DE-FGO05-80ET-53088-661 ~ IFSR #661

Particle Dynamics and Collisionless Conductivity of the
Plasma Sheet in the Geomagnetic Tail

(Dissertation)

- JOSE VALENTE HERNANDEZ OCHOA
Institute for Fusion Studies
The University of Texas at Austin
Austin, Texas 78712

May 1994




PARTICLE DYNAMICS AND COLLISIONLESS
CONDUCTIVITY OF THE PLASMA SHEET
IN THE GEOMAGNETIC TAIL

by

JOSE VALENTE HERNANDEZ OCHOA, FIS.

Abstract

A recurrent theme in magnetospheric research is that of the origin and quantifi-
cation of the finite, collisionless electrical concuctivity of the central plasma sheet in
the geomagnetic tail. Outside the quasineutral layer the charged particle orbits are
described by the guiding center classical theory and the plasma dynamics is given by
ideal MHD theory. In the interior region where the magnetic field is weak and rapidly

.changing in direction, the particle orbits are complex, nonadiabatic, and receive a
net acceleration from the dawn to dusk electric field (E,) over the correlation time
Te. Lyons and Speiser [1985] take 7, to be the time that the particles spend in the
quasineutral layer and approximate this time by one half of the cyclotron period in the
minimum of the magnetic field. On the other hand, Horton and Tajima [1990, 1991]
take 7. to be the finite velocity correlation time produced by intrinsic orbital stochas-
ticity in the quasineutral layer. The present work develops the theory and applications
of the decay of the velocity correlations approach. The spectral velocity correlations
formalism is described and used to extend conductivity formulae to new regimes. The
spectral velocity correlations formalism is shown to provide a systematic framework to
derive conductivity formulae in collisionless plasraas and is particularly useful in sit-
uations when the charged particle motion is a mixture of both chaotic and integrable
motion or when the motion is integrable, but it is impractical to perform an analytical
calculation of the conductivity.




PARTICLE DYNAMICS AND COLLISIONLESS
CONDUCTIVITY OF THE PLASMA SHEET
IN THE GEOMAGNETIC TAIL

| Approved by

D1ssertat10n Commlttee | o

J—




PARTICLE DYNAMICS AND COLLISIONLESS
CONDUCTIVITY OF THE PLASMA SHEET
IN THE GEOMAGNETIC TAIL

by

JOSE VALENTE HERNANDEZ OCHOA, FIS.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN
May, 1994




To my wife Verénica,
my son José Daniel,

and my parents Arnulfo and Alicia




Acknowledgments

I would like to thank my advisor Prof. Wendell Ho;ton for his guid-
ance, patience, inspiration, and support. He has certainly made an impression
in the way I approach a new problem. Having worked for him has been both a
privilege and a great pleasure. |

I have also enjoyed my frequent discussions with Prof. Toshi Tajima.
His rather different views have been very educational. I also thank Prof. Philip
Morrison, Dr. James Van Dam, and Prof. Roger Broucke for their constant
interest in the progress of my work and for having served on my dissertation
committee.

I am very grateful to the Universidad Nacional Auténoma de México

(UNAM) for awarding me a scholarship to pursue my graduate studies at The
University of Texas. I would also like to thank the Institute for Fusion Studies

for providing me with a research assistantship that allowed me to complete this
work.

Going way back, during my UNAM years, I had the help and guidance
of Mariano Bauer, Julio Herrera, and Marcos Rosenbaum. I am grateful to all
of them. They left their marks on my career.

Many IFS staff members helped me at several stages of this work.
I would like to specially thank Suzy Mitchell for the countléss occasions she
helped me with my IATEX writeups. I would also like to thank Ed Bailey for

his assistance with computing.
iv




Having reached this point has been a team effort. I thank my wife
Verénica for her unconditional love and support, for having adjusted to my
unusual schedule, and for our son. I would like to thank my parents Arnulfo
and Alicia, who always encouraged me to search for a better education. Thanks
to my brothers, sister, and family for their support. Thanks to my friends for

their companionship.

\

JOSE VALENTE HERNANDEZ OCHOA

The University of Texas at Austin
May, 1994




Table of Contents

Acknowledgments iv
Table of Contents viii
List of Tables ibd
List of Figures X
1. Chapter 1. Introduction and Magnetic Field Models 1
1.1 Imtroduction . . . .. .. .. . ... 1
1.2 Magnetic Field Models . . . . . .. ... ... ... ... ... 7
1.2.1 Vlasov-Maxwell Equations . . . . . . .. U 7

1.2.2 Harris Sheet Model . . . . . . .. ... ... .. ... .. 11

1.2.3 Parabolic-Like Magnetic Field Reversals . . . . ... .. 13

1.2.4 Sheared Parabolic Magnetic Field Reversals . . . . . . . 19

2. Chapter 2. Particle Dynamics in Magnetic Field Reversals 21

2.1

2.2

Particle Dynamics in Straight Magnetic Field Reversals . . . . . 21
2.1.1 Integration of the Equations of Motion . . . . . ... .. 28
Particle Motion in Parabolic Magnetic Field Reversals: Chaotic

Motion . . v v v v e e e 33
2.2.1 Guiding Center Motion . . . . . ... .. ... e 35

2.2.2 Numerical Integration of the Motion, Current Sheet Ac-
tion, and Orbit Classification . . .. .. .. .. ... .. 36

viii




2.2.3 Surface of Section Plots and Orbit Classification . . . . . 47

2.3 Liapunov Exponents . . .. .. ... ... ... ... ... ... 49
2.3.1 Tangent Flow . . .. .. ... ... ... ... .... 51
2.3.2 Benettin et al. Method . . . ... ... ... ... ... 53
2.3.3 Standard Mapping . . . . . .. ... L 54
2.3.4 Hénon-Heiles System . . . . ... ... ... ....... 58
2.3.5 Local Instability for Parabolic Field Reversals . . . . . . 60

2.4 Motion in Sheared Parabolic Magnetic Field Reversals . . . . . 68

. Chapter 3. Decay of the Correlations, Power Spectrum, and

Chaotic Motion 78
3.1 Velocity Correlations and Power Spectra for Single Particle Motion 79

3.2 Velocity Correlations and Power Spectrum in the Presence of

CollISIONS + v v v v e e e e e e e 84

3.3 Decay of the Correlations and the Collisionless Conductivity in
the Geomagnetic Tail . . . . .. .. ... ... ... ... .. .. 88
. Chapter 4. Collisionless Conductivity 93
41 The Dielectric TENSOT « « + v v v vveee e e e e e 97
4.1.1 Longitudinal Response Function . . . . . .. .. ... .. 99
4.1.2 Energy Dissipation and Stored Energy . . ... ... .. 100
4.2 Collisionless Conductivity in Magnetic Field Reversals . . . . . 103
4.2.1 Conductivity Formula . . . . .. .. .. ... ... .. 110
422 Frequency SumRule . . ... ... ... ... .. ... 113
4.2.3 SUMMATY . . v v o e e e e e e e e e e e e e e 114

4.3 Collisionless Conductivity and Fluctuation Dissipation Relations 114

4.4 Conductivity for an Unmagnetized Plasma . . . . . . . ... .. 119

ix




4.5

4.4.1 Conductivity from Kubo’s Formula . . . .. .. ... .. 119
4.4.2 Conductivity from the Spectral Velocity Correlations For-

MallSIl . & v v o e e e e e e e e e e e e e e e e e 123

Kaufman Conductivity for Inhomogeneous Systems . . . . . . . 125

5. Chapter 5. Conductivity for the Central Plasma Sheet with

Applications to Tearing Modes 129
5.1 Collisionless Conductivity for the Harris Sheet . . . . . . . . .. 129
5.2 Collisionless Conductivity for Parabolic-Like Magnetic Field Re-
versals . .. . . e e e e e e 135
5.3 Collisionless Conductivity for Sheared Parabolic Magnetic Field
Reversals. . . . . . . . . . o e 139
5.4 Results of Parametric Studies to Verify the By — x Dependence
of the Mobility Formula . . . . .. ... ... ... .. ... .. 149
8. Chapter 6. Conclusions and Discussion 152
References 156

Vita




1.1

2.1

5.1

5.2

5.3

List of Tables

Reference Parameters. . . . . . .. ... ... ... .. .. ... 8
Expansion Rates for Instability Bursts. . . . .. ... ... ... 66
Sensitivity of Numerical Results. . . . . .. .. ... ... ... 142
Low Frequency Limit of Correlation Time . .. ... . ... .. 145
Conductivities and Tearing Mode Growth Rates.. . . . . . . .. 149

x1




1.1

1.2

1.3

1.4

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

List of Figures

Cross section of the geomagnetic tail. . . . . . . .. .. ... ..
Straight magnetic field reversal . . . .. ... ... ... .. ..
Parabolic fieldreversal. . . . . . . . . .. ... o

Sheared parabolic field reversal. . . . .. .. ... ... ... ..

Effective potential and phase space diagram for ¢/, > 0.
Effective potential and phase space diagram for ¢F, < 0.
Charged particle trajectories for straight field reversals. . . . . .

Dispersion of orbital frequencies for straight magnetic field re-

VELSAlS. © o v v e e e e e e e e e e e e e e
Effective potential V(z, z) for the parabolic field model. . . . . .

Three-dimensional view of a trapped orbit in the modified Harris

sheet model. . . . . . . ...
Planar projections of a trapped orbit in configuration space.
Three-dimensional view of a transient orbit. . . . ... ... ..

Planar projections of a transient orbit in configuration space. . .

2.10 Three-dimensional view of a quasi-trapped orbit.. . . . . . . ..

2.11 Planar projections of a quasi-trapped orbit in configuration space.

2.12 Plot of fo(k) for k<1 and of fy(k)for k>1.. .. .. ... ..

X1

14

15

20

23

24

26

32

38

41

42

43

4.4

45

47




2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22

2.23

3.1
3.2
3.3
3.4

3.5

3.6

Surface of section plot for the parabolic field reversal. . . . . . .
Evolution of the separation vector §y(t) in phase space. . . . . .
Numerical calculation of the largest Liapunov exponent.

Eigenvalues of K for the standard mapping. . . .. ... .. ..
Potential U for the Hénon and Heiles problem. . . . . . .. . ..
Roots of the characteristic equation (2.111). . . .. .. ... ..
Local instability index v2 (z, 2) for parabolic field reversals. . . .

Ensemble averaged exponential divergence rate. . . . . . .. ..

Ring orbit in the sheared parabolic magnetic field of Eq. (2.126).

Surface of section plot for By/B, =5 and «k =0.18. . . ... ..

Surface of section plot for By/B, =1 and k=0.18. . . ... ..

Single particle velocity correlation function and power spectrum

foraring orbit. . . . .. ...

Single particle velocity correlation function and power spectrum

for a cucumber orbit. . . . . . . . . e e e e e e

Velocity auto-correlation function and power spectrum for a par-

ticle executing cyclotron motion.. . . . . . . .. ..o

Velocity auto-correlation function and pbwer spectrum in the

presence of collisions . . .. ... ...
Plot of < In C’(T) > as a function of In(wp,7). . . . . . ... ..

Plot of < C’(w) > as a function w/wp,. . . ...

xiii

82




4.1

4.2

5.1

5.2

5.3

5.4

Integration Contour for (4.38). . . . . . .« . ..o 102

Conductivity for unmagnetized plasma. . . . . . .. . . ... .. 124
Conductivity for the Harris sheet: |z/L,|<1. . ... ... ... 131
Conductivity for the Harris sheet: 3 < z/L, <4.. ... ... .. 133
Plot of 7.(w; &, by, b,) as a function of by/b... . . . . .. ... .. 143

Qualitative behavior of the conductivity of Eq. (5.40) for both

jons and electrons. . . . . . ..o e R 147

xiv




Chapter 1

Chapter 1. Introduction and Magnetic Field Models

1.1 Introduction

The magnetosphere is the magnetic cavity formed around the Earth

due to the interaction of the magnetized solar wind with the planetary dipolar

magnetic field. In this interaction mass, momentum, and energy are transferred

from the solar wind to the planetary field, stretching it in the direction of the
solar wind.

The size and shape of the magnetosphere are determined by the bal-

ance between the Earth’s magnetic energy density and the solar wind kinetic

pressure. The shape of the magnetosphere is compressed on the day side and

clongated on the night side.

The system of stretched field lines and plasma in the nightside mag-
netosphere is called the geomagnetic tail. The geomagnetic tail extends down-
stream beyond 200 Rg, where 1 Rg = 6380 km is the earth radius. The tail
has a diameter of about 40 Rz, and is filled with reversed magnetic fluxes with
mean values of 420 nT. The geomagnetic tail plays a primordial role in the
storage and release of energy. There are several regions in the magnetic tail.
In particular, the lobe is the region of open field lines, the central plasma sheet
(CPS) is the region of closed field lines, and the plasma sheet boundary layer

is the region which separates the lobe and the CPS. A cross section view of




the magnetotail computed from a standard magnetic field model is shown in
Fig. 1.1.

One of the most important problems in magnetospheric research is
the origin and dynamics of magnetospheric substorms. Magnetospheric sub-
storms are large scale disturbances of the magnetic field and of the currents
in the magnetosphere-ionosphere system produced as a response to changes in
the solar wind density, velocity, and magnetic field. The most evident mani-
festations of substorms are the auroral displays which occur at high (~ 70°)
magnetic latitudes and during which a huge amount of power (10'® erg/sec) is
delivered into the atmosphere. Based on measurements of fluctuations in the
horizontal component of the Earth’s magnetic field at ground stations located
near the equator, three phases of a geomagnetic storlﬁ can be identified [Tsu-
rutant and Gonzalez, 1994]. In the initial phase the deviation of the horizontal
component from the ambient level increases to values of the order of tens of
nanoTeslas with a time scale .fanging from minutes to hours. In the main phase
the deviation of the horizontal component reaches values of minus hundreds of
nanoTeslas with a duration from half-hour up to several hours. In the recov-
ery phase, which lasts from hours to a week, the field gradually returns to its

ambient level.

At a human scale, magnetospheric substorms are important because
the resulting fluctuating magnetic fields affect the performance-of magnetome-
ters (used in navigation systems and in geophysical exploration), and induce
currents in power lines, train tracks, pipelines, etc., leading to equipment fail-
ures. In addition, the energized flows of magnetospheric ions and electrons

heat the upper atmosphere, producing density changes which affect the perfor-
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Figure 1.1: Cross section of the geomagnetic tail.

mance of radars and satellite communications and which can lead to changes

in satellite orbits.

The development of magnetospheric substorms is associated with the
appearance of a dawn-to-dusk electric field E, and with the equatorward drift
of the auroral arc. There are several physical processes associated with mag-
netospheric substorms. These processes include magnetic reconnection at the
magnetopause and the geomagnetic tail, intensification and generation of iono-
spheric and field aligned currents, and convection and energization of magne-

tospheric plasmas.

There are several models for magnetospheric substorms (see Lui (1991]
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and references therein for a review). The most popular and best developed sub-
storm model is the near-Earth-neutral line model [eg., Hones, 1979; Couwley,
1982] and variations of that model. In the near-Earth-neutral line model, the
magnetospheric disturbance is initiated by a southward turning of the inter-
planetary magnetic field (IMF) which merges with the northward magneto-
spheric field at the dayside magnetopause and forms a magnetic X-line. The
open field lines are convected by the solar wind towards the geomagnetic tail,
leading to an increase in the size and strength of the tail lobe, and to the for-

" mation of an X-line in the CPS with the subsequent energization of plasma in

the vicinity of the X-point.

Magnetic reconnection or merging in the field reversal regions of the
geomagnetic tail was first proposed by Dungey [1961]. Magnetic reconnection
may happen as a consequence of the tearing instability, which was first con-
sidered by Furth et al. [1963] for resistive MHD. The possibility of collisionless
tearing instability was suggested by Coppi et al. [1966]. Growth rates for re-
sistive tearing modes consistent with substorm growth time scales require‘ a
magnetic Reynolds number S = v4L/n in the 100 —300 range [Birn and Hesse,
1990]. These values of S require an anomalously low conductivity; however,
the geomagnetic tail is a highly collisionless enviroment with collisional times
7, ~ 1 year and mean free paths from Coulomb collisions on the order of
Amsp ~ 10° Rg. Thus, it is necessary to look for alternative sources of the
collisionless resistivity.

Currently there are two approaches to looking for sources of the col-
lisionless resistivity in the CPS: the wave turbulence approach and the particle

dynamics approach. In the wave turbulence approach the momentum of the




/

particles is scattered by turbulent wave activity. In the particle dynamics ap-
proach the resistive time corresponds to the time during which the charged

particles are coherently accelerated by the dawn-dusk electric field B,

Several turbulent wave processes have been suggested [Huba et al.,
1978; Coroniti, 1980; Esarey and Molvig, 1987] as possible candidates for the
generation of a collisionless resistivity. These approaches include lower hybrid
drift wave turbulence and broad band electrostatic noise. However, measure-
ments from the ISEE 1 and ISEE 2 satellites have shown [Anderson, 1984]
that turbulent wave activity is negligible at the center of the current sheet and
that the wave amplitudes in the CPS are not enough to explain the expected

reconnection rates.

Alternatively, from the particle dynamics point of view, there are
several proposed models for the generation of the collisionless resistivity in the
current sheet of the CPS. These models include the inertial or gyroresistivity
of Lyons and Speiser [1985], where the resistive time is determined by the
residence time of transient orbits in the current sheet, chaotic electron motion

[Martin, 1986], and the decay of the velocity correlations from chaotic ion orbits

[Horton and Tajima 1990].

The present work develops the formalism and extends to new regimes
the decay of the velocity correlations approach of Horton and Tajima (1990,
1991a,b). Here we present a systematic framework to derive conductivity for-
mulae in collisionless plasmas. This approach is particularly useful in situations
when the charged particle motion is chaotic or when the motion is integrable,
but it is impractical to perform an analytic calculation of the conductivity.

We show that the conductivity formulae obtained from the application of the




formalism to tail-like magnetic field reversals reduce to previous models in the
appropriate limits. Then we apply the formalism to the derivation of a conduc-
tivity formula for the case of a sheared parabolic magnetic field reversal and

use the resulting expression to estimate growth rates for collisionless tearing
modes.

Current sheets and their resulting magnetic field reversals occur in
both space (geomagnetic tail, magnetopause, solar flares, etc.) and laboratory
(field reversal configuration) plasmas. In particular, the current sheet plasma
of the central plasma sheet in the night-side geomagnetic tail plays a major role
in energy storage and particle energization during magnetospheric substorms.

In the next section we introduce several magnetic field models which are widely

used in the literature to describe plasma behavior in the presence of current

sheets. We divide these models into straight magnetic field reversals, parabolic-

like field reversals, and sheared parabolic-like magnetic field reversals.

In Chapter 2 we discuss single particle dynamics in each one of the
magnetic field models and present several tools (surface of section plots and

Liapunov exponents) which are used in the study of chaotic particle dynamics.

In Chapter 3 the analogy between chaotic particle dynamics and col-
lisional processes is discussed within the framework of velocity correlations
and power spectra, and the decay of the velocity correlations approach for the

derivation of the collisionless conductivity is introduced.

In Chapter 4 the spectral velocity correlations formalism is presented
and applied to several well known cases, and its relationship to the fluctuation-

dissipation theorem is established.




Finally, in Chapter 5 the formalism is applied to the study of the
conductivity in tail-like magnetic field reversals. In particular, the collisionless
conductivity for sheared parabolic field reversals is derived and applied to the

estimation of tearing mode growth rates.

1.2 Magnetic Field Models

We are interested in modeling the transport properties of the plasma
trapped in' the field-reversal region of the nightside geomagnetic tail or cen-
tral plasma sheet (CPS). In this work we use the so-called magnetospheric
coordinate system with the z-axis along the Earth-Sun line and pointing to-

wards the Sun, the y-axis pointing from dawn-to-dusk, and the z-axis along

_ o £

the mid-tail region (z ~ 20 — 50 Rg) are lobe field B ~ B, ~ 20 nT, normal

field B, ~ 1 nT, particle density n ~ 1cm™3, ion temperature T; ~ 1 —10keV,

and electron temperature T, ~ 0.1 — 1keV. We denote by Ls, Ly, and L, the
characteristic spatial scales of the plasma sheet along z, y, and z, respectively.
In the mid-tail region, we take L, ~ 20 Rg, L, ~ 40 Rg, and L, ~ 1 Rg. Thus,
we assume that in equilibrium 8,/8, ~ L,/L, < 1 and /0y = 0.

A set of reference parameters typical of the geotail plasma and similar
to those found in the literature are given in Table 1.1. Now we consider the

traditional mathematical description of such a collisionless equilibrium.

1.2.1 Vlasov-Maxwell Equations

For collisionless plasmas the equilibrium distribution function

fi(x,v,t), where j labels particle species, evolves according to the Vlasov equa-




Table 1.1: Reference Electromagnetic Field and Plasma Parameters.

