi2ge, = ‘32) one of the turning points
is removed to infinity, and the WKB structure is determined by the
remaining turning point and the double pole (Fig. 5(a)). Geometrically,
the local instability appears as the point where the lines of constant S;
are tangent to the real axis, corresponding to an extremum of S;. To
‘ﬁx ideas, let the antenna be placed to the right of the extremum. The
signal amplitude must decay for x ~ Zoo. Consider the appropriate
WKB integral from —oo towards the antenna. The amplitude, given
approximately by exp(—S;), is found to increase up to the point of local
instability (Fig. 5(b)). Beyond this point, —S; decreases. The real axis
is no longer a good path of integration for the WKB method, but it
remains possible, by deforming the path of integration, to reach points

beyond the extrema with paths of nondecreasing —S;.

On the right of the second anti-Stokes line, however, the WKB paths
must circle above the turning point and cross the branch-cut. This

changes the sign of the root of k.. Consequently, the signal amplitude
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increases towards the antenna on the right side of the second anti-

Stokes line.

The maximum amplification, for a given driving frequency, is thus at-
tained when the antenna is placed at the intersection of the anti-Stokes
line with the real axis: It is given by the exponential of the path inte-
gral from the turning point (the vertex of the three anti-Stokes lines)
to the point of local instability (where the Polya vector is para.llel to
the real axis). Note that the amplification from the turning point to
the point of local instability is the same as that from the intersection of
the anti-Stokes line with the real axis to the point of local instability,

since an anti-Stokes line connects both starting points.

It is clear from the form of the eikonal that the maximum amplification
will increase without bound as the value of k, at the resonance point
is increased, since this has the effect of moving the turning-point away
from the real axis. This is a defect of the fluid model. To obtain mean-
ingful bounds on the amplification, we fix k,ps = 1 and optimize the
driving frequency by varyiﬁg the transverse position z of the resonance
point (or equivalently k). Fig 5 shows the Stokes diagram and phase

integral for the most amplified frequency.

. Confluent Turning-Points:

Confluence has the effect of increasing the gradient of the eikonal at
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moderate distances from the turning-points. This leads to greater am-
plification. The proximity of the pole has a similar effect. The result
is that this case corresponds to the maximum amplification (for fixed

k) as a function of w, (Fig. 6).

3. Vanishing Perpendicular Velocity-Shear:

We last consider the case of purely parallel velocity shear, wy = 0.
Here, the double pole is infinitely removed from the unstable region and
S; has two extrema on the real axis. If one corresponds to a maximum
for the signal amplitude, the other must correspond to a minimum.
The largest possible amplification will be the lesser of two numbers:
The amplification between the turning point and the point of local
instability, and the amplification between the point of local instability
and the secondary extremum. The proximity of two turning points
aﬁd a nearby minimum results in weak variation of the eikonal S, and
thus in weak amplification. The gradient of S is further weakened, for
vanishing perpendicular velocity-shear, by the absence of the Doppler

resonance (i.e. the double pole).

The three cases described above correspond to the numbered Ipoints in
Fig. 6, where the variation of the maximum amplification is shown as a
function of the perpendicular velocity-shear for kyps = 1 . The largest am-

plification is obtained for wy = .04, corresponding to the case where the
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turning-points have merged. For larger values of the velocity shear, the am-
plification decreases slowly, as the inverse power of the shear.

The maximum amplification is reminiscent of the scattering-state reso-
nances of quantum mechanicé. Note that the maximum arises from the be-
havior of the phase integral. The eigenmodes, by contrast, correspond to the
vanishing of the Wronskian in the denominator of Greene’s function. Because
of the analyticity of the scattering matrix, the scattering-states (travelling
waves) feel the presence of nearby (linearly independent) eigenmodes. Of
course, unstable eigenmodes will always dominate the evolution if they are

excited in the initial state.

B. Wave-packet amplification

By virtue of the separation of scales between the density gradient length
L, and the shear length L,, it is possible to construct wavepackets with

well-defined position xy and wavelength ko:
7 2 (oY a 2| _ikox
#(z,0) = o (g) €xp [—5(33 — %) ] € .

For simplicity, we restrict the discussion to Bromwich paths such that Im(w) >
Ymax, WHere Ymax is the largest local growth rate corresponding to k; = 0.
This ensures that the turning-points will not cross the real z-axis during
the inverse Laplace transform. The generalizatioh to 0 < Im(w) < “Ymax i8
straightforward; all that is required is to change the sign of k, upon crossing

an anti-Stokes line.
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For z > xo, the Laplace transform of the response is given by

o(z,w) = (i) e do /_o; dZ A(sz, sT,w) exp (% /s:? kz (€, w)dE + ikoZ — o (Z — :ro)2/2) ,

2

where z< (z>) is the lesser (greater) of x and Z, and A is a slowly varying

coefficient:
1
A(sz, 5%, w) = 2 9k [k (52, w)ka (B, w)]"/2071 ..

Here 03 = w — w1 % and gro = Gry + k&-
The spatial integral may be evaluated by the method of steepest descent.

The saddle point Z is determined by
ko — kz(sZ,w) + i0(Z — z0) =0 .

For 0 ~ 1, one has Z — xg ~ 1 and k,(s%,w) = kz(s20,w) + O(s). It follows

82

Bo,) = oM (s, 530, 0) xp (- [ kall, ) +ihomn — 5 ks, ) — ko))

Note that the spatial Fourier transform of the initial wavepacket is
$(k,0) = o exp [—51; (k— ko)2] gilko—R)z0

The Laplace transform of the response may thus be 'interpreted as the product
of the Fourier amplitude of the wavevector k,(sZo,w) in the initial state with
the steady-state amplification for the frequency w. The latter term dominates
for frequencies such that the local wavevector approximately matches the

initial wavevector k;(szo,w) — ko ~ 1.

23



The Laplace inversion integral is

qb(a:, t) = ;(; / e de(s:c sxo,w) exp[L(sz, sto, wt)] ,

where
. 1 ST . ‘ 1 9
L(sz, sxo,wt) = 1 <—/ kz (€, w)dE + koxo — wt) — — (kz(s%o,w) — ko)* .
i S Jsexp 20

The function £ bears deceptive resemblance to a classical action, but it must
be remembered that the phase integral is to be carried-out at constant w. As
we shall presently show, the dominant frequency is not conserved during the
evolution of a wavepacket in an inhomogeneous active medium. |
The inversion integral may be carried out by the method of stationary

phase. It is dominated by the contribution from the frequency wp such that

()«

where terms of O(1) associated with the initial Fourier amplitude have been

0L /bw =0, or

neglected. The stationary phase condition, Eq. (12), must be solved for wy,
given the time and position of observation. The integra,l.in Eq. (12) clearly
represents the time taken by a wavepacket of complex frequency wo = wor +iy
to travel from the initial position xy to the observation point x at the group
velocity v, = Ow/0k,. The stationary phase approximation to the integral is

then

A(sz, 820, wo) exp[L(sz, 8To,wo)] + O(s) ,

_ 2 -1/2
boit) = oo (£ [ T )

wo
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where wp is determined by Eq. (12). The amplification is found to be in-
creased over the imaginary part of the phase integral S; by the growth rate
factor exp(t), where v = Im(wp). This may be understood by recalling that
the steady-state amplification compares the amplitude of the signal being
emitted at time t to the amplitude of the signal which was emitted at time
t'=t— [dx/v,.

In practice Eq. (12) is difficult to solve and it is more convenient to specify
the frequency wp and to use Eq. (12) to determine z, zo and ¢. The frequency
wp is itself specified in terms of the local dispersion relation by choosing kzo
and kjo = kyxo /Ls. For fixed kyo, the maximum amplification is generally
obtained in the middle of the unstable region, for szo = wj /2. Adopting this
value for sz, the dependence of the maximum convective amplification on
the perpendicu‘lar velocity shear is shown in Fig. 7 for kzo = 0 and kzo = 1.
The qualitative dependence is similar to that for steady-state amplification
but numerically much larger. This can be explained by the relative proximity
of the turning point to the real axis for k; ~ 1. Thisv reduces the imaginary
part of the wavevector responsible for steady-state amplification, while it
enhances the convective amplification by reducing the group velocity in the

unstable region.
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VII. DISCUSSION

We have shown that the amplification of a localized initial perturbation
remains large for velocity shears greater than the critical value for stabiliza-
tion of the normal modes. The maximum amplification for a driven steady-
state wave is shown in Fig. 6, and that for a launched wavepacket in Fig. 7.
Note that these figures correspond to a magnetic shear s = 0.1. The ampli-
fication for different values of s is readily obtained by dividing the ordinate
by 10s.