Parameter Value

Bzo 20nT

B, 1 nT

E, 1 mV/m=1V/km
L, Rp = 6380 km

T; T, =T, =1keV

n B2,/2u0(T; + T.) = 0.5 X 108 m—3
27 [Wezo 3s

27 [wes 20 s

27 [wes lmin

v, E,/Bgo = 50km/s
L,/v, 2min .

€ pi/ L, = 0.0235

Ki 0.314

€e pe/ L. = 0.000591

Ke

2.06




tion

0fi .9 4 0fi _ o »
5tV ax+m5(E+VXB)'av_0' (1.1)

The electric and magnetic fields E(x,t) and B(x, t) are determined self-consis-

tently from Maxwell’s equations

1
V-E=—(p+ pest), - (1.2)
€o
0B _
VxE= ——a—t', (13)
V-B=0, (1.4)
1 0E

VxB= ,U,o(n] +Je:ct) + (15)

& at’
where we have allowed for the possibility of having external charge and current
SOUICeS, Pest(X,t) and Jest(x,t). In practice, it is convenient to express th_é

fields E and B in terms of the scalar potential ®(x,t) and the vector potential

A(x,1), oA
'5{7
B=VxA. (1.7)

E=-V&-— (1.6)

In the following sections we will use the Coulomb gauge which satisfies V- A =
0.

The Vlasov-Maxwell equafions are nonlinear because fj(x,Vv,t) is
modified by the self-generated fields, which in turn evolve as the distribution
function changes. The'plasma charge and current densities, p(x,t) and J(x, 1),

are given in terms of the distribution function by

p= g [ v, (1.8)
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and -

J= qu/davaj. (1.9)

When solutions to the Vlasov equation (1.1) are sought, it is conve-
nient to interpret the left side of Eq. (1.1) as the total time derivative of f;

along a particle orbit; that is, Eq. (1.1) can be written as

d
Zfilxv, 1) =0. (1.10)

Suppose now that f; is a function of the constants of motion {C;(x,V,t)} along
the trajectory of the particle. Then,

df; dC;s ©
'—fJ({C X,v,t)} Eaé o 0, (1.11)

which is the Vlasov equation. Thus, any distribution that is a function of the

constants of the motion is a solution of the Vlasov equation.

We are interested in steady-state solutions to the Vlasov-Maxwell
system for tail-like magnetic field reversals in the absence of external sources.
In this case the equilibrium analysis of the Vlasov-Maxwell system proceeds by
setting 0/0t = 0 and looking for stationary solutions f;(x,V), d(x), and A(x)
that satisfy the equations

of;

o5, _
8){ oy (E+v x B) - v = 0, (1.12)
Vi = ——1—qu/d3v fiy (1.13)

VA = oY [ Povs, (1.14)
J
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1.2.2 Harris Sheet Model

A class of solutions to the equilibrium Vlasov equation is given by
[Harris, 1962; Lembége and Pellat, 1982]

.\ 32 1
fi = naj (ﬁ) - exp (—f[ﬂj - Uw‘Pyﬂ) ; (1.15)
J

J
where the particles of type j have mass m;, temperature 7}, charge ¢;, canon-
ical momentum F,;, energy Hj; and drift velocity Uy;. The distribution func-

tion (1.15) is a function of the constants of motion H; and P,; defined by

H; = %mjvz + ¢;%(2) (1.16)
and
Pyj = mjvy + ¢;Ay(2). (1.17)

Substituting (1.16) and (1.17) into (1.15) we have that the chargé density is

given by
pi(z) = gjno; explg;(Uy; Ay — @)/ Tj] (1.18)

and that the current density is given by

Jy(2) = 3 aino;Uy; explg;(Uy; Ay — @)/ T). (1.19)
; |

In order to have ® = 0 we require
> gjnoj =0 (1.20)
J

and

== = const. =

Qjij qu
. 1.21
T; T ( )
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Ampére’s law (1.14) is given by

d*A,
dz?

= —}o (Z q;Moj ij) eXP[quAy/T]
i

= —p (an )exp[quAy/T] (1.22)

Eq. (1.22) is readily integrated for Ay(2) by using the conservation law obtained

by multiplying by dA,/dz and integrating to obtain

1 [dA, 2 qUyAy _ 1 dA,(o0) ? — Bagxo
3 (_?lz_> + o (2]: noJTj) exp( T > = const. = 3 7 ==

' (1.23)
Eq. (1.23) is consistent with the boundary conditions
dA, .
<—f—li> =0, Ay — FBgoz for z — oo (1.24) -
dz ) __,
and gives the pressure balance condition
=3 noi Ty | (1.25)
J

Integrating the conservation law (1.23),

/0,11 . \/1 e —/dz—z | (1.26)

we obtain the Harris sheet model

Ay(2) = —L,Buo In [cosh (f-)] : (1.27)

where we define the characteristic space length L, by

1 qu) Bo . EJ (JJUZ/J Bﬂ:o -
T (T - _( )5 (1.28)
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For the Harris sheet model (1.27) the magnetic field is given by

B = B,(z)é; = Byotanh <Li> €z, (1.29)

the number density is

n;(z) = ng; sech? (fz—) , (1.30)
the pressure is

B2 2 % .

p(z) = 2t sech (—L—z> , (1.31)
and the current density is |

: B, z

Jy(2) = ,UfO-LOz sech? (L_z> . (1.32)

Fig. 1.2 is a plot of the variation of B and n across the current sheet

and of the magnetic field configuration for the Harris sheet model. In the
Harris sheet model (1.27)—(1.32) the magnetic field changes sign at the centei'
(z = 0) of the current sheet where both the current density and the pressure
reach maximum values. For |z| > 1, that is, in the tail lobes, the magnetic
field tends asymptotically to a constant value 4+=B,q, and the pressure and the

current density vanish.

1.2.3 Parabolic-Like Magnetic Field Reversals

From satellite observations it is well known that a small magnetic
field component B, exists. Thus, commonly used models for the magnetic field

in the CPS are the modified Harris sheet model

B = B,otanh (f’—) &, + B,é,; B% <1, (1.33)
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Figure 1.2: Straight magnetic field reversal. Variation of B and n as a function
of z, and magnetic field lines for the Harris sheet model
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Figure 1.3: Parabolic field reversal. Magnetic field lines and coordma.te system
for the para.bohc field model of Eq. (1 34)

where B, is constant; and the parabolic field model

B = Bao (_Z_) &, + B.és, (1.34)

L,

valid for z/L, < 1. Both the model of Eq. (1.33) and that of Eq. (1.34) are
not self-consistent equilibria; however, they are useful in the study of charged
pa.rtu:le dynamics in the CPS of the geomagnetic tail. The magnetic field lines

for model (1.34) and the coordinate system used throughout this work are

shown in Fig. 1.3.

Force balance in a steady-state equilibrium requires a balance between

the Lorentz force and the divergence of the particle momentum stress tensor,

IxB=V.P, . (1.35)
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where the pressure tensor is given in terms of the distribution function by
Pup =3 m / v (ve — Ua) (v — Up) fi- (1.36)
j
In the Harris sheet model (1.29) the assumption of isotropic plasma
has been made and the force balance (1.35) is replaced by
J x B = Vp, ‘ (1.37)
where p is the scalar pressure. From (1.37) we have that
B-Vp=0 (1.38)

and
J.Vp=0, ' (1.39)

that is, the p = const. surfaces are both magnetic surfaces and current surfaces.

On the other hand,

B(z,z) = VAy(z,2) X &, (1.40)

which implies that

B.VA, =0, (1.41)
that is, A,(z, z) is a magnetic flux function.

From (1.38) and (1.41) we have that the scalar pressure p is a function

of Ay, p = p(4,) and that the force balance condition (1.37) can be written as
V24, + g =0 (1.42)

with the current density

T (A,) = dp(4y), (1.43)
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The pressure function p(4,) is a free function and under the assump-

tion of local thermodynamic equilibrium (1.15), p(Ay) takes the form

0 exp[24,(z, 2)/LzBzo]- (1.44)

0

B2
A)) =2
In the mid and far regions of the geomagnetic tail, the characteris-

tic gradient scale length Ly in the tailward direction is much larger than the

characteristic gradient scale length L, in the z-direction,

L
§==2 . 1.4
7. < 1 (1.45)
The relevant definition of Ly is
1 0
7= 5;11’1(Bz($a 0,0)) (1.46)
and of L, is
% = ((% In B;(z,0, z)) .
L 0B
- Bzo 82 2=0
_ /J'ij .
=B’ | (1.47)

where Bao is a typical lobe field value.

Under the approximation (1.45), an asymptotic class of z-dependent

solutions to

VA, (z,2) = _imo exp[2Ay/L; Bro) (1.48)

z

is given by [Schindler, 1972; Birn et al., 1975; Lembége and Pellat, 1982; Zwing-
manmn, 1983]

ot (1) 612)

O O8?), (1.49)

Ay(z,2) = =BwolL. In{
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where the function G(z) is arbitrary, as long as (1.45) is satisfied. From (1.49)

we have that the magnetic field components are given by

Bg(z,z) = ByoG(z)tanh [(fzz—) G(:L)] (1.50)
and
B.(z,2) = LZB,TOCCT;—,((% (1 _ G’(x)zz—z—ta,nh [(Li> G(m)]) , (1.51)

the current density is given by
J,(2,2) = 22 G () sech? [<i> G(:r;)} (1.52)
A /U'OLz Lz ’ .
and the pressure is given by

p(2,2) = ;%GZ(:C) sech? [(f—) G(:c)] . (1.53)

Several functional forms of G(z) have been used by various authors.

The case of G(z) = 1 corresponds to the Harris sheet model (1.27). Lembége
and Pellat [1982] have used

Gi(z) = exp (bf—) (1.54)
and
Ga(z) = bzg: exp (bz_Lm—z) , (1.55)
where
b, = .5:0‘ (1.56)

Zwingmann [1983] has used the power law model

Ga(z) = (1 - bzyiz)_", (1.57)

with v = 0.6 determined from the best fit to the data. |




19

1.2.4 Sheared Parabolic Magnetic Field Reversals

In order to account for the component of the interplanetary magnetic
field which soaks into the magnetosphere along the dawn-dusk direction, we add
a constant B, to the tail-like magnetic field reversals of the previous section.
From satellite observations [Fairfield, 1979; Akasofu et al., 1978; Cattel et al.,
1986] it is well known that a finite dawn-dusk magnetic field component By
exists and that it may be comparable to the magnetic field éomponent normal

to the current sheet B,.

The simplest model of a sheared tail-like magnetic field reversal is

given by

z
L,
where B, = const. Fig. 1.4 is a plot of the magnetic field lines for the field

B = B,g—-&, + B,&, + B.&,, (1.58)

model (1.58) with B, = B,. As observed from Fig. 1.4, the effects of the dawn-
dusk magnetic field component are (1) to introduce a tilt on the field lines
away from the meridian and (2) to increase the effective field line length in
the quasineutral layer with the subsequent reduction of the particle oscillation

frequency along the field lines.

A general theory of three-dimensional magnetostatic equilibrium has
been developed by Birn [1987] and applied to study the effect of By on the mag-
netotail equilibrium configuration [Birn, 1990]. The sheared parabolic magnetic
feld reversal of Eq. (1.58) has been used in charged particle motion studies by
Karimabadi et al. [1990] and Horton et al. [1992], and in collisionless tearing
mode studies by Wang at al. [1990], Bichner at al. [1991], and Herndndez et

al. [1993].
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Figure 1.4: Sheared parabolic field reversal. Magnetic field lines for the sheared
parabolic field model of Eq. (2.126).




Chapter 2

Chapter 2. Particle Dynamics in Magnetic Field
Reversals

In this chapter we discuss single particle dynamics in the different
magnetic field reversals and introduce surface of section plots and Liapunov

exponents, which are used in the study of chaotic particle dynamics.

2.1 Particle Dynamics in Straight Magnetic Field Re-

versals

The simplest example of a local current sheet is provided by the ma.g—A

netic field model

B(z) = onLiéx. . (2.1)

This model applies for |z| sufficiently small that the current density Jy =
Bgo/poL, = const. Particle trajectories in (2.1) were integrated analytically by
Speiser [1965] and their associated adabatic invariants are thoroughly discussed

by Sonnerup [1971].

Particle dynamics in the magnetic field reversal of Eq. (2.1) is gov-

erned by the Hamiltonian

| P p? 1 22 \?
H= 24224 - (p 44B, . 2.
1= ot om T om (PJ 4B °2L,.,> (2:2)

Translational invariance in the z and y directions leads to conservation of the

¢ and y components of the canonical momentum, P, and P,, respectively. On

21
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the other hand, energy conservation, £ = mv?/2 = const., is a consequence of
time independence. Thus, we have a dynamical system with three degrees of

freedom, three constants of motion (P, Py, E) and the motion is integrable.

Since P, is a constant of motion, it is convenient to introduce the

effective potential » ,
1 P

The topology of the potential well is controlled by the value of P,. Fig. 2.1 1s a

plot of (a) the effective potential V(z) and (b) the corresponding z — P, phase

space diagram for ¢P, > 0. The case with ¢P, < 0 is shown in Fig. 2.2.

From Figs. 2.1 and 2.2 we observe that as P, changes sign, V(z)
undergoes a bifurcation from the parabolic-like geometry shown in Fig. 2.1,
with a stable O-point at the origin, to the bi-stable potential well shown in |
Fig. 2.2, with an unstable X-point at z = 0 and two elliptic O-points at z =
+2zy, where zp = \/m. For P, < 0, V(z) has a separatrix (SX)
which occurs when F = Ey = Py2 /2m. The presence of the separatrix is very
important since it separates regions with different dynamical behavior that
reach altogether different regions of z anci thus provides the seed for chaotic
particle motion when the system is perturbed by magnetic or electric fields, as

will be shown in the next section.

Fig. 2.3 shows the projection on the y — z plane of charged (¢ > 0)
particle trajectories which occur in the field reversal model of Eq. (2.1). We

distinguish four cases:

(a) P, > 0. The potential V(z) has the parabolic form shown in Fig. 2.1, the

particles drift from dawn-to-dusk, that is, in the +y-direction, and exe-
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Figure 2.1: Effective potential and phase space diagram for ¢P, > 0: (a) V(z),
(b) z — P, phase space diagram.
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Figure 2.2: Effective potential and phase space diagram for ¢P, < 0: (a) V(z),
(b) z — P, phase space diagram.
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cute a north-south meandering motion about z = 0 with a characteristic

oscillation frequency‘wbz, to be defined below.

(b) P, <0, E < Ey. The effective potential has the double well shape shown
in Fig. 2.2. The particles are trapped in the potential wells below the
local maximum at z = 0, drift from dusk to dawn, and execute cyclotron

motion with a substantial V B-drift and with cyclotron frequency

20
Weg = wczOL_z, (24) )
where
quo
cx E 2.
Weao =~ (2.5)

is the cyclotron frequency around the lobe magnetic field Byg.

(c) P, <0, E= Ey. This case corresponds to motion along the separatrix in
phase space. The particles stream from dusk to dawn taking an infinite

time to complete a si'ngle loop in the y — z-plane.

d) P, <0, E > Ey. The energy of the particles is above the local potential
y g

maximum. The particles stream from dusk-to-dawn and execute mean-

dering motion about z = 0.

The equations of motion for charged particles in the magnetic field

reversal of Eq. (2.1) are given by

Py
T = E) (26)
P, =0, (2.7)
P« 2
y=-Y wcmoz—, (2.8)
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- N

qPy>0 z qPy <O
A () E <E, ®

AL QU00
WYV oooo

z : | z
qPy <0 1 ' qP,<0 #

E=E @ E>Ep

= 000

Figure 2.3: Charged particle trajectories for straight field reversals. Here we
take ¢ > 0 and note that for ¢ < 0 the trajectories are the same but with the
replacement P, — —P,. (a) P, >0, (b) P, <0, E < Ey, (¢) B, <0, E = Ey,
(d)Py<0,E>Eo. ' .
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Figure 2.3: Charged particle trajectories for straight field reversals. Here we
take ¢ > 0 and note that for ¢ < 0 the trajectories are the same but with the
replacement By — —Fy. (a) B, >0, (b) P, <0, E < Ey, (c) P, < 0, E = E,
(d) P, <0, E > E,.
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P, =0, (2.9)
P,
y = 2 2.10
i=— (2.10)
. 1 22 z z
P, = - P, + quoE quoL—z = _"'nwcmovyf;' (2.11)

For the meandering orbits across the z = 0 plane the excursions in z,

Az, are bounded by |P, + qBT,o%[ < (2mEL)1/2, which implies

2Lz(2mEL)1/2
quo ]

where £, = E — P?/2m = mv?/2 , and p is the Larmor radius around the

Az <

1/2
| = oy (2.1

lobe magnetic field Byo,

p=—%, (2.13)

Wez0 i

with vy = (/v2 +v2. On the other hand, from the equations of motion we have

that the vertical oscillations across the current sheet are given by

zZ = —wgzz, _ (2.14)
where
2 WezoVy .
= 2.15
Wy Lz ( )

with v, given by (2.8). If v, > 0, then the particles oscillate about z = 0
and if v, < 0, then the particles are ejected from the current sheet since z(t)
from (2.14) is exponentially growing. In an average sense, we will be using w;.

defined by

1/2
Wy = (W'Z)—cw) = w0, (2.16)

where ¢ is the finite Larmor radius parameter,

(2.17)

e= L
L,
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In current sheet plasmas where the magnetic field reverses its direction over
short” distances, the finite Larmor radius parameter can be ¢ S 1 and the
guiding center approximation breaks down. Particle motion in current sheets

can be separated into rapid gyromotion around B in the lobe region and current

sheet oscillations along the vertical direction.

2.1.1 Integration of the Equations of Motion

Particle motion in the magnetic field reversal (2.1) can be integrated
by quadratures with the solutions given in terms of elliptic functions. Since P,

is a constant of the motion, it is convenient to work only with the perpendicﬁla.r

part of the Hamiltonian (2.2)

P 1 2 \?
H, = 5 + 2—m (-Py + quOE) ) (2-18)

and drop the L subscript on the Hamiltonian for notational simplicity.

We first note that for P, < 0 the minima of the effective potential

are located at £zo = +4/2L,|Py|/qBso and the energy at the separatrix is
Ey = Py2 /2m. Introducing the notation

22 = 2} (1 £ RV3), (2.19)

where h = E/Ey, we have that for P, < 0 and £ > FEy the bouncing points z,

are located at z} = 2z} and that for P, < 0 and E < Ep the bouncing points

are located at 2z = 23.

Choosing the ¢ = 0 reference time as the moment when z(t) reaches

the bouncing point we have, for P, < 0 and E > Ey,

= ————1—F(arccos i|m), (2.20)

/z dz
24 \/(z_%_ — 22)(22 — 22%) 22 — 22 Z+

+ bt =
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where
Wez0 .
b= 2.21
oL _( )
2
me T _LtVR Lem<n, (2.22)

22 —22 2R 2
and F($|m) is the elliptic integral of the first kind defined by

¢ dé
F(gim) = /0 V1 —=msin?6

From (2.20) we have that the motion is given by

z(t) = z4 cn(y/2% — 22 bt|m) (2.24)

with the period of the Jacobi elliptic function cn(u|m) being 4K (m), where

(2.23)

K(m) = F(r/2|m) is the complete elliptic integral of the first kind. Noting

that
1/2
V72 — 22 b= /2bzht* = (U—L;;J—T—q> = Wy, (2.25)

the frequency is given by

TWhz
Q= . |
9K (m) - (22)

In the A > 1 limit we have, m — 1/2, K(m) — 7/2, and Q — wy,.

In the limit A — 1 we have, m — 1, K(m) — oo, cn — sech, and the

separatrix motion is given by

2(t) = v2zgsech (‘;’/5";" t) . (2.27)

In the E < Ey, P, < 0 case, we have

1 1 — 22/23
+tbt=——F (a,rcsin ——Z—/ﬁ|m) , (2.28)
24 m
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where y
2 _ 2
28 — 22 2V'h
— = L 0<m<1, 9.29
m ) i vh m (2.29)
and
2(t) = z4dn(bzytim), (2.30)

with the period of the Jacobi elliptic function dn(u|m) being 2K (m) or, from

(2.30),
T = 2Em), (2.31)
bZ+

In the h <€ 1 limit we have, m < 1, z4 = 2o,

z(t) = zo (1 — %) + % cos(west), (2.32)

and the rotation frequency reduces to

z
QO — wep = wcmofz—, (2.33)

which is the cyclotron frequency at the bottom of the potential well.

For P, > 0 the minimum of the potential occurs at the center of the

current sheet z =0, and F > 0. Introducing
22 = ZA(h? £ 1), : (2.34)

" the bouncing points are located at zf = 22 and

z d 1
+bt = / z = (arccosihn) ,  (2.35)
- JE -+ A) R -
where
22 R? — 1 1
m = ZE n z-z*_ = 2h1/2 y 0 S m S —2— (236)

From (2.35) we get
2(t) = z_ cn(wsst|m), (2.37)
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with frequency
TWhz

K(m)"~

Note that in the limit A — 1 we have, m — 0, K(m) — 7/2, 8 — wys, and

Q= (2.38)

Cn. — COS.

From (2.34)-(2.38) we have that the P, = 0 case corresponds to

m=1/2,
2(t) = (20L,)** cn(wsst[1/2), (2.39)
and
TWhz
- — = . 2 2.
0= gpiy = 0847w (2.40)

One of the basic characteristics of nonlinear motion is the dispersion
of the frequency as a function of thel constants of the motion, Q = Q(H, P,). For
the straight magnetic field reversal of Eq. (2.1) the dispersion of the frequency
is given by Eqs. (2.26), (2.31),(2.38), and (2.40). Fig. 2.4 is a plot of /weo
as a function of H = H/muv?, where vg = weols, for P, = P,/mvy = 0.5,
0,and —0.5. The dashed line corresponds to Gy, = Wiz /Wero = (.‘ZfI )i/, For
Py > 0 the frequency is given by Eq. (2.38), and when H - ]55/2 = 0.125
we have, 0 — oy, = (2[—7 )1/ 4. For sz <0and H> ]5,3 the frequency is given
by Eq. (2.26), and when H> ]53, we find Q = 0.84dy; = 0.84—(2]?[)_1/4. When
H— pyz /2 the system takes the separatrix motion and Q) — 0. For P, < 0 and
H< }3;/2, the frequency is giveﬁ by Eq. (2.31), and when < ]35/2, that is,
near the bottom of the potential well, we have O — z/L, = m .
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Figure 2.4: Dispersion of orbital frequencies for straight magnetic field rever-
sa.ls Plot of /w0 as a function of H = H/mv?, where vg = wezoL., for
Py = P,/mvy = 0.5, 0, —0.5. The dashed line corresponds to ws, = wb,/wao =

(2H)Y/4 and is included for reference.
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2.2 Particle Motion in Parabolic Magnetic Field Re-
versals: Chaotic Motion

In order to account for the small but finite magnetic field component
normal to the current sheet of the CPS, it is common practice to add a constant
magnetic field component normal to the current sheet, B, # 0. The introduc-
tion of a constant B, has important consequences because particles with small
pitch angles, & = sin™*(vy /v) < 1, can freely cross the z = 0-plane, connecting

the reversed B,(z) fields on the two sides of the current sheet.

Our model Hamiltonian has the form

p: p? 1 )
H= 24 ond 5 (By = gdy(2,2)), (2.41)

where

Ay(z,2) = —L,Bgln [cosh (Li)} + B,z

z2

~ —Bgo— + B,z; z/L, K 1. (2.42)

2L

There are now two constants of motion (H, P,); the motion is not integrable,
that is, no closed form solution exists; and particle motion may be chaotic.
Chaotic particle motion in parabolic-like magnetic field reversals was first stud-
ied by Bichner and Zelenyi [1986] and Chen and Palmadesso [1986]. Thorough
reviews of nonlinear particle dynamics in current sheets are given in Chen [1992]

and Dusenbery and Martin [1994].

With the coordinate transformation

r— x4+ qujz, (2.43)
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the Hamiltonian for the parabolic field model takes the form

P2 P2 m 2 ?
H= _a:_+ z + — (wczo_'—_wczm>
2m 2

2m = 2 2L
= H,(Py,z) + H,(P,,z) — azz’. (2.44)
Here
P m o,
Hx(Pm, SE) = % -+ —2—LUCZ$U (245)

describes the z — P, cyclotron motion around B, with cyclotron frequency we,

defined by

(2.46)

and
P2 m , 2
HZ(P2>Z) - m + é—wchEZE

(2.47)

is the quartic harmonic oscillator with characteristic vertical bounce frequency ‘

wp; defined in Eq. (2.16). Both oscillators are nonlinearly coupled by the term

—azz?, where

O = MWegoWes [2L2. (2.48)
Reference values for particle and field parameters are listed in Table 1.1.

Following Biichner and Zeleny: [1986] we introduce the parameter

wCZ bz
K== A (2.49)
where
B
b, = —= .
- =5 (2.50)

and € is the finite Larmor radius parameter (2.17). Thus, & has the meaning of

the amount of rotation around B, in one vertical bounce period. For particle
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and field parameters such that £ > 1 (we: > wpz), the magnetic moment
1 = v2 /2B(z) is an adiabatic invariant and particle motion can be described
in terms of the guiding center approximation. For £ < 1 (we; < wyz ), We have

fast vertical oscillations and the current sheet action,
L(H x)—-l—fédz (2.51)
AL on ’ e

is an adiabatic invariant. Finally, for £ & 1 (we; = wy,), there are no adiabatic
invariants and chaotic particle motion is found. Wide spread chaotic motion

occurs for values of x in the range 0.1 S k S 2. The detailed calculation of I,

in terms of elliptic integrals is given in Eqgs. (2.71)—(2.76).

2.2.1 Guiding Center Motion

The & parameter can also be written in terms of the minimum radius
of curvature of the magnetic field lines Ry, and the maximum Larmor radius

Pmaz- To see this we introduce the curvature vector K. derived from the tangent

field b(x) = B(x)/B by

(2.52)

The minimum radius of curvature occurs at the equatorial plane z = 0 where

&, &
Ke = R L. (2.53)

Away from the reversal layer |k,(z)| decreases as 1/|z[®. At z = 0 the magnetic
field reaches its minimum value, Bpmin = B;, and the Larmor radius reaches its

maximum value

= bﬁ (2.54)
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Comparing Egs. (2.53) and (2.54) with Eq. (2.49) we obtain the relation

N 1/2
= = (R"”") . (2.55)

Whz Pmaz

The guiding center approximation is valid if the Larmor radius is everywhere

small compared to the curvature radius. This condition is satisfied for « > 1.

In the guiding center picture, particle motion corresponds to cyclotron

motion around the magnetic field lines distorted by the curvature drift
2
'ITL'U”

(b X K¢)
qB

Ve =

2
Yj b?

B wca:OLz (2_2% + bg)

7€y

: (2.56)

and by the V B-drift
von = mv? b x VB
VB= 9yB B
v? 2212

T el (412 .

(2.57)

Thus, the curvature drift is strongly peaked at z = 0 with the width |z| <

Rouin = b, L, whereas the V B-drift is peaked at |z| = Rmin = boL..

2.2.2 Numerical Integration of the Motion, Current Sheet Action,

and Orbit Classification

To integrate numerically the equations of motion it is convenient to
introduce dimensionless variables appropriate for the current sheet. For a given

value of H = %mv2 we transform the (z, t) variables by

z — (pL,)"?*z and t — t/wy;. (2.58)
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The dimensionless Hamiltonian,

H

h= — 2.
for the modified Harris sheet takes the form
P2 P2 11 ) 2 ]
—teytz (= /2)] — _ ’
h 5 + 5 +3 (e In[cosh(e'/%z)] /i.’IJ) 5 (2.60)

which is a function of the two parameters € and & or € and b,. For the parabolic

magnetic field the dimensionless Hamiltonian is

P2 P2 1,2 , 1
—l& 22 4 (2 gr) =2 2.61
h 2+2+22 KT) 5 (2.61)

which is a function of only one parameter x. In the rescaled coordinates
Eq. (2.58) the relevant spatial parameters are given by

1

_ 1/2 —
p=¢'! a,nd. L, = /7 (2.62)
and the relevant frequencies are given by
= = d -1 2.6
Wy = K, Wy, = 1, and wego = SR (2.63)

Another widely used coordinate transformation, introduced by Chen

and Palmadesso [1986], is given by

& — 0Lz, t— t/we,. (2.64)

The dimensionless Hamiltonian

» H
Heop = m (2.65)

plays the role of the chaos parameter and is related to k through the relationship

fop = — (2.66)

2k
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Figure 2.5: Effective potential V(z, z) for the pé.rabol-ic ﬁeldv model.

From (2.61) we have that particle motion in the parabolic magnetic
X 4

field can be described in terms of the effective potential f
. 2‘ 2 .
V(z,z) = = (Z— - m:) -. . (2.67)

For a given value of z, V(z,z) has the same topology as V(z) of Section 2.1
with kz as the bifurcation parameter. Fig. 2.5 is a plot of the potential V(z, z).
As z is changed, V(z, z) suffers a bifurcation from a parabolic-like shape for

z < 0 to a double potential well for z > 0.

For z < 0 the potential V(z, z) reaches its minimum value at z = 0
and all the orbits cross the z = 0 plane. For z > 0 we can have both crossing

(C) and noncrossing (N) types of motion. Type C motion occurs when

h, > %nﬁ’z? | (2.68)
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and type N motion occurs when

h, < %.‘62.'1}2, . (2.69)
where ,
P 1 (2
=24 |——kz) . 2.
h. 5 T3 (2 hl) (2.70)

The transition from crossing to noncrossing motion occurs when A, = k222 /2.

This dynamical separatrix is termed the CNC separatrix [Burkhart et al., 1991].

The type C and type N motions can be used to classify the different

kinds of orbits:

e Trapped orbits correspond to type C orbits which never cross the CNC
separatrix. Trapped orbits can be periodic if they close on themselves or
quasiperiodic if they never close on themselves. Trapped orbits are also

termed ring or bounded integrable orbits.

o Speiser orbits are orbits which cross the separatrix twice. Speiser orbits
are injected into the current sheet (N — C) where they execute type
C motion before being finally ejected (C — N) from the current sheet.

Speiser orbits are also known as transient orbits.

o Quasi-trapped orbits perform multiple crossings from the separatrix, that
is, their motion alternates between type C and type N motion and even-
tually they are ejected from the separatrix. Quasi-trapped orbits are also

termed unbounded stochastic or cucumber orbits.

Fig. 2.6 is a three-dimensional pllot of a trapped orbit for the modified Harris

sheet model of Eq. (2.60) with x = 0.18 and b, = 0.05. The projection of
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X y

Figure 2.8: Three-dimensional view of a transient orbit with x = 0.18 and
b, = 0.05.
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Figure 2.9: Planar projections of a transient orbit in configuration space:
(a) y — z projection, (b) ¢ — y projection, and (c) z — z projection.




44

Figure 2.10: Three-dimensional view of a quasi-trapped orbit with & = 0.18
and b, = 0.05.
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Figure 2.11: Planar projections of a quasi-trapped orbit in configuration space:

(a) y — z projection, (b) = — y projection, and (c) =z — z projection.
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Sonnerup, 1971] the existence of the current sheet adiabatic invariant
L=y §Pis (2.71)
z o z ’ ’

where the integral is taken over one complete oscillation. The results [Buchner

and Zelenyi, 1989] for type C and for type N motion are

Io= %5(2@)2/3 fo(k), (2.72)
In= 3iﬁfg(zhz)m k), | (2.73)
Fo(k) = (1 — B)K (k) + (2k* — 1)E(k), (2.74)
Fn(k) =2(1 — KNEK(1/k) + (2k* — 1)kE(L/k), (2.75)

k:J%(H\/K;Tz)’ (2.76)

where h, is defined in (2.70), and Wlleie K (k) and E(k) are the complete elliptic
integrals of the first and of the second kind, respectively. The form parameter
k for crossing motion satisfies k£ < 1, for separatrix motion satisfles k = 1, and
for noncrossing motion satisfies & > 1. Fig. 2.12 is a plot of fo(k) for k <1
and of fy(k) for k> 1.

For k < 1 the current sheet action (2.71) is a good adiabatic invariant
for both crossing and noncrossing motion. \/Vhe.n'the cyclotron frequency be-
comes comparable to the nonlinear oscillation frequency (x ~ 1) it is no longer

possible to define an adiabatic invariant and the system is chaotic.
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05

e n 3 .
Figure 2.12: Plot of fc(k) for k <1 and of fn(k) for k > 1 (from Biichner and
Zeleny: [1989]).

2.2.3 Surface of Section Plots and Orbit Classification

Surface of section plots or Poincaré sections are a powerful tool for ob-
taining a geometrical description of the phase space structure of low-dimensional
dynamical systems. Fig. 2.13 is a.'surface of section plot for .the modified Ha.rrisI A
sheet model with x = 0.18 (Hgp = 500). The plot was generated by direct
numerical integration of the motion for a set of N = 1000 particles, which at
t = 0 were uniformly distributed along the z-axis with z = 0, with a dot in
the £ — P, plane each time a particle crossed the equatorial plane. Surface

of section plots for the modified Harris sheet were first obtained by Chen and
Palmadesso [1986).

The salient feature of the surface of section in Fig. 2.13 is the parti-
tioning of the phase space into three different regions: A, B, and C. Trajectories
in region A are bounded integrable or ring orbits. Integrable orbits are confined

to the current sheet region, never cross the separatrix, and their orbital excur-
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Figure 2.13: Surface of section plot for the parabolic field reversal with b, = 0.05
and k = 0.18 (Hgp = 500).
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sions along the z-axis are bounded by the constraint [AZ] < (2pL.)*/?. Orbits
in region B are unbounded stochastic or cucumber orbits. These orbits enter
and leave the midplane several times before being finally ejected away from the
midplane. Orbits in the escape region C are transient or Speiser orbits and they
enter and leave the midplane only once, that is, they cross the separatrix only
twice. Escape regions such as C are a characteristic of unbounded Hamiltonian
systems. The outer circle in Fig. 2.13 corresponds to the intersection of the

energy surface H = F and the surface of section z = 0.

2.3 Liapunov Exponents

Surface of section plots are geometrical tools useful for gaining qual-
itative insight on the phase space structure of low-dimensional dynamical sys-
tems. Using this approach we can explore the regions that exhibit regular and
chaotic motion, we can find out whether or not to expect additional constants
of motion, and we can determine the values of the parameters that signal the
onset of widespread chaos. However, surface of section plots do not provide us

with quantitative information on the “degree of stochasticity” of the system.

It is well known that the separation between two trajectories with
nearby initial conditions grows roughly linearly for integrable motion and ex-
ponentially for chaotic motion. In fact, this sensitivity to the initial conditions
limits our predictive power about the future state of the system. A widely
used approach to quantify the degree of stochasticity of a given dynamical sys-
tem is the method of Liapunov characteristic exponents (see Lichtenberg and

Lieberman [1983] and references therein).

Consider a dynamical system governed by the system of d coupled
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y(t)

ye(t)

dy (0)

Figure 2.14: Evolution of the separation vector éy(¢) in phase space.

ordinary differential equations

ji=fily), i=1,....d . - (2.77)

We want to describe the evolution of the separation (tangent) vector 8y(t)
between the reference or central phase space trajectory y°(¢) with initial condi-
tions y*(t = 0) = y§ and another trajectory (or bundle of trajectories) y(t) with
nearby initial conditions y(t = 0) = y§ + 8yo, as illustrated in Fig. 2.14. The
(largest) Liapunov exponent A is given by the average exponential separation

rate between two trajectories with nearby inital conditions

PN S 1O |




o1

2.3.1 Tangent Flow
Substituting y(¢) and y°(t) into (2.77) and linearizing the difference,

we obtain

5y(t) = K(2) - 6y (1), (2.79)

where

K(t) = (2—;) s (2.80)

is the Jacobian matrix of f.

The formal solution to (2.79) is
. t
§y(t) = [T exp [ dt’K(t’)] §y(0) = U(t)6y(0), (2.81)
0

where the time ordering operator T [e.g., Sakurai, 1985] has to be introduced
because the matrices K (t) and K(#') do not commute in general for ¢ # ¢'. The

Liapunov characteristic exponents Ay, ..., Aq are defined as

(A1, Az, 0, Ag) = lim %In || eigenvalues of U(t)]]. (2.82)

Expanding 6y(0) in terms of the eigenvectors {&;} of U(?),

d .
8y(0) = a;é;; a;=08y(0) &, (2.83)
£
we obtain from (2.81)
d .
16y (@)l = | 3 a;ePt| oc e for t — oo, (2.84)
j=1 |

where 0, is the phase of the j-th eigenvalue of U(t). Let e be the largest eigen-

value of U(t). The value e* dominates the sum (2.84) because the remaining

terms decay as exp [—(A'— A;)t].




o2

Since in the direction along the flow, §y(t) grows linearly with time,
at least one of the Liapunov exponents must vanish. For Hamiltonian sys-
tems with N degrees of freedom, the Liapunov exponents have the following

symmetry:

Aj = —AaNjt1s J=1,2...,2N. (2.85)

This symmetryis a consequence of the phase space volume-preserving property:
if the system is expanding along one direction, then it must be contracting along
a different direction. For Hamiltonian systems we have E?ivl A; = 0, and for

integrable Hamiltonian systems we have A; = 0 for all j.

The characteristic exponent X is a global measure (computed for the
whole trajectory y.(t)) of the instability of the system. However, A does not

provide us with information about the local stabﬂity of the system.

We introduce the local instability index vy, (t) in the following way.

Assume
by(t) = Syoexp{ [ (). (2.86)
~ Substituting (2.86) into (2.79) we find that the »’s are the eigenvalues of the
Jacobian matrix K(¢). We define the local instability index vy, (t) as the eigen-
value of K(t) with the largest real part. If vn(t) is purely imaginary, then
y(t) is performing cyclotron-like motion about y°(t). On the other hand, if
Revy,(t) > 0 (< 0), then the divergence (contraction) is exponential and the

motion is locally unstable which can lead to overall chaotic motion.
When the central trajectory y°(t) is a closed or periodic function of
t with period T, y°(t) = y°(¢ + T'), the Jacobian matrix is a d x d, T-periodic

matrix. In this case, it can be shown that any solution of Eq. (2.79) can be
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written in the form
X(t) = A(t)e®; A(t)=A(t+7T), (2.87)

where X, A, and R are d x d matrices. From Eq. (2.87), we have

X(t+T) = X(t)eTR. (2.88)

Thus, the evolution of the tangent flow in the neighborhood of the reference
trajectory y°(t) is determined by the eigenvalues of the constant matrix eTR,
These eigenvalues are the characteristic Floquet multipliers [e.g., Guckenheimer
and Holmes, 1983].

To compute ), given an initial separation 8y (0), Eq. (2.79) for 6y (?) is
integrated numerically, then the norm of the tangent vector |6y (t)]| is obtained

and the result is substituted into (2.78).

2.3.2 Benettin et al. Method

When the tangent flow method is applied, care must be exerted be-
cause numerical overflow can occur if ||§y(¢)| increases exponentially with t
. In order to overcome this difficulty, a second method [Benettin et al., 1976]
can be used that is based on the original nonlinear equation (2.77). In this
method one calculates the divergence of nearby trajectories by direct mtegra-
tion of (2.77) for finite time steps 7, renormalizes y(j7) — y(j7), 1 =1,2,...,

to unity after each time step, and takes the average
1 ¥ : :
A = 7= 2 nlly(57) = y*(m)ll (2.89)
T j=1

The Benettin et al. [1976] method is illustrated in Fig. 2.15.
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ye(271)

Sy (0)
yc (0 )

ye(1)

Figure 2.15: Numerical calculation of the largest Liapunov exponent (after

Benettin et al. [1976)).

In the following sections we consider the Liapunov exponents and the

local instability index for the standard mapping, for the Hénon and Heiles [1964]

system, and for parabolic magnetic field reversal.

2.3.3 Standard Mapping

In order to show how the value of A is computed, consider for example

the standard mapping [Chirikov, 1979]
iy = L+ Ksin6,
9n+1 = 9n + In+11 (290)

where K is the stochasticity parameter and the integer n = 0,+1, £2,... labels

the discrete time step.
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The separation vector between two nearby points, -

61,
§yn = (59 > , (291)

evolves according to the linearized mapping
5z = K(n) - 6yn, (2.92)
where the Jacobian matrix is given by

1 Kcosb, ) (2.93)

Kin) = (11—[-Kcos9n

The matrix K(n) describes the local linear stability of a fixed point if y©1s a

fixed point and determines A if y°(n) is a trajectory.

The eigenvalues of K(n) are given by .

kn k, '
yi(n)=1+?:!: kn (1—{— 4), (2.94)
where
k, = K cosb,, (2.95)
and they satisfy the relation
pa(m)u—(n) = 1, (2.96)

necessary to preserve the phase space volume. On the other hand, the eigen-
values (2.94) depend on the time step n; that is, in order to determine the
Liapunov characteristic exponents, it is necessary to solve for the evolution
of 0,. However, Chirikov [1979] considered the calculation of the Liapunov

exponents for two special cases: fixed points and the K > 1 limit.
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The standard mapping (2.90) has period-1 fixed points at (/,0) =
(27, 0) and (27n, 7). At the period-1 fixed points the Jacobian matrix takes

(1 &
K:(11+k>’ (2.97)

with & = K for the § = 0 fixed point and with k¥ = —K for the § = 7 fixed

the form

point. The eigenvalues (2.94) of K are now given by

For —4 < k < 0 the eigenvalues are complex numbers and |u+| = 1, that is,
the eigenvalues are located on the unit circle, which means that the motion is
locally stable. For k > 0 the eigenvalues lie on each side of the unit circle with

|p4| > 1 and |u-| < 1, and the motion is locally unstable. Both situations are

illustrated in Fig. 2.16.