Convective instabilities unfortunately fall outside the scope of classical
quasilinear theory, so that it is difficult to draw conclusions as to their non-
linear behavior even in the simplest context. The effect of convective insta-
bilities on the fluctuation level in thermal equilibrium has been considered
by Kent and Taylor.® The dressed test-particle model used by these authors,
however, restricts consideration to steady-state perturbations with real fre-
quency. We have found in this study that wavepackets with positive growth
rates are much more strongly amplified. '

- The effect of rotation shear on the stability of drift-acoustic waves is 6f in-
tefest in connection with the problem of transport in tokamaks injected with
neutral beams. It was suggested in Ref. 5 that a regime of improved con-
finement could be attained by increasing the value of the toroidal rotation
shear. Sheared toroidal rotation results in a small but significant perpen-

dicular component of flow-shear. As a result of the absolute nature of the

2



eigenmode stabilization criterion, (dV/dr), = ¢,/Ls, the normally destabi-
lizing property of the parallel compdnent of the flow-shear is ineffective for
supercritical velocity-shear.

The present work shows that convective instabilities, by contrast, are
destabilized by moderate values of the perpendicular rotation shear. These in-
stabilities can never be completely stabilized, although the amplification fac-
tor decreases as the shear is increased beyond the resonant value (dV/dz), =
cs/Ls. Note that the velocity shear in the edge layer of H-mode discharges is
typically several times the resonant value, so that convective instabilities are
not likely to be severe in this region. For the levels of rotation shear attained
in the core, however, purely toroidal rotation is convectively destabilizing.

Experimentally, it is observed that tangential neutral-beam injection does
not significantly modify the transport properties. A possible explana.tion
for this is that the eigenmode stabilization effect is offset by the convective
mode destabilization. Another possibility is that the destabilizing i)arallel
rotation shear results in the generation of stabilizing poloidal flows through
the Reynolds stress.} In either case, the present work implies that driving
poloidal flows directly through perpendicular neutral beam injection is more
promising, as a method of suppre.ssing microturbulence, than driving toroidal

rotation.!?
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Appendix A: THE BOHR-SOMMERFELD QUANTI-
ZATION CONDITION

To demonstrate the Bohr-Sommerfeld quantization condition we begin by
showing that every solution is ill-behaved unless the phase integral separating

the turning-points is real.
\

It is useful to distinguish the WKB functions, defined over the entire

complex plane by
14
$ul) = ke [tis™ [
€o

from the actual solutions. The WKB functions are of course locally propor-
tional to the solutions, with different constants of proportionality in different

sectors of the complex plane. Following Heading, we use the notation .
f+(§w) = (§0,€) 5

f_(f,w) = (5,50) ’

so that we may choose locally
$+(£7w) = (&bf) )

B_(6w) = (&,6) -

In any given sector bounded by anti-Stokes lines one of these solutions is

exponentially large and the other exponentially small: they are called the
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dominant and subdominant solutions respectively. Continuation of the solu-

- tions across the branch-cut in the counterclockwise sense is then given by

$+(§,w) = —i[6, &](€, &) ;
5— (57 (.U) = _i[&}éo](&)g) )

where &; is the turning point and

[&07&] = exp[is'lS(ét,w)] .

The above considerations allow a WKB solution to be extended through-
out the complex plane Wi’gh the exception of a narrow strip surrounding the
anti-Stokes line behind the turning point. An elegant technique for describ-
ing the solution in the vicinity of this line has been given by Heading. This
technique is used below to derive the Bohr-Sommerfeld quantization rela-
tion. If the phase-integral has an imaginary part, the sets of anti-Stokes lines
corresponding to different turning points are distinct and non-intersecting,
and every point in the complex plane may be reached without crossing an
anti-Stokes line more than once (except for points near the anti-Stokes lines
behind each turning point). In particular it is always possible to find a good
path extending from —oo to 400 along which the solution diverges.