For the period-1 fixed points the tangent vector is given in terms of

the eigenvectors €+ of K by
8Yn = Un€y + vpéo (2.99)
with
Un = U]y = U™, vy = vou™ = voe™\ . (2.100)
For |uy|>1 and |u—| < 1 the eigenvectors &, and é_ define the directions of -

dilation and contraction, respectively.

For K > 1 Chirikov [1976] pointed out that k¥ = K cosf is large

except in narrow stable phase intervals, made the approximation |uy| ~ |k| =
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Imp
4 ® -4<k<0
® k>0

Figure 2.16: Eigenvalues of K for the standard mapping. For —4 < k < 0
the eigenvalues of K for the period-1 fixed points are located on the unit circle
(dots). For k > 0 the motion is locally unstable and the eigenvalues are located

on both sides of the unit circle.




58

K| cos 8], and estimated the value of the largest Liapunov exponent by averag-
ing In |p+ ()| over the phase:

Ay =<In|p4(0)] >= 51;/0% df1n(K|cosf|) = In {é{— (2.101)
Chirikov [1976] found good agreement between Eq. (2.101) and the numerically
calculated Ay for K 2 4. In particular, for K = 6.21 the theoretical estimated
value obtained from (2.101) is Ay = 1.133 and the numerically obatained value

is Ay = 1.164, giving a ratio A;/Air = 1.027.

2.3.4 Hénon-Heiles System

In order to illustrate the usefulness of the local instability index, con-

sider the Hénon and Heiles [1964] system with the Hamiltonian given by

Pz P? 1 2
H=F+3+g (vt e2t-g0). (2.102)

The Hénon and Heiles potential is shown in Fig. 2.17: curve (a) shows the

functional dependence of U on z and y, and curve (b) the isopotential lines for
U. |

For the system (2.102) the equations of motion are given by

.
y = J;w _| —® J;f‘”y (2.103)
P, —z? —y +y°
and the Jacobian matrix is
0o 1 0 0
K = —1-2y0 -2z O (2.104)

0 0 0 1
-2z 0-1+2y0
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1
-1 -0.75%0.50.25 0 0.250.50.75 1

®)

Figure 2.17: Potential U for the Hénon and Heiles problem: (a) The Hénon
and Heiles potential, (b) contour lines for U.
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with the eigenvalues given by
v(t) = +(—1 % 2r(t))'/?, (2.105)

where

r(t) = \/22(t) + y2(8). -~ (2.106)
From (2.105) we have that the motion is neutral for » < 1/2 and that local
instability occurs for r > 1/2. Writing the Hénon and Heiles potential in polar
coordinates :

2 3

U(r,0) = 5 + 0 sin(30), (2.107)
we have that for fixed r the potential has a minimum value at ¢ = 37/2. In
particular, for r = 1/2 (the stability-instability border), we have Unin (1 =
1/2) = 1/12. Thus, if the system exhibits chaotic motion, then its ‘energy must

be E > 1/12. Widespread chaotic motion in the Hénon and Heiles system
occurs for £ > 1/8 [Hénon and Heiles, 1964].

2.3.5 Local Instability for Parabolic Field Reversals

Consider now particle motion in the parabolic magnetic field model

with the Hamiltonian of Eq. (2.61). With the vector y defined as

(2.108)

(5 o) (2.109)
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and the Jacobian matrix is given by

0 1 0 0
—k20 Kz 0

S O (2.110)
Kz 0—-‘;’-z2+fw0

The local eigenvalues of K are the roots of the characteristic equation
Vit dvt+c=0, (2.111)

where

d(t) = =2* — kz + £ (2.112)

and
2

o(t) = &’ (% - mw) = k%vy(t). (2.113)

The characteristic equation (2.111) has four roots,

() = % [~d(t) = /@ (0) - 2(t)] (2.114)

occuring in pairs (v1, —v1) and (v, —v3) to preserve phase space volume, and

the local instability index v,, is given by the root with the largest real part

V2 (t) = % [~dte) + /@) - ()] (2.115)

The condition for the system being umstable is c(t) = &’vy(t) < 0. This

condition is in agreement with the equation of motion
Z=—v,(t)z, (2.116)

which indicates that for v,(t) > 0 the particle oscillates about z = 0 and for

vy(t) < 0 the particle is ejected from the current sheet. Fig. 2.18 is a plot
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on the complex plane of the eigenvalues of K for (a) ¢ > 0, (b) ¢ = 0, and
(c) ¢ < 0. In all the above cases we have used x = 0.18 and z = 0. In case (a)
we have computed the eigenvalues for v, = 1/2, and in case (c), the unstable

case, we use v, = —1/2.

Fig. 2.19 is a plot of v2, as a function of « and z for £ = 0.25. The
local instability index »2, can be positive only in the quasineutral layer (the
unstable region) and reaches a maximum at z = 0 where separatrix crossing

occurs.

In the b, — 0 limit the magnetic field configuration becomes a straight
field reversal where the charged particle motion is integrable. In this limit
k = b,/e’? — 0 and from (2.112) and (2.113) we have that c(t) — 0,
d(t) — 32%(t)/2. The characteristic equation (2.111) has two roots equal to
zero and two purely imaginary roots given by v(t) = :i:i\/g|z(t)|, as expected
for integrable motion. |

Now consider the local instability index or local divergence-contraction
rate vy, and the largest Liapunov exponent A for the parabolic field reversal.
We can find an upper bound for A by noting that the maximum value of ¥,
occurs for (kz,2z) = (1,0) where 2,, = 1 (remember that we are using the
rescaled variables of Eq. (2.58), where the time is given in units of wit and
where the spatial lengths are given in units of ( pL;)*?). In taking the bound on
kz we are using that, for z = 0, the maximum possible value of £z in Eq. (2.61)
occurs for P, = P, = 0. We can also obtain this result by noting that »2 can
be positive only for |z|/L, < 1 where v, & y/kz with > 0. On the other

hand, in the equatorial plane (z = 0) we have

&= —k’z; (2.117)
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Figure 2.18: Roots of the characteristic equation (2.111). (a) vy, = 1/2, (b) vy, =
0, (c) vy = —1/2. The eigenvalues are shown for z = 0 and « = 0.18.
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Figure 2.19: Local instability index v2(z, z) for parabolic field reversals. The
plot was generated from (2.115) with « = 0.25. '

that is, at z = 0, the value of z a._lterna.tes between Tng; and —Tma.z, Where
Tmaz > 0, with period' AT = 27 /x. Approximating

v

~o
Tmaer ~

=+ (2.118)

cz

and noting that in the dimensionless variables (2.58) p — €'/2, we have

zmcz: -

(2.119)

x|~

and

Vmaz = VKZmazr = 1. (2120)

The largest Liapunov exponent A and the local instability index vy (%)

are related by
= lim v (t) <v, =1 (2 121)
T T m = Ymaz . .
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Thus, if the motion is chaotic the upper bound for A is A < 1. For the reference

parameters of Table 1.1 A < wy, < (7/10)7*s71.

It is important to note that local instability does not imply global
chaos. However, if the motion is chaotic, an upper bound for the largest Lia-
punov exponent can be found if we can determine the maximum value of the
local instability index. This way of estimating an upper bound for A must be
contrasted with the usual numerical calculation of A by either the Benettin et

al. method or by direct integration of Eq. (2.79).

In general, except for ring orbits, the charged particles do not remain
indefinitely trapped in the current sheet, but stream towards the Earth-after
crossing the mid-plane (z = 0) several times. It is during these crossings of
the equatorial plane that the local instability index can take finite values, that
is, the spectrum of v, (t) exhibits periods of instability bursts. For this reason
it is appropriate to describe the local instability of the system by estimating
the number of e—foldinés during one current sheet traversal, A = v, AT, where
AT is the time during which the particles remain in the current sheet region,
and by computing the quantity ¥ = AAT/ number of bursts during the time
period At = [t1, t3). '

For the parabolic field model (1.34) the time spent in the unstable
region can be estimated by the cyclotron period of gyration around B, AT =

T., = 2/ k. Noting that vm(t) < Vmae = 1, we have

Aoz = (VAT s < 2. (2.122)
On the other hand, we have
= b ~ (2.123)

T wy,  (2H/mo@)Vt HVY
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Table 2.1: Expansion Rates for Instability Bursts.

Energy  Time length A No. of bursts X
(keV) ¢y —t; (hour)

1 0.9 ~ 11 2 ~ 6
3 0.8 ~ 22 3 ~ 7
30 0.4 ~ 21 3 ~ 7

where vo = L;wego. Thus, from (2.122) and (2.123), we expect the local insta-

bility A to increase with increasing H.

Horton et al. [1991] have calculated A and ¥ for protons with energies
set at 1keV, 3keV, and 30keV in the semi-empirical T'syganenko [1987] model
of the magnetosphere for quiet times (K, = 1). The results are shown ﬁl'
Table 2.1. The time intervals t; — t; are chosen such that they are less than
a few hours since larger At means that the protons are at the Earth region or
the magnetopause boundary.

Horton et al. [1991] also computed AAt and ¥ for 30 keV protons with
K, = 6, which corresponds to a magnetic storm period, and A is found to be
~ 34 over half of an hour period and the corresponding ¥ = 11 ~ 12, which is

twice the expansion rate obtained in quiet times (K, = 1).

| Chen [1993] has estimated the local divergence of the particles during
the scattering process by the current sheet in the modified Harris model (1.33)
as a function of H'/4 where H is defined in (2.65). For this purpose Chen

introduces a finite-time analogue of the Liapunov exponent by

1 & w;
M=-—>In (—J> , 2.124
AT JZ=; Wo ( )
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Figure 2.20: Ensemble averaged exponential divergence rate < A* > as a func~
tion of H (from Chén [1993)). :

where wp is the norm of the initial tangent vector, w; is the norm of the tangent
vector after the j-th time step, At is the time step, and L is the total number
~ of time steps from the first to the last crossing of the equatorial plane. The

tangent vector is normalized to the initial norm wo after each time step.

Fig. 2.20 (from Chen [1993]) is a plot of < A* >, where.
1
o= — : 12
<A > M;A”" (2.125)

for ensembles of M stochastic particles (M = 40 — 400), as a function of /4
and for fixed b, = 0.1. |
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2.4 Motion in Sheared Parabolic Magnetic Field Re-
versals

In order to account for the dawn-dusk magnetic field component, By,

from the interplanetary magnetic field which soaks into the magnetosphere,

consider the following model

Z . A A
B = Bagof—eac + B,é, + &, (2.126)
where B, = const. Particle motion in the presence of the magnetic field

of Eq. (2.126) has been considered by Karimabad: et al. [1990], Horton et
al. [1991], Biichner and Zelenyi [1991], and Herndndez et al. [1993].

The Hamiltonian for the system in the magnetic field of Eq. (2.126)

is given by
p? 1 , 1 22 2
H=-—"2+—(F—¢B, — | P, w0 — qB.x | . 2.127
2m  2m (P = aBy2)" + 2m (PJ +ab °9L, 1 m> ( . )

For vanishing B,, the system has three constants of motion (H, Py, Fy) and is
integrable. However, for B, # 0 there are only two constants of motion (H, P,)

and the system may become chaotic, depending on the value of B, and on the

total energy.

From (2.127) the equations of motion are given by

i= % w2, (2.128)
J—;f= ey (2.129)
y = % +wcxo£ — W T, (2.130)
i =0, (2.131)



69

P
;= — 2.132
-2 2152
P, z
— = Wy — Weg0 7 J. 2.1
— WeyT — W OLzy ( 33)
In particular, combining (2.130), (2.132), and (2.133) we get
. P, z 2 :

which has the form of a nonlinear Mathieu equation with a driving term we, 2.
The equations of motion (2.128)—(2.133) are symmetric under the simultaneous

transformation

z—z, z— —z and By — —B,. (2.135)

Charged particle motion can be described in terms of the guiding
center approximation when the magnetic field is slowly varying over the size of
the orbit. Consider in particular the curvature vector k.. The curvature vector

for the magnetic field lines is given by

k.,=b-Vb

b, z z .

= 2 bz A:p"'b'x_h'z — Uz 2z 2.
L(Z+n+8) A e R B

and the minimum curvature radius, which occurs at the equatorial plane, 1s

given by :
1 ' b, :
R L.+ 7)’ (2.137)
where ‘
b, = B, and b, = 5. . (2.138)
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On the other hand, the maximum Larmor radius is given by

MU Vth 1 14 : :
maz — \ T 1 = = . 2.139
’ ( ¢B )zzo Weso f02 B2\ [B2 + B2 (2:139)

Comparing (2.137) and (2.139) we have

pmam bz 1 b3
= = =2 2.140)
R 6(63 + 63)3/2 K2 (bf/ + 63)3/2 ( )

The guiding center approximation is valid when

Prmaz L
—_— 1. 2.141

For particle and field parameters such that (2.141) is satisfied, charged
particle motion can be described in terms of guiding center drifts. In particular,

the curvature drift is given by

v muj v
=B (b X )
i b (8,8, — b,8,) (2.142)
= €y — Oy€, L4
Wezo L, ()3;—22+b§+b§)2 v — Oy
and the V B-drift is given by
mv? b x VB
Vo= —=————
V= 2B B
v = P '
- z (byém - L—éy> : (2.143)

= 2
2wcz‘OLz (Z_zg. 4+ 632/ + bz)
The constant cross-tail field component B, introduces a north-south curvature

drift component and a V B-drift along the z-direction.

The orbit classification into transient, quasi-trapped, and trapped

orbits remains valid in the B, # 0 case. Fig. 2.21 is a plot of an integrable
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trajectory for B, = B,: (a) projection on the y — z-plane, (b) projection on the
z — y-plane, and (c) projection on the z — z-plane. As observed in Fig. 2.21,
the particles tend to follow the tilted field lines spending longer times in the
quasirieutral layer, because of the increment on the effective field line length
introduced by B,. As shown in the previous sections, oscillations about the
2 = O-plane are bounded by |z| < A = (pL,)/%. We can define an effective

bound to excursions in the z-direction, A.ys, by

e B(z) B(z=0)
Auss = /0 de 2~ =, (2.144)
so that 1/2
AWTES (1 + E) A (2.145)
eff = b2 . .

Furthermore, we define L.ss through the relation
Acss = (pLess)'*. (2.146)
Comparing (2.145) and (2.146) we find

| by .
Leff = (1 4+ b_;> L,. (2.147)

Under the above approximations, the effective bounce frequency along

the tilted field lines is given by

VehW 1/2 wy
eff __ th%cz0 _ z
will = (-—L = ) = —, (2.148)
€ 1+Elé'

and the cyclotron frequency at z = 0 is given by

2\ 1/2 .
w, = <1 + b_g) Wez- (2.149)
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From (2.148) and (2.149) the effective nonadiabaticity parameter «css is given

by

W, 3
ceff = —a = | 1 + =2 | &. 2.150
el wil ( . 53) " ( )

In the rescaled variables of Eq. (2.58), the Hamiltonian of Eq. (2.127)

takes the form ,

Pl 1 (2 ? '
h = o) + '2'(P:c - ”“",‘I‘?")2 T 9 ('é_ - ECU) ) (2'151)
where
b,
o = 0 (2.152)

The Jacobian matrix for the system is

0 1 — Ky 0

—k% 0 Kz 0 '

K= 0 0 0 1 (2.153») :
KZ Ky ——%z2 — K2+ Kz 0

and the local eigenvalues of K are found by solving the characteristic equation
v+ d(t)v? +c(t) =0, (2.154)

where

d(t) = =2> + k2 + K> — Kz (2.155)

DN Qo

and

c(t) = (-2—2 - m:) K2 = KPuy(t). (2.156)

Comparing Eqs. (2.154)~(2.156) with the corresponding results in Eqs. (2.111)-
(2.113) for the case with B, = 0, we observe that the only difference is in the

d(t) coefficient of the characteristic equations (2.111) and (2.154). Denoting
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the d(t) coefficient for the B, = 0 case as do(t), we have that d(t) and do(t) are

related by
d(t) = do(t) + £2. (2.157)

From (2.154) we have that the local instability index is given by

V2 = -;- [~d(e) + /@) - (0] (2.158)

and the motion is locally unstable if
c(t) = kv, (t) < 0, (2.159)

just as in the case with B, = 0.

In the x — 0 limit, we have c(tj — 0 and d(t) — 222 4 &2, and
the characteristic equation (2.154) ha,s.two roots equal to zero and two purely
imaginary roots v(t) = :ti\/%—zz—rfcg, as expected for integrable motion.

'I_‘he local instability index v, reaches a maximum value Vmae ab

(kz,z) = (1,0) where

1
o = 5[1 = (& + 62 + /(0 + 2 +R2)P =42 (2160)

mar 2

The maximum value of the local instability index can be used to estimate an

upper bound of the largest Liapunov exponent A by noting that

A= 711_{1010 %ym(t) < Vimags (2.161)
where Vpmqe is given by Eq. (2.160). Consider for example the following two
cases: (1) (ky,&) = (0,0.18) and (2) (ky, &) = (5&, &), with £ = 0.18. Substi-
tuting these values of & and &, into Eq. (2.160) we find that in the first case,

Vmaz = 1 and in the second case, Ve = 0.4. These values of vpma, suggest
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that the degree of stochasticity for the case with B, = 0 and x = 0.18 is larger
than the degree of stochasticity for the case with B, = 5B, and x = 0.18. This
statement can be tested by plotting the surface of section plot for the second
case, which is shown in Fig. 2.22, and comparing it with the surface of section

plot for the first case, which is shown in Fig. 2.13.

Fig. 2.23 is a Poincaré section in the equatorial (z = 0) plane for
b,/b, = 1. The effect of b, # 0 on the phase space structure can be accounted
for in the following way: For b, < b, the phase space structure remains the
same as that described in Section 2.2 for b, = 0. However, as by is increased
the fraction of the phase space covered by chaotic orbits increases, reaches a
maximum for b, ~ b, and then starts to decrease, becoming negligible for

by > b,, where the adiabatic approximation can be used.
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Figure 2.22: Surface of section plot for By/B; = 5 and £ = 0.18.
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Chapter 3

Chapter 3. Decay of the Correlations, Power
Spectrum, and Chaotic Motion

In this chapter we introduce two quantities, the single particle two-
time velocity correlation function C(7) and the power spectrum C(w), which
are useful both for identifying chaotic motion in deterministic systems and for
establishing an analogy between systems that exhibit deterministic chaos and
collisional processes. The two-time velocity correlation tensor is the fundamen-

tal kernel of the statistical equilibrium transport matrix.

The correlation function C(7) is defined as the time average of the

- sroduch-of two-values-of the-velocity which are a time 7 apart. On the other

[

hand, the power spectrum C(w), which is defined as the Fourier transform of

C(r), describes how the power in a signal is distributed over frequency.

Associated with C(7) there is a memory, correlation, or coherence
time 7,. The correlation time should not be confused with the inverse of the
Liapunov exponent A™*. Whereas the correlation time is a measure of how long
it takes for a system to forget its past, the Liapunov exponent, which is the long
time average rate of divergence for a bundle of neighboring trajectories in phase
space, is a measure of the sensitivity of the system to its initial conditions, or

to how fast the particle mixing occurs in phase space.

For collisionless motion, C(7) and C(w) have several properties. For

integrable motion C(7) oscillates without decay, the memory time 7. is infinite,
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and the power spectrum C(w) consists only of discrete lines at the orbital
frequencies. On the other hand, for chaotic motion, which displays an irregular
and aperiodic behavior, C(7) decays, the memory time 7, is finite, and there

is broad band noise in C'(w).

The analogy between collisional processes and chaotic motion can be
established by comparison of the properties of C(7), 7., and C'(w) in both cases.
In the presence of collisions the correlation function decays, the correlation time
corresponds to the collisional time, and the power spectrum is broa dand due

to the continuous mixing of orbital frequencies by the collisions.

The above analogy between chaotic motion and collisions led Hor-
ton and Tajima [1990] to postulate that in the collisionless environment of
the geotail the finite conductivity, necessary to explain magnetic merging, is
due to the decay of the velocity correlations produced by chaotic particle mo-
tion. Furthermore, for the parabolic field model and for the modified Harris
sheet model, Horton and Tajima showed that C(7) exhibits a power law decay
(1e/7)™. This power law decay of the velocity correlations is reminiscent of the

power law decay in molecular Lorentz gas scattering.

3.1 Velocity Correlations and Power Spectra for Single
Particle Motion

Consider for simplicity (a general formulation will be given in the
next chapter) the a-component of the velocity vector v,(t). We define the

single particle two-time velocity correlation function Cua(7) by

T/2 Jt

Coaa(T) = va(t)va(t —7) = Il:rrc}o s Tva(t)va(t - 7). (3.1)
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This function is also called the auto-correlation function for the time signal
v(t). For a distribution of N particles that is ergodic the single particle cor-
relation function in Eq. (3.1) is iﬁdependent of the initial conditions and thus
the same as the —]1\—, Y | ensemble averaged correlation function. In general the
magnetospheric particles are not ergodic.

For non-stationary orbits due to slow variations of the equilibrium
Teq Or finite particle confinement time 7055, the approximation in (3.1) of a
stationary correlation function C(t,¢') &~ C(¢t —t') is valid when the decay time
7. 1s smaller than 7., and 7Tjsss-

Note that Cae(r = 0) is the mean square value of v4(t). Normalizing

the correlation function by its initial value,

Ceal?) _ Gu(r), (3.2)

we introduce the correlation or memory time 7. through the relation
S A
T = / d1Chu(T). (3.3)
- Jo

In this section we consider only the ca-component of the velocity correlations
and drop the aa subscript. In the central plasma sheet of the geotail where
there is a small dawn-dusk electric field, E, ~ 0.1 mV/m, we are interested on

the yy-component of the conductivity and take C(7) = Cyy(7).

Another useful quantity is the velocity power spectrum C(w), which

is the Fourier transform of the velocity correlation function C(),

O(w) = /_ °; dr &7 O(r). (3.4)
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It is important to note that C(w = 0)/2 = 7, because this value determines

the dc conductivity, that is, the response of the magnetosphere to a constant

uniform electric field £,.

Fig. 3.1 is a plot, using the dimensionless variables of Eq. (2.58),
of (a) the y-component of the velocity as a function of time vy(t), (b) the
corresponding two-time velocity correlation function ¢ (1), and (c) the velocity
power spectrum C(w) for an integrable (zing) orbit in the parabolic field model
of Bq. (1.34). Similarly, Fig. 3.2 is a plot of (a) v,(t), (b) C(r), and (c) C(w) for
a chaotic (cucumber) orbit. The correlation time for the ring orbit is infinite

and the correlation time for the chaotic orbit is 7. & 2.4/wy,.

The velocity correlation for a single proton in the dawn-dusk direc-
tion for the Tsyganenko [1987] magnetosphere model has been calculated by
Horton et al. [1991] for a 1 — 15keV proton by assigning its initial position at
(=100 Rg,0,0). The rapid fall for the first 20 sec (roughly speaking) and the
following power law decay for the qorrelation function is similar to that shown

in Fig. 3.2. The power law fit to the correlation C(7) o J5 gives the following

results:
~ 0.51keV

~ 0.6 3keV
~ 0.7 6keV
~ 0.8 15keV.

S =

More energetic particles with a larger A have a faster decay index.

As can be observed from Figs. 3.1 and 3.2 there are several qualitative
differences, in terms of C(r) and C(w), between integrable and chaotic motion.

The relevant properties of C (1) and C (w) are:

o Integrable motion: C(7) oscillates without decay, 7. — o0, and C(w) has
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spikes (6-functions) at the orbital frequencies and their first harmonics;

o Chaotic motion: the velocity correlation function o (1) decays, 7. is finite,
and C’(w) has a continuous grassy or noisy structure and there is a broad

band of absorption frequencies.

The existence of a broad band spectrum for chaotic motion can be
understood in the following way. In integrable systems the phase space trajec-
tories lie on well defined invariant tori, and each torus is parametrized by the
action variables I with a well defined set of corresponding angular frequencies
w(I). However, when a perturbation is applied to the system so that motion
becomes chaotic in some regions of phase space, the invariant tori are broken
and there is an irregular broad band of absorption frequencies. The decay of
the correlations for chaotic motion occurs due to the continuous mixing of the

orbital frequencies.

3.2 Velocity Correlations and Power Spectrum in the
Presence of Collisions '

Let us now compare the results of the previous section for collisionless
motion with the corresponding results for particle motion in the presence of

collisions. In particular, consider Figs. 3.3 and 3.4.

Fig. 3.3 is a plot of (a) the projection on the y-z plane of the motion
of a charged particle moving in the presence of a constant, uniform magnetic
field B, along the z-axis, (b) the yy-component of the two-time single particle
velocity correlation function C(r), and (c) the velocity power spectrum C(w).

Fig. 3.3 was generated by the integration of the equations of motion with the
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Lorentz force,

Vg = WeUy,
Vy = —WeUz,
b, =0, (3.5)

where w, = ¢B,/m. As expected for integrable motion, the correlation function

oscillates without decay and the power spectrum has a sharp spike at w = we.

The results for charged particle motion in a uniform, constant B,
in the p.resence of small-angle, energy conserving kicks are shown in Fig. 3.4.
Fig. 3.4 was generated by the integration of the equations of motion (3.5) and
changing the poloidal and azimuthal angles of the velocity vector by a small

quantity,

6 — 6+ A0,
é— ¢+ Ao, (8.6) |

every time step At = 15/w,. The increments in the angles are chosen from
a uniform random distribution —27/360 < A0, A® < 27/360. As observed
from Fig. 3.4, ¢ (7) decays and C’(w) has a broad band structure due to the

collisions, and the collisional time is given by the correlation time of Eq. (3.3).

Comparing Figs. 3.1 and 3.2 with Figs. 3.3 and 3.4 we find that chaotic
particle motion is similar to a collisional process, with the effective collisional

time given by the characteristic velocity decorrelation time of Eq. (3.3).



e o o o . e a o e e
. . e - . =




87

20

49

"
108 128

vl

(]
0.4
"2

‘ &M“Muﬂ‘vﬁ_ﬂf\!\j\.\’. ahanaans

AaarAfan

i

WY T AMAT Y

L
40

i L
(1] (1]

R
te@ 120

Wpz T

1

2 3

4 s

o/ e

Figure 3.4: Velocity auto-correlation function and power spectrum in the pres-

ence of collisions.



88

3.3 Decay of the Correlations and the Collisionless Con-
ductivity in the Geomagnetic Tail - |

The idea that the decay of the velocity correlations due to chaotic par-
ticle motion is similar to the decay of the velocity correlations due to collisions
has been used by Horton and Tajima [1990, 1991] to explain the collisionless

conductivity in the geomagnetic tail.

The electrical conductivity o depends on the coherence time 7. for

acceleration of a particle by the electric field,

2
o="Lr, (3.7)
m

In kinetic theory 7. is determined by the decay of the two-time velocity cor-
relation function for the particle. In the presence of collisions this decay time
is simply the mean time between collisions. In the presence of a turbulent
spectrum of waves the decay time 7, is the scattering time of the particle’s

momentum by the waves.

For integrable orbits and in the absence of waves or collisions, C(r)
oscillates without decay showing the reversible and long-time memory of the
particles. For chaotic motion the momentum of the particles is scattered by the
Lorentz force, Ap = ¢qv X B(x) At, and o (1) decéys showing that the particles

have a finite memory just as in the case of collisions.

The procedure of Horton and Tagima [1990] for calculating the col-
lisionless conductivity is: calculate the orbits of the particles and their single
particle velocity correlations, and then average over ensembles of particles to

obtain the proper weighting factors from the various kinds of orbits, that is,
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with the effective correlation time given by

</ ar0(r)) = *{0w=0)). (3.8)

Fig. 3.5 is a plot of <ln o (T)> as a function of In(w;,7), obtained for
the sheared parabolic field model of Eq. (2.126) for a case with a net dawn-
dusk magnetic field component. In Fig. 3.5 C’(T) is normalized in such a way
as to have C (r = 0) = 1, no electric field E, is actually present in the orbit
calculation, and the parameters of the simulation are x = 0.18, by/b, = 2,
b, = 0.05, and N = 1000. The plots were generated by launching a Maxwellian
distribution at y = z = 0. We observe that, as in the case with no cross-tail
magnetic field, the ensemble-averaged correlation function behaves according

to a power law with several decay indices my with 0 < m, <1,

<é(7)>=;£(—z’”+,z—1.2..., (3.9)

where c,(7) are periodic or quasiperiodic functions of the orbital frequencies
and strength such that S,c/(0) = 1 and the term with the smallest decay
index, Mumin ~ 0.5, dominates for large 7. Analytic expressions for the conduc-
tivity based on the power law decay of (C(7)) are given in Horton and Tujima
[1991a,b].

Fig. 3.6 is a plot of the ensemble averaged power spectrum, <C’ (w)>,
as a function of w/wy;, with the same simulation parameters as in Fig. 3.5. In
this plot there is a spike at w/wy, = &, which corresponds to the resonance from
the cyclotron motion about the B, component (W= we = q¢B; /m). The area
below the power spectrum curve was obtained by using a composite Simpson’s

rule integration algorithm. The value obtained, 1.58, from the summation is in
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< logC(7) >

log(ws:T)

Figure 3.5: Plot of < In C(r) > as a function of In(ws, 7). The parameters for
the simulation are & =0.18, b, = 0.1, and b, = 0.05. The power-law decay of
the velocity correlations is indicated by the straight lines. The slopes of these
lines are the decay indices m..
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good agreement with the 7/2 value required by the frequency sum rule (4.102).
We obtained the power spectrum by first taking the Fourier transform of v, (1),

then using the relation

A Wmin :
O() = 2 o, @) (W)

which can be derived from the definition of the correlation function (3.1), from
(3.4), and averaging the result of (3.10) over all the particles. In Eq. (3.10)
the minimum frequency, Wmin, is defined by wnin = 27 /T, where T' is the total

integration time (T = 1200w;;" in Figs. 3.5 and 3.6), and C(w) is evaluated

at multiples of the minimum frequency wy = kwmin (k = 0,1,2,...). For the

reference parameters b, = 0.05 and « = 0.18, the period 1" 1s approximately
40 min and wmpin/27 = 0.5 mHz.

The power law decay of the velocity correlations is similar to that
of the molecular gas scattering problem [Alder and Wainright, 1970; Dorfman
and Cohen, 1970; and Ernst and Weyland, 1971] and is the primary justifica-
tion for thinking of the chaotic particle dynamics as producing a collisionless
momentum scattering. For scattering on ﬁxea, recoiless scatters, the decay of
the velocity correlations is given by CL¢(r) = (7./ 7)+4/2) where d = 2 or 3

for the two or three -dimensional system, respectively.
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Chapter 4

Chapter 4. Collisionless Conductivity

Magnetospheric substorms are triggered by magnetic reconnection
events in the dayside magnetopause and in the central plasma sheet of the
geomagnetic tail. In order to have the diffusion of the magnetic field lines nec-
essary for the instability, some kind of resistivity 7 is needed. In particular,

taking the curl of Ohm’s law with a scalar conductivity o (7 =1 /o),
J=0(E+UxB), (4.1)

the evolution of the magnetic field B in a medium of conductivity o is given

by
6B _
ot

The first term of this equation gives the frozen-in convection of the magnetic

V x (UxB)+ L v (4.2)
HoO

field by the medium and the second term describes the effects of diffusion. Only

the diffusion term allows for a change of the fields required for reconnection of
magnetic field lines.

Let 7 represent the characteristic time for magnetic field changes, 7r
be the characteristic resistive diffusion time, 74 be the characteristic transport
time, and L be the characteristic spatial length of B. Then, Eq. (4.2) can be

symbolically written as

S=—4—, (4-3)




where
L
= — 4.4
A= (4.4)
and
TR = poo L. (4.5)

The magnetic Reynolds number R,, is a measure of the importance of the

diffusion term relative to the transport term,

R, = & = pooUL. (4.6)
TA )

The diffusion term in (4.2) can be ignored if

R, > 1 (4.7)

The simplest example of spontaneous reconnection is the tearing in-
stability of a plane current sheet. The plane current sheet can be viewed as
being formed by a set of parallel current filaments. Because of the Lorentz
iorce, the parallel current filaments attract each other and the configuration is
unstable against the pinching of current filaments. This instability is called the

tearing mode instability.

The growth rate + of tearing modes in a plane current sheet layer 1s

given by [Furth et al., 1963]

g~ T_Zz/s TR 3/5 = T‘ZlR;s/s. (4.8)

The hybrid time scale of Tj/ % and _T,i/ 5 arises from dynamics in Eq. (4.2) that is
localized in a boundary layer of width Az/L, = (r/ 74)/1°. In this boundary
layer the resistive decay of the magnetic field energy is converted into flow £pU 2

and thermal energy.
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In the mid-tail the lobe magnetic field is Byo &~ 20 n'T and the proton
density is ng &~ 10 m=3. The Alfvén velocity v4(z) for the Harris sheet model
is

B:J:O A

v/ Koo

Averaging vs(z) in the field reversal region we obtain

sinh (%)‘ . | (4.9)

vA(z) =

L. '
UA-—/ kvA n L Buo ———— =200km/s (4.10)

2 4/ Koo
and, given that the characteristic spatial length of the current sheet is L, ~

1 Rg, the ALfvén time is
L,

V4

= 30s. (4.11)

TA =

Typical growth rates of geomagnetic activity during the onset phase of a mag-
netospheric substorm are of the order of 4 ~ 0.2 min~*, which, according to -
(4.8), corresponds to R,, = 200 and to o = 6 x 107 mho/m. Note however -
that if electrons carry the current then

2

o="9 (4.12)

e

where 7, is the collisional time. For R, = 200 the collisional time is 7. =
2 x 1073 s compared with 27 /w.. = 1.6 x 1073 s. If ions carry the current, then
the collisional time is 7, = 4 s compared with 27 /w,; = 3 s. On the other hand,
for T, = 0.1keV, the Spitzer [1962] conductivity is o = 1 % 108 mho/m which
corresponds to a collisional time 7. ~ 1 year and thus a collisionless resistivity
is required. For the Spitzer conductivity R5P = 2 x 10'2,

Currently there are two approaches to account for the collisionless
resistivity. One approach assumes that the momentum of the particles is scat-

tered by turbulent plasma waves. However, Anderson [1984] found, through
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satellite crossings of the current sheet, that turbulent wave activity is negligible
at the center of the current sheet. A second approach is to assume that the col-
lisionless conductivity is due to charged particle dynamics in the current sheet.
Examples of this approach are the Lyons-Speiser [1985] conductivity ol=% due
H-T

to particle inertia and the Horton-Tajima [1990, 1991a, b] conductivity o

based on the decay of the velocity correlations due to chaotic particle motion

of the ions.

The Horton-Tajima conductivity formula is
HeT _ ng? €l
m; C1 |wcz| ’

(4.13)

o

where ¢; &~ 10 is a constant determined by simulations, we. is the cyclotron fre- .
quency of the ions for the component of the magnetic field normal to the current
sheet (B,) and € = p/L is the finite Larmor radius parameter for the ions. Ion
‘temperatures in the central plasma sheet are in the range T, =1-—5keV. For
T, = 1keV the conductivity is oH-T = 1 x 10~®mho/m which corresponds
to Rm = 330. The Horton-Tajima conductivity is valid for vanishing By. In
the B, = 0 case the electrons are tied to the magnetic field lines and cannot
move across them in the y-direction in response to the E, field. When B, # 0,
as considered in the next chapter, the electrons can move along y and start

vplaying an important role [Herndndez et al., 1993].

In Section 4.1 we introduce the dielectric tensor, the conductivity ten-
sor, the dielectric respoﬁse function, and the Kramers-Kronig relations. The
topics covered in Section 4.1 are standard textbook material [Ichimaru, 1991;
Landau and Lifshitz, 1960; Stiz, 1992] and are i_hcluded here to make the present

dissertation self-contained. In Section 4.2 we derive the spectral velocity cor-
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relations (SVC) formalism. The SVC formalism, which is used for the cal-
culation of the collisionless conductivity, is the central result of the present
chapter. Finally, we discuss the relationship between the SVC formalism and

the fluctuation-dissipation theorem.

4.1 The Dielectric Tensor

In the study of macroscopic media it is convenient to use both the

displacement vector D and the electric field E, which are related through
D =¢E+P, (4.14)

with the polarization vector P satisfying
oP N

V-P = —p, and E—:Jp, (4.15)

which are consistent with the continuity equation

Opyp _ ]
—aT-P-V-Jp—O. (4.16)

The most general causal linear relationship between D and E is given

by
>t
D(r, ) = &E(r, ) + € / at' / Er'K(r, v, 1) - B, 1), (4.17)

where the domain (—oo,t) of the ¢’ integration reflects the causal relation be-
tween E and D. The linear relation of Eq. (4.17) is nonlocal in both space
and time. This nonlocality arises from the fact that the motion of particles in
collisionless plasmas depends on the field values along their trajectories. For a

stationary plasma the 3 x 3 matrix kernel K depends on ¢ and t' through the
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time difference 7 = t — ¢/. Furthermore, if the plasma is homogeneous, then K

becomes a function of p =r —r’ and (4.17) can be written as
D(r,t) = eoB(r, 1) + & /0°° dT/ch K(p,7)-E(r—p,t—7).  (4.18)
Expanding Eq. (4.18) in terms of plane waves we get
D(k,w) = e(k,w) - E(k,w), (4.19)
where the dielectric tensor € is
e(k,w) = el + /c)oo/dsp K(p,r)e kP=wm), (4.20)

The dependence of the dielectric tensor on the wave vector and on the frequency
is referred to as spatio-temporal dispersion. Dispersion is a consequence of the

nonlocality of the relation between E and D.

From the reality of the fields E(r,t) and D(r,t) it follows that
e*(k,w) = e(—k, —w). (4.21)

Denoting the real and imaginary parts of € by € and by €”, (4.21) can be

written as

€ (k,w) = €(~k, —w), €'k,w) = —€"(=k, -w). (4.22)

Similar linear response equations to that in Eq. (4.17) give the causal
relationship between J(r,%) and E(r, t), which defines the conductivity tensor.
The conductivity tensor is a functional of the distribution of the particle orbits,
as will be considered in the next section. In the linear approximation, J is given

in terms of E through the conductivity tensor o,

J(k,w) = o(k,w) - B(k,w), (4.23)
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From (4.14), (4.15), and (4.19) we find that the dielectric tensor is related to

the conductivity tensor by

e(k,w) = el — M, | (4.24)

w

where I is the identity tensor.

4.1.1 Longitudinal Response Function

When an external electrostatic perturbation,
5¢emt(r7 t) = 5¢e$t(k7 w)ei(k-r—wt), (425)

is applied to a uniform plasma, it induces density fluctuations which translate
into an induced potential §¢. In the linear approximation, the induced potential

is related to the external potential through

€0

§d(k,w) = L(k,w) -~ 1] 8deat(k,w), (4.26)

where e(k,w) is the dielectric response function. To give a physical interpreta-

tion to e(k,w) consider the total potential §¢; in a uniform plasma:
6t = 6¢est + 6. (4.27)

Substituting (4.26) into (4.27) we find that the external potential is screened

by the dielectric factor €p/e(k,w) in the medium:

J— 60 ¢
§pe(k,w) = ——e(k,w)wm' (4.28)
The dielectric response is given in terms of the dielectric tensor by
k-e-k
ek,w) = T (4.29)

which is obtained from the continuity equation (4.16), from (4.23), and from

(4.24).
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4.1.2 Energy Dissipation and Stored Energy

The mean energy @ absorbed by the medium per unit time and unit
volume is
@ =<3-B>= RelI(lw) Ew)l, (4.30)
where angle brackets denote a space-time average. Substituting (4.23) into
(4.30) we get
Q= %E .o¥ . E, (4.31)
where o is the Hermitian part of the conductivity tensor,

1
ol = §(Uaﬁ + 054)- (4.32)

Thus, dissipation in the medium is given by the Hermitian component of the
conductivity tensor. The anti-Hermitian part of the conductivity tensor,
A 1 * ‘ ’
Tap = i(aaﬁ — Oha)s : (4.33)

corresponds to its reactive part and contributes to the reversible or stored
energy through [e.g., Stiz, 1992

1. Owe) Z
B S B (4.34)

Expression (4.34) for the stored energy has been criticized by Morrison [1994]

because, in a Vlasov context, it neglects the effects of resonant particles.

From (4.24) we have that the Hermitian and anti-Hermitian parts of

the dielectric tensor are

o4

H :
—el— 2 ]
€ € : (4 35)

and
e = ——. (4.36)
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In a medium with no dissipation the dielectric tensor is Hermitian and the

conductivity tensor is anti-Hermitian (o7 = 0).

The dielectric tensor e(k,w) is transformed with a one-sided Fourier

transform

e(k,w) = el + € /Ooo dr K (k,7)e™”, (4.37)

which is a consequence of the causality imposed on (4.17). Regarding w as a
complex variable (w = w, + iw;), the integration in (4.37) converges only if
w; > 0. Tt follows that e(k,w) is analytic in the upper half of the complex
w-plane and is continued analytically into the lower half of the w-plane, where

it generally has singularities.

The second term in (4.37) is responsible for the establishment of the
electric polarization. The tensor K(k,) is finite for all 7 and K(k,7) — 0 as
7 — oco. This is to insure that D(t) is not affected by values of E(t) in the
infinitely remote past. In a plasma or in metals with a dc conductivity, we
have K(7) — 0%/ey — 0 when 7 — oo, and €(k,w) has a pole at w = 0. When
w — oo in the upper half of the w-plane, the integral in (4.37) vanishes and

e(k, 00) = el

Consider the integral

k,w') — €l
/C de/, (4.38)

w —w
where w is some real value and the contour C is shown in Fig. 4.1. Since e(k,w’)
is analytic in the upper half-plane and since the points w' =0 and w’ = w have

been excluded from the integration region, the integrand in (4.38) is analytic

everywhere inside the contour C and the integral (4.38) is therefore zero.
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Aim o

— (D, /4 W
® Re o’

Figure 4.1: Integration Contour for (4.38). The finite semicircle at w = 0
has been included to account for the case in which the conductivity has a de
component as occurs in metals and in plasmas.