When the phase integral between the two turning points is purely real,
by contrast, the anti-Stokes lines form a connected set dividing the complex
plane into four sectors (Figs. 3—4). The first two are contiguous to every

other sector. The other two are separated by the first two.
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If either limit-point of the real line bélongs to one of the contiguous sec-
tors, the corresponding WKB solution will diverge in every neighboring sector
and thus also at the other limit-point. If the limit-points lie in disconnected
sectors, however, the solution cannot be represented by a single WKB func-
tion, since the integration path may only cross one anti-Stokes line. To de-
termine if a well-behaved solution exists we must match the particular WKB
solutions, using the property that any three solutions are linearly dependent.
Let the well-behaved solutions in each disconnected wedge be ¢1(€) = (&1,€)
and ¢o(€) = (&,€), where & and &, are the corresponding turning points.

These solutions may be expressed as linear combinations of the two ele-
mentary solutions defined with respect to reference points in the contiguous
sectors. For this discussion it is convenient to extend the branch cut from
one turning point to the other below the anti-Stokes line. On the anti-Stokes

line joining the two turning points we have
$1(8) = A(61,6) + B(§,&) - (A1)

Just above the anti-Stokes line the first WKB solution is

$1(€) = (§1,€)

while just below the anti-Stokes line the WKB path must cross the branch

cut in the positive sense so that the first solution is

$1(6) = —ilE, &)
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Matching these results we find that on the connecting anti-Stokes line,

$1(6) = (61,8) — (€, &) - (A2)

Likewise, we find for the second solution

$2(E) = (€,8) +i(6,62) .

This may be factorized as

¢2(€) = [52)61](61:5) + i(gagl)‘[glaé-?] . ' (A3)

Matching the first and second solutions yields the Bohr-Sommerfeld quanti-

zation rule,

[61)52] =1
or v
5 5 ky de = (1 +1/2) , (A4)

For | ~ 1 the analysis used to derive Eq. (A4) is invalidated, as the WKB
approximation does not hold between the turning points. An alternative
treatment using Weber’s equation, however, can be shown to lead to the

same result.
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FIGURE CAPTIONS

1. Local dispersion relation represented by the lines of constant gy and kj

in the complex frequency plane. Here w)y = 2.

2. Contour plot for the imaginary part of the Bohr-Sommerfeld frequency,

7, for gy = 2. The lines of constant «y are spaced by 0.1ws The four

numbered regions are bounded by the thick lines w, = sg,:yl/ 2 and w) =

g,:y1 2 Only regions 1 and 2 have well-behaved unstable eigenmodes.

3. (a) Stokes diagram of the DKH eigenmode for subcritical velocity shear.
The parameters are s = 0.1, gpy = 2, ) = 2, and w; = 0.04 (corre-
sponding to a point in region 2 of Fig. 2). (b) Real part of the phase
integral along the real z-axis, in dB: A(z) = 10logy, |¢(x)/do |

4. (a) Stokes diagram for the Bohr-Sommerfeld frequency with supercrit-
ical velocity shear. The parameters are s = 0.1, gry = 2, wy = 0.5, and
wy = 0.1 (corresponding to a point in region 4 of Fig. 2). (b) Real part

of the phase integral along the real axis.

5. (a) Stokes diagram of a convective instability in a plasma with critical
velocity shear. The parameters are the same as in Fig. 3 except for
w/wy = 0.91 + 30.53, corresponding to kyps = 1, kjcs/wy = 1.242. (b)
Real part of the phase integral along the real axis for the left WKB
solution, A(z) = 10log;o |¢-(sz,w)/dol.
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6. Maximum steady-state amplification, Amax = 101080 [Pmax/Po|, as
a function of the perpendicular component of the velocity shear for
k:ps = 1, 8 = 0.1, gxy = 2, and wy = 2. The numbered points cor-
respond to the cases discussed in the text. The continuous line is an

interpolation.

7. Maximum convective wavepacket amplification as a function of the per-

pendicular component of the velocity shear for the parameters of Fig. 6.
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