The contribution to the integral from the semicircle at infinity is zero, -

the contribution from the finite semicircle centered at w' =0 is —70%*/w, and

the contribution from the semicircle around w is —i7[e(k,w) — €ol]. Then

de
elk,w) = eOI+ia -

w - W —-w

Separating the dielectric tensor into its real and imaginary parts we get

Ree(k,w) — el = ;1‘.-? /oo _Ir_n_i(_k_,_bﬂdw,’ (4.40)

—0o W —w

de lo ] Yy — »
Ime(k,w) = — -;lr-P / Ree(k,o) —eol v (4.41)

w W —w
Similar relations hold between the Hermitian and anti-Hermitian parts of the

dielectric tensor.

Relations such as (4.41) are known as Kramers-Kronig relations or dis-

‘persion relations. The only important property of €(k,w) used in the derivation

1 < e(k,w')—el, ,
p [ du. (4.39)
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of the dispersion relations is that e(k,w) is analytic in the upper half-plane.

Hence the Kramers-Kronig relations are a direct consequence of the causality

principle.

4.2 Collisionless Conductivity in Magnetic Field Re-
versals

The rate of conversion of electromagnetic energy into mechanical or

thermal energy is given by

/ &z ] E, (4.42)
which is the total power transfered by the fields to the sources in a finite volume.

Energy conservation for a system of sources and fields in a finite vol-

ume is given by Poynting’s theorem,

/d%%;ﬁ—}-fda-S:——/dBmJ-E, (4.43)
where u is the energy density of the electromagnetic field,
. €0E2 .B2
u= gt o (4.44)

and S, the Poynting vector, represents the energy flow,
ExB
po

Expression (4.43) means that the total work done by the fields on the sources

S = (4.45)

in a volume is balanced with the rate of change of electromagnetic energy in

the volume and with radiation losses through the boundary.

For fields varying harmonically in time, e™*“*, energy conservation can

be written as

1 3, T . 3 ‘ _
§/cl:1:.]w Ew+2zw/dm(ue—um)+j£da-sw_o, (4.46)
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where
2
Ue = 6"'5‘”] , (4.47)
. o
Uy = |4M0| , (4.4-8)
and
S, = E“z—xfﬂ. (4.49)
Ho

The complex Poynting theorem (4.46) is useful because it can be
used to determine the complex input impedance, Z = R —1.X, of a general,
two-terminal, electromagnetic system [Fano et al., 1960]. In particular, the

conversion rate of electromagnetic energy into particle energy is

Qu = -;—Re /dsst:: By (4.50)

and the reactive or stored energy and its alternating flow is given by the imag-
inary part of (4.46),
1
5 Im /de I . E, + 2w/d3:v (tte = Um) = 0. (4.51)
In order to determine the dissipation (4.50) necessary for magnetic
reconnection in tail-like magnetic field reversals, we consider the perturbed

current density 6J produced as a response of the medium to tearing-like per-

turbations of the form
§A(z,z,t) = 6A(2)e'** =D + cc., (4.52)
§(z, z,t) = 66(2)eF*) + c.c.. (4.53)

In the linear approximation, the perturbed distribution function f;

for particle species j can be written as

fi = Jfoi + 6, | | (4.54)
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where the equilibrium distribution satisfies-

9foi | 4 Ofoj _ K
v +mj(VXB) o =0, (4.55)

and where the perturbed part of the distribution function satisfies the linearized

Vlasov equation

08 f; 95f; | 4 96f; g 0 fo; .
5 +ve—- -I-mj(va)- i _-—mj[5E+v><5B]- oy (4.56)
The formal solution to (4.56) is
3 _ % ¢ et ! n. 6f(l)j
fi(w 5 v, 0) =~ /_oo d/[6F' +v' x B 52, (4.57)

where the integration is performed along the unperturbed trajectories (x',v'),
which satisfy the initial conditions x/(# = t) = x and v/(¢' = ¢) = v. The
primes in the integrand of (4.57) mean that all the quantities are evaluated at
time ¢'. Note also that the integration domain (—oo,t) is such as to satisty
the causality principle, which states that the correction § f cannot precede the
perturbation (6E, 6B).

The perturbed part of the current density, J = Jo + 8J, is given by

§3(z,2,t) =3 q; / Povéf;, (4.58)
J
which upon substitution of (4.57) into (4.58) becomes
g ’ 0 fo;
§3(z,2,8) = — 5 —L / Pov / dt/[§E +v' x B =% (4.59)
3 m; —00 ov’

The equilibrium distribution is a function of the constants of the

motion fo = fo(H, Py,), with

H= %m’u2 + qé(z, 2) (4.60)




and
Py =muvy + qAy(, 2).
Thus we have

ov - "R, T "eE "

which for the Harris distribution,
. m \3/? 1
Jo =10 (W) exp (—T[H - UyPy]) ;

becomes
df m .\ g
'ﬁ = _T(V - Uyey)fo'

ov
Substituting (4.64) into (4.59) we get
2 t .
§3=3" g,-f / P vfoj/ Q[SE +v' x 6B (v' = Uyié,),
i “i e
- the constancy of fo; along the unperturbed trajectories,

AN
dt L
unpert.

has been used to take it out of the temporal integration.

From (4.65) we have that J can be split into two parts,
§F = §J°¢ + 634,
where the adiabatic correction to the current, 6J ad_is given by
d quw' ¢ A
639 == —J——/d3'UVf0j/ dt'[6E' +v' x 6B'] - &,
= T —c0
and the dissipative part of the perturbed current is

2 t
1= [ v [ arv-em.
i el
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(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)

(4.69)




107

First consider 6J%¢. Expanding the term enclosed by square brackets

in Eq. (4.68) in terms of the perturbed potentials of Eq. (4.53), we get

ds A,

. (4.70)

[6E + v x 6B] - &, = —

Substituting Eq. (4.70) into Eq. (4.68), we obtain that 6J ad is given by

53¢ = (Z EAdt] / dsvvfoj) §A,. (4.71)

On the other hand,

aJOJ Z / cl3vvy———aaﬁoj
Oy
q;Uys . |
= ZJ: —’Tji/dg‘vvyjoj. (4.72)

Substituting (4.72) into (4.71) we get

§3°(z,z,t) = %‘%Myéy
Y

1 d’Bu(2)
poBz(z) dz?

§A8,. (4.73)

If in the Harris distribution of Eq. (4.63) we include both the unper-
turbed and perturbed parts of the vector potential in the expression for the

canonical momentum of Eq. (4.61) and expand the resulting expression, then
U, :
52 = ‘-’—’Ti FoibAy. (4.74)
i

Multiplying Eq. (4.74) by g¢;v, integrating over the velocities, and summing
over the species we recover Eq. (4.71). This is the reason for referring to 6J ad

as the adiabatic part of the perturbed current density.
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The power associated with 6J ad ig given by

Q% (k,w) = /d3 6324 . §E;, :i%/dSmgﬁywAy(k,w,z)[Z, (4.75)
y

where we have used Eq. (4.73). The quantity Q¢ is purely imaginary, that is,
Q¢ corresponds to the reactive part of energy transfer and is reversible. Qed

is related to the adiabatic change of current filament interaction energy.

The energy dissipated per unit time is given by

Re / PBo6Il, 6By, (4.76)

1 o o1
Q(k,w) = 5 Re /daﬂﬂk@ 0Bk =3

Hence, the time-averaged dissipated power is

J=1m (Hm /T/ dt / B6Ie- 6E*) (4.77)

2 T=oo J-T/2 T
where the time average removes the reversible part of the power transfer in

§J - 6B. Introducing the effective conductivity o given by

[H2 dtf Brs3d . SE*

ap(k,w) = lim I/2 T , 4.78
o) = i, S5, & | Pa6Ex6Ep (w78)
we find that the time averaged dissipated power is
1 T/2 dt [ 5 o
Qlk,w) = 5055(kw) Jim / [ onT / PobELy 6Ephe (479

From Eq. (4.69) we have that

T/2 dt

T/Zdt 3 d * q.? 6 v
/da:&J 6B = Z /dAfO,Tm/mT

T-)oo T/2
i
x / dt'SE*(2) - vv' - SE(2')

x gilk(a'=a)—w(t'=1)] (4.80)
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where the phase space integration is performed over the initial conditions Xo,
Xo = (X0, Vo), (4.81)
and where
X E x(t; Xo) and v = v(t; Xo) - (4.82)
are the position and velocity at time ¢ of a charge moving in the unperturbed
fields with initial conditions Xg.

Dissipation occurs due to the resonant interaction of the particles with
the fluctuations. Outside the current sheet layer, that is, in the lobes of the
geomagnetic tail, the magnetic field prevents the w = k - v resonance between

the particles and the waves at low frequencies. At high frequencies (w ~ wes0)

__the resonance condition is_given by a delta function §(w — kv — lwego), With.

[=0,%41,4£2,.... Thus dissipation in the lobes occurs only at high frequencies.
On the other hand, in the current sheet the magnetic fields are weak and
the charges interact resonantly with low frequency waves. In particular, if we
assume that the charges are streaming freely in the current sheet, the resonance

condition becomes 6(w — kvg).

Dissipation for low frequency phenomena (w < wes0), such as tearing
modes, occurs only in the narrow layer where the effect of the lobe magnetic
field can be neglected. The thickness of the resistive layer can be estimated by

determining the critical value of z, A, which satisfies the condition
pe=A, (4.83)

where p, is the Larmor radius evaluated at z = A. Approximating the magnetic

field in the current sheet layer by B,(z) = Bgoz/L., we get

A = (poL.), (4.84)
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where
Vth

4.2.1 Conductivity Formula

From the above considerations we have that for low frequency phe-
nomena, dissipation occurs in the resistive layer with the characteristic half-
thickness given by (4.84). Since the main contribution to (4.80) comes {rom
the resistive layer with |z| S A, the fields can be approximated by their values
at z = 0 and taken out from the temporal integration in (4.80). Hence, the low

frequency conductivity is given by
cep(bow) = L2 [ EXofo; [ dre™”

fm [ 2yt X o)t — 3 Xo)
X Vel - T,
xfim [ et Kol = Ko

¢ ¢ FlE(t=:Xo) =2 (t:Xo)] (4.86)

where the change of variables from ¢’ to 7 =t — ¢’ has been made.

At this point it is convenient to introduce some notation. From now

on, the product v(t; Xg)e‘ik’”(t?x") will be denoted by v(k,t; Xo);
v(k, t; Xo) = v(t; Xo)e ot Xo), (4.87)

Ensemble averages over the initial conditions will be denoted by triangular

brackets;
/dGXofo,-...zno<...>,-. (4.88)
Finally, we define single-particle, two-time velocity correlations by
, T/2 dt
Cop(k,7;X0) = 111_{1;10 2 Tva(k,t;Xo)vﬁ(—k,t —7;Xo) (4.89)
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and we denote the one-sided Fourier transform of Cug(k, 7; Xo) by Cap(k, w; Xo),

that is,

Cupk,w; Xo) = /Ooo dr e™" wp(k, 73 Xo). (4.90)

" Note that X, has been included in the definition of Eq. (4.89) to stress the
fact that the single particle velocity correlation tensor depends on the initial

conditions. For ergodic systems the time integration in Eq. (4.89) can be

replaced by averages over the ensemble of particles and the reference to the -

initial conditions Xo in Eq. (4.89) can be suppressed.
Substituting Eqs. (4.87)-(4.90) into Eq. (4.86), we find that the low

frequency conductivity formula (4.86) can be written as

%
cap(byw) =3 %@Q < Cupll,w; Xo) >; . (4.91)
. J .

‘The dissipative part of the cbnductivity corresponds to its Hermitian part,
which according to Eq. (4.91) is determined by the Hermitian part of the cor-

relation tensor,

1
Ola(k,w) = 5[Cap(k,w) + Cha(k,w)]. (4.92)
From Eq. (4.89) we have that Cop(k,T) Thas the following propefties:

Cup(k,7) = Cop(—k,T) (4.93)

and
Capll, —7) = Cpal—k, 7). (4.94)
From these properties it is easily verified that the Hermitian part of Cupll,w)

1s

- Cl(k,w) = Cap(kyw), o (4.95)




where Cyp(k,w) is the Fourier transform of Cup(k, 7),
Gk, w) = /  dr gk, 7). (4.96)

In this work we will refer to éaﬁ(k,w) as velocity power spectrum or spectral
velocity correlations. |
From (4.91) and (4.95) it follows that the dissipat‘ive part of the con-

ductivity is given by

. .
afﬁ(k,w) = Z : JQ7 — Tej (4.97)
m; .

i v
where the correlation time 7. (the effective “collisional time”) is defined as

1

vth 7

< Cuplk,w; Xo) > (4.98)

ch =

In tail-like magnetic field reversals the conductivity depends on the finite

Larmor radius parameter ¢ = p/L;, and on the magnetic field components

b, = B,/Bao and b, = B,/ Bao;
Oap(k,w) = ag(k,w; by, bz, €). (4.99)

Egs. (4.91), (4.97), and (4.98) are the main results of this chapter.

The relationship between 0qp and the dielectric tensor is given by
(4.24). The iow~frequency conductivity formula (4.97) contains all the infor-
mation about the response of the medium to electromagnetic perturbations
and about wave plopag,&tmn Once the dissipative part of the conductivity

* has been determined, its reactive part o4s(k,w) can be determined from the

Kramers-Kronig relations (4.41).
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4.2.2 Frequency Sum Rule
Consider the integral over all the frequencies of the dissipative part,

of the conductivity. From (4.97), (4.98), and (4.96) we get

00 nig?
[ awoly(hw) = 730 < Caglh, 7= 0) >; (4.100)
—o0 R Y

Noting that
< Cup(ky ™ = 0) >= v}, 6ap + UjbuySpy, (4.101)

we obtain the frequency-sum rule

| CZLUOH kw)=m E J ]2 ) -+ et 4 25 ) 4,102
. aﬁ( ) ) . [ af oy ﬁl/]? ( kg )
~00 : j m j

7 Vth

which has been verified in all our numerical experiments.

The frequency-sum rule (4.102) means that regardless of the details

of the absorption spectrum the total amount of dissipation is constant. In the

lobe'region (|z/L.| 3> 1), where the particles execute cyclotron motion around -

- the magnetic field lines, the main coﬁtribu’cion to the total dissipation is due
to the high frequencies céntered around the cyclotron frequency wezo for the
asymptotic field Byo, as shown in Fig. 5.2. On the other hand, in the dissipative
| layer (|z| < (pL,)*?), chaotic particle motion spreads the dissipation to low
frequencies and the frequency-sum rule (4.'102) has contributions from a broad
band of absorption frequencies. In general, for inhomogeneous systems, dissi-
pation is spread to low frequencies (w < weg0) even if the motion is integrable
[Horton et al., 1994]. This is illustrated in Fig. 5.1 which shows the electi‘ica.l
conductivity oy, in the dissipa,ﬁive layer for the case of a straight magnetic field

reversal, where the motion is integrable.
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4.2.3 Summary
Tn this section we have developed the spectral velocity correlations
formalism for the calculation of the space-time-averaged conductivity. Numer-

ically, the formalism consists of the following steps:

1. TLaunch an ensemble of N particles distributed in phase space according

to the equilibrium distribution function fo-

9. For each particle integrate the equations of motion in the unperturbed
fields and compute the corresponding power spectra C’f;g(lc, w; Xo;), 7 =

1,2,...,N.

3. Average over all the particles,

: 1 (3 .
oly(hyw) =~ >0 Ol Xoy). (4109)
4. As a consistency test, check the frequency-sum rule (4.102).

The procedure just described is essential when it is impractical to
integrate analytically the motion of the particles or when the dynamics 1s non-
~ integrable.

In the following sections we illustrate the formalism with several well
known examples, apply the formalism to tail-like magnetic field reversals and

use the results to estimate tearing mode growth rates.

4.3 Collisionless Conductivity and Fluctuation Dissi-
pation Relations

Based on the idea that for a system close to thermodynamic equilib-

rium, the evolution towards equilibrium does not depend on whether the system
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was set out of equilibrium by an external perturbation or by an spontaneous

fluctuation, a link can be established between the microscopic fluctuations and

the response functions of the system. In particular, linear mspoﬁse theory
" leads to the so-called Green-Kubo formulae [eg., Kubo, 1957] which are gen-
eral relations connecting transport coefficients and autocorrelation functions of
fluctuating quantities. Taking Fourier transforms of the Green-Kubo formulae,
general relations between spectral correlations of microscopic fluctuations and

the dissipative part of the transport coefficients are obtained. These general

relations are called fluctuation-dissipation relations [Callen and Welton, 19515 -

Kubo et al., 1985; Landau, 1969; Sitenko, 1982; Klimontovich, 1991; Cable and
Tagima, 1992].

The fluctuation-dissipation theorem was obtained by Callen and Wel-
ton [1951]. A careful derivation of the theorem is given by Sitenko [1982] from
time-dependent pertufbation theory in the interaction representation, and by

Schram [1991] from the classical Liouville equation. Here we just state the the-

orem without proof and discuss its relation to the conductivity formula (4.97). -

Consider a system in thermodynamic equilibrium. In the absence of
external perturbations, the Hamiltonian is independent of time-and is denoted

by Ho(T), where I' is an abbreviation for the 6N independent variables:

I'= {X], e ;XN}? X; = {Xi, Vi}, (4104)
with x; and v; the position and the velocity of the i-th particle, respectively.

When the system is perturbed by an external agency, the Hamiltonian takes

"the form

H(T,t) = Ho(T) + 6H(T, 7). - (4.105)
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Assume that §H has the form
§H(T,t) /dﬂxJ x,;T) - A(x, 1), (4.106)

where A(x,t) represents the external agency which is coupled to the system

" through the microscopic quantity J(x,t;T). For example, in the case of a

system of charged particles in the presence of an external electrostatic field
d(x,t), we have

§H(T,t) = /dscz; p(x,t;b@(x,t), 4 (4.107)

where p(x,t;T') is the charge density given by

p(x,t; 1) = qu x — Xi(1 (4.108) -

1=1
[

For a system of magnetic dipoles in an external magnetic field, we have
H(D,t) = — / PoMx, 1) - B(x,t), - (4.100)
where M(x,t;rI‘) is the magnetization

Mix, ;1) = Z,J,z x — %;(t)). | (4.110)

i=1
Finally, for an electromagnetic perturbation given by the vector potential

A(x,t), we have
SH(T, ) /d% I(x,4T) - A(x, 1), (4.111)

where J(x,¢;T) is the current density

J(x,4;T) = quvi X—Xi(f)). T (4.112) |
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We will also assuime a linear causal response of the medium to the

perturbing potential
1
I(x,t) = / dt' / Po' K(x, %', 1, ) - A(x, 1), (4.113)
—00 . .
Then, for the Fourier components of J and A we can write

I(k,w) = K(k,w) - Ak, w), (4.114)

where K,p is the response tensor of the medium.

The fluctuation-dissipation theorem relates the spectral correlations
of current density fluctuations to the dissipative properties of the medium and
is given [Callen and Welton, 1951] by

o 0
<Ja‘]ﬂ)kw - exp(hw/T) -1

which in the classical limit (7' > hw) becomes

(T2 Toh, = gz’{I{;ﬁ(k,w) CKn(ow)}  (4116)

In writing Eqs. (4.115) and (4.116) we are assuming that the system is in

thermal equilibrium at the temperature 7.

In the derivation of (4.115) the average energy absorbed by the medium -

per unit time @ is calculated ﬁsing time-dependent perturbation theory, with
the perturbation given by (4.106), and by performing two averages: one over
the quantum state of the system and one over the statistical distribution of the

different quantum states of the system, which for equilibrium states is given by

the canonical distribution

D(E,) = exp{(F — E.)/T}, (4.117)

i{KGp(k,w) — Kpa(k,w)},  (4115)
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where F is the free energy and T the temperature of the system. The result is

Q= [e)\p(ﬁw/T ) =1 T Aa(k,w)Ap(K,w) < JH(K)Tp(K') >0 . (4.118)
kB

On the other hand, the change in the internal energy of the system is given by

dH _ 3H 3 | .
7 /cZ (x,1) - A(x,1). S (4.119)

Fourier transforming this expression and using (4.114), the average energy ab-
sorbed per unit time is

Q= Z“"kz (Kig — Kpa)Aa(k,w) Ap(k,w). (4.120)
’afﬁ

Comparing Eqs. (4.118) and (4.120), we obtain the fluctuationdissipation rela-
tion of Eq. (4.115) [Sitenko, 1982]. |

The fluctuation-dissipation theorem can be used in several ways. If
the response tensor K,p(k,w) is known _(fof example, the dielectric tensor for a -
uniform plasma both in the absence and in the presence of a constant magnetbic
field), then the spectral distribution of J can be found. On the other hand,
if we somehow know the fluctuation spectra of J, then we can invert (4.115)
and determine the response properties of the medium (this is like using the
absorption lines in a spectrulﬁ to determine the dielectric properties of the
medium). Thé later approach is the one we use in this work: we want to
calculate the collisionless conductivity from the numerical computation of the

spectral velocity correlations.

For the specific case of electromagnetic perturbations, the response .

tensor K.p(k,w) is given in terms of the electrical conductivity oap(k, w)

through
Kop(k,w) = twosp(k,w), (4.121)
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and the fluctuation-dissipation relation which follows from substituting (4.121)
into (4.116) gives

i) = g [~ dreT (L (K= 7))y, (4122

2
7 2mvg, ;

Formula (4.122) is the so-called Kubo conductivity formula [Kubo et
al., 1985). Expression (4.122) has to be compared with expression (4.97) for the
collisionless conductivity. The space-time-averaged conductivity formula (4.97)
is more general than the statistical equilibrium conductivity formula (4.122).
To the extent that the orbits are ergodic so that the ensemble-averaged two-
time velocity correlation function < va(k,t)vs(—k,t — 7) > is the same as the
time—dveraged velocity correlation function in (4.89), the Kubo conductivity

formula is identical to the space-time averaged conductivity (4.97).

4.4 Conductivity for an .Unmagneti‘zed Plasma

In order to appreciate the conceptual difference between the space-
time-averaged conductivity and the Kubo conductivity formula, we consider
the case of a uniform unmagnetized equilibrium plasma. The derivation of

the dissipative part of the conductivity from the Kubo formula is given in

Sitenko [1982].

4.4.1 Conductivity from Kubo’s Formula

Consider a collisionless, uniform, homogeneous, and unmagnetized
plasma. There are no forces acting on the system, thus the particles move

along straight-line trajectories,

x:(t) = x:(to) + Vi(i — o),
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vi(t) = v; = const., (4.123)

with the microscopic distribution function

Flx,v,tT) = %—Z §(x = 3:(1))8(v — vi(t)). (4.124)

=1

One obtains the connection between microscopic quantities and macro-

scopic quantities by taking averages over ensembles of systems, which differ only

in the particle states, and by considering the distribution of the systems in the

different states. This distribution is the Liouville distribution D(T), which is

defined as the density of the systems in I-space:

D(T) = lim =L . (4.125)

where M is the number of systems in the ensemble and dMgr is the number of
systems in the element dI.
The Liouville distribution for a system of non-interacting particles

reduces to the product of single-particle distribution functions:

N .
D(r) =11 folvi), . (4.126)

C =1
where the single-particle distribution fo(v;) does not depend on x; and ¢ be-
cause the medium is assumed to be spatially homogeneous and stationary. If
the system is in thermal equilibrium, then f; (v) is the Maxwellian distribution,
with the parameter § = 1/kgT specifying the thermal equilibrium.
Averaging the microscopic distribution (4.124) over the Liouville dis-

tribution (4.126) we obtain

< F(x,v,t;T) >= fo(v). o (4.127)
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The fluctuations of the microscopic distribution (4.124) for a system of non-
interacting particles are given by

57 (s, v, 1;T) = F(x,v,5T) = fo(¥), (4.128)

and the two-time, two-point correlations for the fluctuations in the distribution
function are given by

< §F(x, v, T)6F (), v tiT)>=< Z&(x — Xi(i))5(v —vi)§(x" = xi(t))

><5(V' — Vi) >
= 6lx—x' — vrl6(v - Wfolv),  (4.129)

where in going from the first line to the second line we have used Eq. (4.123),

and where 7 =t —t'.

The meaning of Eq. (4.129) is that fluctuations in the distribution

function at two different points, X and x', and at two different times, ¢ and

¢/, are correlated if a particle with velocity v can traverse the distance x — x!
during the time 7.
Taking the Fourier transform of (4.129) we obtain the spectral corre-

lation between fluctuations of the distribution function:

(6 (v)6F (V) = 2m8(w — k- V)8V = V) fol). (4.130)

The particle density distribution n(x,t;T) is obtained integrating

Eq. (4.124) over v. The result is

N .
n(x,t;T) = E §(x — xi(t))

1=1

= Enk(t)e"k'x, - (4.131)
k.



where

N
ne(t) = ki), (4.132)
1=1

Similarly, the current density J (x,t;T') is obtained multiplying Eq. (4.124) by

¢v and integrating over v. The result is

N
J(x,t;)=¢ Zvi(t)5(x —x;(t))

=1
=q > vi(t)e™, (4.133)
k
where
. N .
vie(t) = S vi(t)e . (4.134)
£ .

The spectral correlations between density fluctuations are obtained

integrating Eq. (4.130) twice over the velocities,
< 6n? >y,= 27 /d?’v §(w—k-v)fo(v). (4.135)

Similarly, the spectral correlations between current density fluctuations are ob-

tained multiplying Eq. (4.130) by vv' and integrating twice over the velocities,
< JuJg >rw= 27" / Povavsb(w — k- V) folv). (4.136)

Taking the distribution fo(v) to be the Maxwellian distribution func-

tion far(Vv),

JulV) = ol v, exp[—v?/2v;), (4.137)
th

substituting (4.137) into (4.136) and substituting the result into Kubo’s con-

ductivity formula (4.122), we obtain the well-known result

w2
T noq k%ihoo w?
Reo = J: o |- ) 4.138
= Vom0 oy e”’( 2k2v?h>' (1)

where we have taken the wave vector k to be along the z-axis.
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4.4.2 Conductivity from the Spectral Velocity Correlations Formal-
ism
For. comparison with the Kubo formula method we now consider the
calculation of the conductivity from the spectral velocity correlations formalism
of Section 4.2. A
Substituting (4.123) into (4.89) and substituting the result into (4.96),

we obtain the single-particle spectral correlation

Coup = 2mvaugb(w — k- v). (4.139)

Averaging (4.139) over the Maxwellian distribution and substituting the result

into (4.98), we recover the conductivity formula (4.138).

The numerical calculation of the conductivity formula from the spec-
tral velocity cori‘elations formalism 1s illustrated in Fig. 4.2. Fig. 4.2 digplays
plots for (a) the transverse and (b) the longitudinal components of the dissipa-
tive part of the conductivity for the unmagnetized plasma. We obtained both
plots by launching N = 3000 particles accofding to a Maxwellian distribution
and following the si)ectral velocity correlation.s formalism described at the end .
of Section 4.2. The impulse lines in the plots correspond to our numerical
1'esﬁ1ts (4.103) for the discrete frequency components, and the solid curves cor-
respond to the analytical result (4.138). We can see that the numerical results
are in good agreement with the analytical formula in this limit of straight, line

| trajectories. The frequency sum rule was verified for both the transverse and
longitudinal components of the conductivity since the numerical values 3.04

and 3.028 were obtained, which are close to 7, within 1/30, as desired.
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Figure 4.2: Conductivity for unmagnetized plasma. (a) Transverse and (b) lon-
gitudinal components of the dissipative part of the conductivity for perturba-
tions propagating along the z-axis. In both plots the solid curves represent
the theoretical conductivities (4.138) and the impulse lines represent the con-
ductivities from microscopic fluctuations obtained numerically with the SvC
formalism of Section 4.2. We generated the results by launching N = 3000

particles distributed according to a Maxwellian distribution in velocity and.

uniformly distributed along the z-axis fromz =0 up to z = 2 [k.
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4.5 Kaufman Conductivity for Inhomogeneous Systems

Kaufman and coworkers [Kaufman and Nakayama, 1970; Kaufman,

1971] have studied the collisionless conductivity for inhomogeneous systems

that support integrable motion. In particular, here we follow closely Kaufman

and Nakayama [1970] who considered the case of a one-dimensional system of

charged particles confined by an electrostatic potential ®(z).

The Hamiltonian of the system is

H(z,p,t) = E(z,p) + ¢¢(z,p, 1), (4.140)

-where the unperturbed energy is

n . )
Ee,p) = 5—+18(z) (4.141)

and where ¢(z,p,t) is a time-dependent electrostatic perturbation.

The linearized Vlasov equation is

osf  08f  dBOSF _ OBfo  p (4.142)

)— — -—

ot i 0z Y9z v 8¢ _
where fo(z, p) - fo(&) is the equilibrium distribution function a.ild_fg—l—c? flz,p,t)
is the linear approximation to the perturbed distribution function.

Let x denote the initial conditions in phase space, p = (2o, po), of an
unperturbed trajectory which at time ¢ is at (z,p). The current density at a!

and time ¢ for a particle with initial conditions ,u. is given by
J(a',t; i) = qu(t; p)8la’ — w(t; w)- (4.143)
From (4.143) we have that the right hand side of (4.142) can be written as

— foequE(z,t) = —fog / do' J(2',t; p) B (', ) (4.144)
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and the solution of (4.142) is
Sf(tp) = —foe /Ooo dr/dm' J(a' t — 7 p) B!t — 7). (4-..14-5)
On the other hand, the average current density is given by
Ta,t)= [ dpd(e,t w61 w) (4.146)
and the conductivity is defined thl‘oughbthe relation

J(z,t) = /Ooo dr / dz' o(z, o', 7)E(z',t — T). (4.147)

Inserting (4.145) into (4.146) and comparing the resulting expression

with (4.147), we have that the conductivity kernel is given by

o(o,,7) = = [ du oz Sa i) St —miw),  (4149)
which genera.lizeé the Kubo conductivity formula for an inhomogeneous, one-
dimensional, Vlasov system. If the steady-state distribution fo is a Maxwelliar,

then (4.148) reduces to the Kubo-like relation

1
o(z,a,7) = —3 < J(z,t)J(z',t—T) >0 (4.149)
nvl

From (4.147) we obtain

J(z,w) = /dm'a(fv,x',w)E(m’,w), ' (4.150)

where E(z,w) is the Fourier transform of E(z,t) and o(z, #',w) is the one-sided
Fourier transform of o(z,z',1). |

" The dissipative part of the conductivity is given by its Hermitian part

] .
o (z,2',w) = 5[0(3:, ¢, w)+ o*(z,z',w)]

T—oo

) 1 : .l 1 .y
= lim [—ﬁ/d/zfo,g J(z,w; p)J" (2 ,w;/_L)], (4.151)
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where
J(z,w; p) = lim T/zldt et Tz, t; 1) (4.152)
) :L& - TS0 T/2 » * °
Introducing the action-angle variables in the unperturbed system,
I= j{pda: (4.153)
and
d& .
v(I) = Fid (4.154)

. the Hermitian part of the conductivity is given by

H('L z' w) = 2¢° /dffOI sin(wy) sin(wr)

Z (bwy(I) — w),

(4.155)

~ where 7y, is the time it takes for a particle with action I to go from its left

turning point to the smaller of z and z’, 7 is the time from the right turning
point to the greater of z and &/, and-wy(I) = 27v(I) is the bounce frequency..

From (4.155) we have that the particies transfer energy to the waves if their

_ bounce frequency is an integral sub-multiple of the wave frequency.

The expliéit evaluation of the conductivity, éuch as in (4.155), 1s pos-
sible only 1f p-artide motion in ?;he undisturbed system is integrable. If particle
motion in the unperturbed system is chaotic, then the orbital mixing of fre-
quencies, which is 1'eflected in a broad band power spectrum, eliminates the
§-functions and the transfer of energy between the particles and the waves can

occur for a broad band of frequencies. Thus, chaotic particle motion has the

potential of increasing the band width of dissipation, as will be illustrated in

“the next Chapter.

Even in the case of integrable orbits the problem of determining wy, (1)

and o(z,z’,w) can often only be determined numerically. In this case the
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spectral velocity correlations formalism gives a fast, flexible, physically based

procedure for calculating transport properties of the system.




Chapter 5

Chapter 5. Conductivity for the Central Plasma Sheet
with Applications to Tearing Modes

5.1 Collisionless Conductivity for the Harris Sheet

Because of the presence of an electric field £, in the tail, we are
interested in the dawn-dusk component of the collisionless conductivity oyy.
Inside the A = ( pL.)"/? layer, charged particles stream freely and their motion

can be appioximated with straight-line orbits
X = Xo + Vi,

v = Vo. (5.1)

Under the straight-line approximation (5.1) the dawn-dusk compo-

nent of the velocity correlations is given by

Cyy(k,7) = 'U e ik (5.2)
and the power spectrum is given by
Cy(k,w) = 2mv}6(w — kvg). (5.3)
Taking the ensemble average of (5.3);
. 8i dz [ 4
< O’U./(]" w) >3:/ /d U ]L] z V) yy(]\' ) (54)

129
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and substituting the result into (4.97) we obtain the following expression for
the dissipative part of the collisionless conductivity

12 nig? U2,
oyy(k,w) = (—) > A <1~|— 2“) exp(—w?/2kv},;), (5.5)

2 m; ko, V3 ;

where the main contribution to the conductivity comes from the electrons.
In the dc limit (w = 0) and neglecting U, /vy, = 2¢ < 1, where
¢ = p/L,, we reduce Eq. (5.5) to

Oy = €209 7, (5.6)

where 0% 7 is the Galeev and Zelenyi [1979] conductivity

57 = <E>1/2 Ee_z.__l_, : (5.7)
2 me |k|vine

and where we obtain the weighting factor €L/? by noting that 092 vanishes
outside the A, layer and averaging over z. Taking k =1 /2L, and using the
reference parameters of Table 1.1, we find that the correlation time is 782
1 s, the half—width of the unmagnetized layer is (p’eLz)l/ ? = 160 km, and the
.conductivity is 0% ~ 1072 inho/m. For substorm time scales we Tequire
76-% ~ 1072 sec and 097 Z ~ 107° mho/m.

Fig. 511is a p.lot of the dissipative part of the conductivity produced
by the microscopic fluctuations from charged particles trapped in the plasma.
sheet. We obtained the plot by launching /N = 1000 particles distributed
according to the Harris distribution of Eq. (4.63) with number density n(z) =
nosechz(z/L;) for |z/L.| < 1, with Uy /vy, = 2¢ = 0.08, Wego/Wyz = 5, and with

kv, /wp: = 0.02. Note that the dc value of the conductivity is nothing else

than the value expected from the Galeev-Zelenyi conductivity (5.7) with the

weighting factor et/? =0.2.
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Fig. 5.2 displays the dissipative part of the conductivity produced
~ by the microscopic fluctuations from charged particles located away from the

plasma sheet, that is, well into the region where the magnetic field is nearly

uniform, B(z) & Bgé,. Initially the particles were uniformly distributed in

the range 3 < z/L, < 4, where the magnetic field is uniform to within 0.5%.

The rest of the simulation parameters are the same as those in Fig. 5.1. Note

that the only significant contribution to the conductivity occurs for w & weeo,

which is in agreement with the assumption that the low-frequency component

of the conductivity arises from particles in the current sheet.

The possibility of collisionless magnetic reconnection in a straight
magnetic field reversal was proposed by Coppi et al. [1966]. These authors
showed that the Harris sheet is tearing-unstable for long wavelength (kL, < 1)
perturbations for which the energy rele@sed by the pinching of the current
filaments exceeds the energy spent in the creation of the perturbed magnetic
field. The mechanism for energy dissipation is given by the transfer of energy
from the plasma to a fraction of the electrons through the resonant interaction

of the waves with the particles in the layer of thickness A, = ( peL:)*?, where
the particles stream freely.
From Ampére’s law we have that the perturbed vector potential and

the perturbed current density are related through
V264, = —po(82% + 6J%). (5.8)

Substituting (4.73) into (5.8) we get

d? Bl(z
i K — E%} 6A,(z) = —/./,05J1j, (5.9)
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where the primes' denote derivatives with respect to z.
In the outer region we have 6J¢ = 0, and §A,(z) satisfies the homo-

geneous equation

[di; e %%J §A,(2) =0, (5.10)

which has the even-parity solution

ks 1 2] .
§A,(z) = 6Ay(Q)e k2] [1 + WL tanh <Z>J 2 (5.11)
satisfying the boundary conditions
lllim §A,(z) = 0. (5.12)
L z|— o0 .
The odd modes §A,(—z) = —6A,(z) describe a flopping or kinking of the

current sheet.
The matching between the inner and outer regions is adlieve_d through

the matching parameter A’ defined by

+4.
Al = <d1n(ilij(z))> , (5.13)
. —A,
which for the solution (5.11) is given by
/ 2 . 272 14

Integrating (5.9) with respect to z in the A, = (peL.)M? layer yields
the tearing mode growth rate

v = ————Aﬁ“ | (5.15)
200 G2ZN,’ '

where the €/? weighting factor of the conductivity (5.6)-11343 been supressed

because the integration is perfoi‘med in the A, layer.




Using the pressure balance formula

B 1 L
== 16
%o T: + I (5.16)

n

)

~ to determine the plasma density in terms of the lobe magnetic field strength,

we find that the Galeev-Zelenyi conductivity formula (5.7) takes the form

§ 1/2 2
G'G_Z — (g) wcm;‘e ; (517)
opo (1+ %) kvj. |

and, substituting Eq. (5.17) into Eq. (5.15), we find that the collisionless tearing

que growth rate takes the form

3/2 ) |
N i <1 n T) SIY(1 - k2L2),  (5.18)

WezOe 7T1/2 Te

and the mode is unstable for kL, < 1. For the reference para.metds given in
Table 1.1 the growth rate of the instability is v = 9.6 x 107% sec™, and the
growth time is 7 ~ 1 day. The observed growth phase of a substorm lasts

0.5 — 1 hr. Thus, this electron mechanism is not considered as plausible.’

5.2 Collisionless Conductivity for Parabolic-Like Mag-
netic Field Reversals |

In reality the magnetotail has a small component of the magnetic field
normal to the current sheet layer, B, < Bgo. The B, component magnetizes
the electrons, which perform gyromotion around B, in the current sheet layer,
and thus the main contribution to the low-frequency dissipative part of the
conductivity is due to the unmagnetized ions. This is the principle of the plasma
ion-diode [Golden et al., 1977 and 1981], where the perpendicular magnetic field

in the diode is adjusted to magnetize the electrons (e, < 1), leaving the ions,
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with ¢ 2 1, to carry the current in the diode. Ion diodes are used for the
generation and propagation of intense ion beams [Dreike et al., 1976).

In parabolic-like magnetic field reversals with B, < Bjp, ion motion
may become chaotic. Chaotic particle motion is due to the continuous mixing of
orbital frequencies, which leads to a continuous broad band power spectrum and
to the decay of the velocity correlations. That is, chaotic particle motion smears
the resonance peaks at the orbital frequencies, thus allowing the exchange of

energy between particles and waves for a continuum of frequencies.

The conductivity formula can be motivated if we follow the picture of
Lyons and Speiser [1985]. The main pickup of energy from vy L, occurs when
the particles are in the A; = (piLz)l/ 2 layer and when we; < wy.. In this regime
the orbits enter into the A; Iayeg, make rapid north-south oscillations, make
a large section of approximately one-half of the cyclotron orbit arond B, and
then escape to the lobes. Particles are coherently accelerated by £, when they
are in the A; layer. Taking the residence or correlation time in the layer to
be on the order of one-half of the cyclotron period, 7/w,,, the low-frequency

- conductivity is given by the Lyons-Speiser formula

) ' A
_ neq- T , ;
L-5 — —— | (5.19)

ag

Horton and Tajima [1990,1991a] noted that the conductivity (5.19)
acquires its value only in the A; layer and thus the height-integrated conduc-
tivity for the current sheet is given by

o T = &2gl=5, (5.20)

Formula (5.20) has the important property that as m/e (or the gyroradius) van-

ishes so that the particles are tied to the field lines, the conductivity vanishes.
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This is in contrast to Eq. (5.19) where o is independent of m/e.

When the period At = m/|wc.| is shorter than the streaming time
1/kvyy, the cyclotron frequency at z = 0 determines the correlation time and
the conductivity, rather than the phase mixing rate kvy,. Combining the char-
acteristics given above we obtain the conductivity formula
1/2

2 .
H-T _ 14 €

B -ﬂTcllwczl + c2lklvih

ng? /2

- mlwczol Clbz + CQIICIIO’

(5.21)

where ¢; and ¢, are constants of order unity which are determined by the
simulations. Note that in the limit that ¢ = p/L. — 0, the particle motion
becomes strictly adiabatic, executing only E x B drift motion, and the low-
frequency conductivity (5.21) and the mobility vanish. Note also that for long
. wavelengths, kvy, S wes, the co'nductivity. (5.21) reduces to the Lyons-Speiser

conductivity (5.19) in the A; layer.

The variation of the conductivity (5.21) with €, b,, and kL, has been
tested [Horton and Tajima, 1991a] by numerically compﬁting the conductivity
given by < JyE, > / < E} >. Good agreement with Eq. (5.21) has been
obtained with ¢; ~ 10 and ¢, ~ 2. The relatively large value of the ratio
¢;/c; implies that the Speiser and the chaotic orbits are more effective than
the phase mixing from the Landau resonance at v = w/k.in determining the
low-frequency conductivity. ’

Outside the A; layer the particles are magnetized and the cui’r€nir is

given by the polarization current

ng? dE,

_ " (5.

= — ,
mw?, di

@)

N

[\
S

v
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which is completely reversible or reactive and does not contribute to the time-

averaged < J,E, > and thus not to the time-averaged conductivity.
The reconnection growth rate obtained from the substitution of (5.21)

into (5.15) is given by

T 3/zclbz+C2kLze(1 E) 5 93
o] © KL, T) (523)

Thus the widely used collisionless ion tearing mode growth rate
%7 = |weo|e®/? of Galeev and Zelenyi [1976] increases to v = ¢10,|weso|€3/?,
due to the lower value of the conductivity (5.21). For kL, >> cib./coe the

growth rate reduces to the Galeev-Zelenyi value

G-
& gy : (5.24)

, wcczO,

- with 1/4%% ~ 1 hour. For kL, R b, the grbwth rate is increased to

~ ¢ e3/? 5.25
o] (5:25)

with 1/ ~ 1 min.
For the reference parameters of Table 1.1 and for kL, = 0.5 the

correlation time is
1/2 -1
. € / Iwc:nol
T = —————
C1 bz + C2 kﬂ

the unmagnetized layer half-width is A; = (p;L;)*/? = 980 km, the conductivity

= 0.15 sec, (5.26)

is o#-T = 1.2 x 10~® mho/m, the growth rate is v = 0.9 min™, and the growth

time is 7, = 27/ = 7 min.
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5.3 Collisionless Conductivity for Sheared Parabolic
Magnetic Field Reversals

The main effect of adding a constant cross-tail magnetic field com-

ponent B, to a parabolic-like magnetic field reversal is to introduce a tilt on

the field lines away from the meridian. The tilt on the field lines increases the

effective field line length in the quasineutral layer and, because of the tendency

of the particles to follow the magnetic field lines, the particles remain for longer

times in the A; layer with a consequent increase in the mobility. Here we derivé
“an approximate formula for comparison with the simulations.

In the presence of B, it is convenient to write the y-component of the

velocity in the following way:
vy(t) = )y () + viy(?)

= 0i(®) (2) + vz (t) - (520)

where v, is the projection along the y-axis of the component of the velocity
parallel to the magnetic field, and v, ,(t) is the y-component of the perpendic-
ular component of the velocity.

From (5.27) we have that the dawn-dusk component of the velocity

correlation function can be written as
ny(T) = Clly(T) + CLy(r) + Cll,l(T)a (5.28)

where Cjj, (1) and C(7) are the correlation functions for v), and vy, respec-
tively, and Cj),.(7) is the mixed correlation function

_ T/2 dt
Cia(r)=Jim | oz (ns()osy(t =)+ opy(t = 7)vsy (). (5.29)
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Since the mixed correlation function of Eq. (5.29) is the time-averaged product
of the fast varying vy ,(t) and the smoothly varying v, (t), which averages to

a small value, we will neglect the term C)j,(7) in Eq. (5.28).

Thus the dc part of the electrical conductivity can be written as
ng
Oyy = F(Tcny + Tc_Ly): ( .
- where the correlation time associated with |, is given by
1 oo ' . .
Telly = -—2 2 </ dr C'”y(7')> - (5.51)
'Uth -0 .
and where 7., , is defined as

Toly = M</ dr CL (7 )> o (5.32)

_Consider first the contribution to the conductivity from the parallel -

component of the motion. From (5.31) we have that

T/2 dt B,\?

s(7) = 5 </ g oy TN T) (B) >
~ 1 [ / B’.‘/ ?
apllLran) (),

-B’l 2 . )
N <_Bi>rl Tl | ' (5:83)

where (B,/B) is the average value of (B,/B) in the A; layer,

(%)jf/_z ’szzi (;Z)) :  (5.34)

Approximating (B, /B(z))n by its value at z = A; we obtain

B\ __ Y .
(?)T, RS (5-35)
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Similarly, we can approximate 7. by

! | (5.36)

Tc” ~ —

)
Vth

where [ is the effective field line length within the A; layer,
ai B(z)
1= [ @
—4; ‘ B,

B(A;)
20; B,

B2 4 2 ; 1/2 .
=24, <J—+§ie—) . NCEOR

Substituting (5.35)-(5.37) into (5.33) and substituting the result into

X

" (5.30) we find that the contribution to the condﬁctivity from the parallel com-

. ponent of the motion is gi\fen by .

ng® & [by\> —
o|= — (—y> 61/2, A (5.38)

m wy, \ b,

where we have used the definition & = b,/¢'/? and where we have taken into

account that the dissipative part of the low-frequency cbnductivity is nonneg-
ligible only inside the A; layer.

The contribution from the perpendicular component of the motion
to the low-frequency conductivity can be approximated by the Lyons-Speiser

conductivity (5.19) with the reduction factor /2. That is,

2
oL = —L 2 (5.39)
M| wez|

Substituting Eq. (5.38) and Eq. (5.39) into Eq. (5.30) we find that

the low-frequency conductivity can be approximated as

b\ |
a1 + agk’ (—i> } /2, (5.40)

'I’Lq2

o=

b,

mwe|
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Table 5.1: Sensitivity of Numerical Results to Changes in the Integration Pa-

rameters

Numerical Parameters

NT,At | {(Cwmn)
1000, 600, 0.2 0.38
500, 600, 0.2 0.39
500, 600, 0.1 0.36
500, 600, 0.05 0.36
500, 1200, 0.2 0.40
500, 1200, 0.1 - 0.38

where a; and ay are numerical constants to be determined from the simulations.

Fig. 5.3 is a plot of the correlation time 7. as a function of b,/b,
for b, = 0.05, W = Wpnin, & = 0.18, and € = 0.08. Fig. 5.3 was generated
with the magnetic field model of Eq. (2.126) for a total integration time T° =
600w;;} (= 20 min), a time step d¢ = 0.3w;, (= 'O.‘Gs), and the total number of
particles V = 1000. From the parabolic fitting of our numerical data we have
a1 ~ 0.1 and ay ~ 0.6. In Table 5.1 we illustrate the negligible sensitivity of
our numerical results to changes in the total number of pa.rticles N, the total
integration time ‘T , and the time step by considering the variations in the value
of <C’(wmin)> for fixed x = 0.18, b, = 0.1, and b, = 0.05.

Table 5.2 displays numerical data for the dé part of the power spec-

trum, <C~'(w = O)>, corresponding to three values of «;:x; = 0.09, k3 = 0.18,
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el/? 2 (b}
Wy Te = —:T,— a + a9k b—'
z

-4 -2 2 1 =
‘ b,

Figure 5.3: Plot of 7(w;k,by,b;,€) as a function of b,/b;. We obtained the
plot by evaluating C(w = wpin) for different values of b, keeping b; = 0.05 and
& = 0.18 fixed. The points correspond to our numerical results and the solid

curve represents the best fitting parabola. The values of the weighting factors

are a; ~ 0.1 and a; = 0.6. -
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and k3 = 0.36. The purpose of Table 5.2 is to check the validity of the new
conductivity formula (5.40)

In the case with no cross-tail magnetic field, Eq. (5.40) reduces to the
z-averaged Lyons-Speiser conductivity formula (5.39). However, for b, # 0 the
conductivity formula opens a whole new range of interesting regimes.

From (5.40) we can find a critical value of the cross-tail parameter,
bye, such that for b, > by the longitudinal conductivity from parallel streaming
along the tilted magnetic field dominates over the Speiser orbit cross-field con-
ductivity. Equating the longitudinal and perpendicular contributions in (5?1-0)

we gét the critical b, value

1/2 1/2 V
_ (.‘Ll) 26 _ (91) Pan (5.41)

bye =
- \Qg2 K (73)}
which for our simulation reference parameters is by, = 2.27.

Comparing by for the ions and the electrons,
e = () et = (ﬁe')lﬂb '  6e)
vee ™ \k. /) v pi vere o
we see that for the electrons the longitudinal conductivity dominates over the .
perpendicular component for small values of the cross-tail parameter b,. This
B,-dependent effect opens the possibility of stabilizing the collisionless tearing
modes with increasing values of B,.
Noting that the coefficient nog?/(m |we;|) in Eq. (5.40) is the same for

the electrons as for the ions, we can compare the ion and electron conductivities;

L <€i>1/2 a1 + azr?(by/b:)* _ <E> ot erilbu/b) (5.43)
- a1 + a2 (by/b,)? ki/ a1+ agk2(by/b;)? ' -

Oe €e
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Table 5.2: Low Freqner;cy Limit of Correlation Time
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In particular, we can find a second critical value for the cross-tail magnetic field

parameter, by, for which ¢; and o, coincide. This value is given by

. 1/2 1/2 .
_byie=<“1>A ( ! > b, . | (5.44)

o KiKe

For |by|/byie > 1 the electron conductivity is larger than the ion conductivity;
on the other hand, if |by|/bye < 1, then the electron conductivity is smaller
- than the ion conductivity.

Aséume, for example, that T, = T;/10 and that x; = 0.18. In this case,
we have k., = (pi//)e)l/?'/ci = 2.1, byee = 0.20,, byie = 0.70,, and bye; = 2.6 0.
So we have that as soon .as the dawn-dusk magnetic field is turned on, the
electron conductivity starts playing a very important role.

Fig. 5.4 is a plot of o; and o. as a function of b, for fixed b,. The
solid portions of the curves represent the o -dominated phase and the dashed

portions of the curves represent the o)-dominated phase.

We can obtain an estimate of the effect of B, on the growth rate of
the tearing modes by integrating Ampére’s law in the A; layer and assuming
that the solution is approximately constant (5Ay(z) ~ 6A,(0)) in that layer.

Thus we have that

, A Ai‘ 'Ae
Ak5Ay(O) = '——/,LO /_A‘. Jydz = —MO {/;Al (Ti(gEyCZZ "I" /—‘Ae O—E(S.Ede}

1/2 ‘
~ 2oy l; | o5 + <£5> O’eJ §A,(0) , (5.45)

1

where we have taken into account that the electron conductivity o, acquires

its value only in the small region |z| < A..
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Figure 5.4: Qualitative behavior of the conductivity of Eq. (5.40) for both
jons and electrons. The solid (dashed) portions of the curves are the oy (oy)-
dominated parts of the conductivity. The critical values by, byic, and by.; are
obtained by setting o, = o, 0c = 0y, and o 1; = o3, respectively.
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Suppressing the e'/?-factor in Eq. (5.40), since we are considering the

contribution from the inner layer, we have that

' 1/2 noq? b\
o; + <&> oo R of {al + agkike <_?L) } ) (5.46)
Pi m |wcz] A bz .

and substituting (5.46) into (5.45) we get the growth rate

m lwc'zl A;»
_ , 5.47
7 2p0noq? A [aq + agkike(by /D)% (5.47)

Furthermore, taking
B2,
S — 5.48
T + T (5:48)

and substituting into (5.47), we obtain for the growth rate

b <Lz> 1+ T;) ay + azkike(by/b2)? (5'4‘).)

Mo

wC(L‘O

where the stabilizing effect of the electrons when B, # 0 is evident.

The values of 7,, o, v, and the tearing mode growth rate time 7, for the
different conductivity formulae are summarized in Table 5.3. We obtain these
results wit the use of the reference parameters of Table 1.1 and taking B, = B,
- for (5.40). The results obtained from the Horton-Tajima conductivity (5.20)

and from (5.40) are consistent with the substorm time scales.

The effect of a magnetic shear on the current sheet stability has been
considered by several authors. Drake and Lee [1977) showed the destabilizing
effect of a magnetic shear in the absence of a normal magnetic ﬁeid compo-
nent. Wang et al. [1990] generalized the results of Drake and Lee [1977] for
the case of a sheared magnetic field Ieversﬂ and very small normal magnetic
field. Bichner at al. [1991] showed that a shear of the tail magnetic field may

cause a tail tearing mode instability even for realistically large values of the
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Table 5.3: Correlation time 7., conductivity o, tearing mode growth rate =,
and growth time 7, for the different conductivity formulae

Conductivity Te O (mho/m) ¥ (min~1) T
Spitzer 1 year 108 6 x 10°7 20 years
(electron) '

Galeev-Zelenyi 107%s 10-% 6 x 1073 1 day
(396)

Horton-Tajima 0.15s 10-¢ 0.9 7 min
(410)

Herndndez et al. 0.7s 6 x 10~° 0.4 16 min
(429) .

normal magnetic field B,. The reduction of the tearing mode growth rates

with incraesing values of B,, as shown in Eq. (5.49), has been observed in the

numerical simulations of Tajima [1981].

5.4 Results of Parametric Studies to Verify the By — &
Dependence of the Mobility Formula

In order to check the validity of the mobility formula (5.40) as a

function of the x-parameter, consider Table 5.2. This table shows numerical

data for the dc part of the power spectrum, <C'(w ='0, Kiy by, b,)>, for different

values of the parameter b, with b, = 0.05 = const., and for three different

values of «;:

ky = 0.09, k3 = 0.18, £ = 0.36. (5.50)
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In the conductivity formula (5.40), the contribution to the time 7.

from the component of the motion perpendicular to the magnetic field 7.1 is

given by
1/2
€ / bz . 551
Tel = 01 =a1— 2 (J'O )
K K

and the contribution from the parallel motion is given by

b\ B
ra = 4zl (#) =4y (5.52)

With the use of Table 5.2 we can check, for fixed b, = 0.05, the k™2 scaling of
7., and the independence of 7 on &. In particular, from (5.51) we must have

701 (ks = 0.36) _ Ter (k2 = 0.18) :E B (5.53)
Tor (K2 = 0.18)  Tor (1 =0.09) 4’ o

and from (5.52) and keeping b, = const. we must have

(s, by) _ Tal(mnnby) _ (5.54)

TC“(K‘% b!/) B Tc”(’f'la by)

We can verify Eq. (5.53) by noﬁing that 7.(«,b,) Is proportional to

<é’ (w=0,%, Z)y)> and thus the relationships

T“( ) _{Glo=0i) (5.55)
7-cJ. < J_ >
and
TCJ_f\,2:<J.w_O/"2> (556)
TcJ_ ""1 <C~‘_LLU—O h1>, '
must hold. From the data in Table 5.2 we have
CrLw=0;k .
(Cu( ) _ 0027 R (557
<C’l (w=0; n2)> 0.106
and <~ >
' Cy(w=0;x) 0.106.
= = 0.219 , 5.58
(o= 0m)) 0483 (5:58)
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which are in excellent agreement with (5.53).

In order to verify (5.54) we note that
‘<C’,|(w = 0; ki, by)> = <C’(w = 0; ks, by)> - <C~'_L(w = 0; K,,:)> (5.59)

and thus

<C’|l(w =0; Rs,by)> _ <é|l(w‘: 0; £, bv)>
<C~;'”(w = 0; Ko, by)> <é|](w = 0; &1, by)>

must hold. From the last two columns of Table 5.2 we observe that the values

=1 (5.60)

are slightly less than unity, probably because of the approximations made in

the derivation of the mobility formula (5.40).
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Chapter 6. Conclusions and Discussion

The current sheet of the central plasma sheet in the geomagnetic tail
is an important region for the storage and release of plasma and energy. In order ‘
to explain magnetic reconnection in the central plasma sheet, it is necessary
to have a finite electrical conductivity. The value of this conductivity should
be anomalously low to be consistent with substorm time scales. However,
the geomagnetic tail is a highly collisionless environment and turbulent wave
activity is negligible at the center of the current, sheet. Thus, it is necessary to

find another source of dissipation.

We have shown that the finite collisionless conductivity in the current
sheet of the central plasma sheet is due to the decay of the velocity correlations
produced by chaotic particle motion. In particular, fo'r tail-like magnetic field
reversals the velocity correlations exhibit a power law decay, which is similar

to the power law decay of the velocity correlations in a molecular Lorentz gas.

We have developed, from linearized Vlasov theory, a physically moti-
vated, direct, and flexible formalism for the calculation of the dissipa.ti\.@ part
of the conductivity: the spectral velocity correlations (SVC) formalism. The
' formalism is equivalent to inferring the dielectric properties of a medium from
the observation of the absorption lines iﬁ the spectrum. For systems in ther-
modynamic equilibrium the SVC formalism is reduced to the well known Kubo
conductivity formuia.
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An important property of the SVC formalism is that it is particularly
useful in situations where the charged particle motion is a mixture of both
chaotic and integrable motion. Another advantage of the SVC formalism. is
that we are able to calculate directly the dissipative linear conductivity. This
must be contrasted with the earlier work of Dozas et al. [1990] and Horton
and Tajima [1991a]. In these works, the conductivity is estimated through the
calculation of irreversible heating rates from the perturbed orbits in the actual

electric field, which necessarily has finite amplitude.

We also discuss and test numerically the frequency-sum rule, which
dictates that the total amount of 1§bwer absorbed by the medium over all fre-
quencies is constant depending only on the plasma density and being indepen-
dent of the particular inhomogeneous magnetic field. For iiltegrable motion,
such as the motion in the presence of a constant magnetic ﬁél‘clg all the power is

absorbed at the resonances. However, for chaotic motion the power is absorbed

over a continuum of frequencies. The broad band of absorption frequencies for

the plasma sheet is in direct contrast with the conductivity in the lobe plasma

and in the near-Earth magnetosphere, where the drift-cyclotron orbits produce
sharp absorption lines.

| In the SVC formalism the effective Acollisional time 7, is proportional to
<C’ (k,w; Xo)>, where C (k,w; Xo) is the single particle velocity power spectrum
'fé: a particle with initial conditions Xé = (x0, Vo), and {...) denotes average
over the ensemble of particles. In systems where chaotic and integrable motion
coexist, the broad bandwidth structure of <é’ (k,w; X0)> has contributions from

both phase mixing (Landau damping) and the broad band structure of the

single particle power spectrum for chaotic orbits.
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We have derived explicit expressions for the low lrequency conduc-
tivity in both parabolic and sheared parabolic magnetic field reversals. We
have computed the conductivity in mho/m and used the resulting values to
estimate thé growth rates of linear tearing modes. The values obtained for
the growth times (~ 5 min) of linear tearing modes are consistent with the
measured substorm time scales.

Barlier studies of collisionless energization processes in parabolic-like
magnetic field reversals give: (a) the Galeev-Zelenyi (GZ) conductivity formula
[Galeev and Zelenyi, 1976], and (b) the Lyons-Speiser (LS) conductivity tor-
mula [Lyons and Speiser, 1985]. In the GZ model the particles are treated as
unmagnetized in the A, = (psL;)*/? layer. The GZ conductivity arises from
the phase mixing, produced by the spread of the velocity Avy = vy, in the col-
| lisionless Landau resonance of Eq. (5.3). The GZ conductivity is proportional
to the phase mixing rate (|klvegn) ', On the other hand, the LS conductivity
is based on the acceleration of the transient-type orbits in the dawn-dusk elec-
tric field. The LS conductivity is proportional to the time that the transient -
orbits spend in t.he neutral sheet and the residence time is approximated by
7/|wes|. Here we have calculated the conductivity in detail, including all the
orbits in local Maxwellian distributions filling the magnetotail flux tubes. Our
| conductivity formulae are given in Eqs. (5.21) and (5.40). Typical values for
the conductivity and for the associated growth rate of linear tearing modes are

given in Table (5.3).

Our parametric studies show that the space-time-averaged conductiv-
ity formula varies inversely with b;, as expected from the LS formula. However,

we show that the averaged conductivity drops strongly because of the short
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correlation time from the chaotic o'rbits. We also show that the LS formula
misses the finite gyroradius ¢, = ps/L, depéhdence of the a.veralge‘d conduc-
tivity, o ~ €-/2/b,, describing the fact that the low-frequency dissipation is
negligible in the limit that the gyroradius vanishes. The new factor of ¢}/? is
also crifical for comparing the relative electron and ion current contributions

when the By field 1s introduced.

The SVC formalism has been used to extend the conductivity formu-
lae to new regimes. In particular, we consider the case of a sheared parabolic
magnetic field reversal. In this case, we have shown that the conductivity has
a new term which scales as (B,/B.)?% that there is a critical value of B, for
which the contribution of the electrons to the conductivity becomes ciomina.nt;

and that increasing values of B, reduce the growth rate of linear tearing modes.

Our conductivity formulae can be used in resistive MHD simulations
of bmagnetospheric dynamics. In fact, a magnetic Réynolds number R, =
oL veo ~ 200 is often used in the simulations [e.g., Birn and Hesse, 1990].
The value 200 is chosen to give the reconnection e-folding time on the order
of a few minutes, as observed in magnetospheric substorms. If one computes
R, with the use of Eq. (5.40), one obtains R, = 100 — 300, depending on the |

specific field and plasma parameters.
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