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Abstract

A formalism has been developed to analyze the equilibrium and stability of low-beta

anisotropic-pressure plasmas confined in closed field line magnetic systems. . This formal- |

ism, based on the paraxial (long-thin) approximation, allows consideration of rather general
magnetic systems with nonuniform axis curvature and longitudinal profiles of toroidal and
multipole poloidal field. Strong pres.sure ‘a.nisotropy, corresponding to enhanced plasma
pressure in mirror cells of the system, may é,lso be considered. Nonconventional features of
anisotropic pressure equilibria have been revealed. Application of the above formalism to the
recently proposed linked mirror neutron source (LMNS) confirms the basic principles of the
LMNS concept, but calculations based on this formalism have appreciably corrected some
LMNS parameters. The LMNS longitudinal pressure profile and magnetic field distribution
are optimized.
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I. INTRODUCTION

Closed magnetic field line plasma confinement traps périodically attract attention as pos-
sible alternative approa.ches to fusion plasma confinement.!~® The main advantages of such
usage would be steady state operation and the relative simplicity of corresponding magnetic

‘systems in comparison with that of conventiénal stellarators. The main disadvantage would

be the lack of a rotational transform which would otherwise create nested magnetic sur-
faces and preclude strong perturbation of the field lines by magnetic system imperfections.
However, it seems possible that external field corrections may reduce, or even eliminate
such perturbations.‘ When residual imperfections are small., a self-consistent radial electric
field appears to provide closed plasma particle drift surfaces and to preserve the plasma
equilibrium. '

Recently” a linked mirror system (LMS) with closed field lines has been proposed as a
highly effective neutron source for testing materials in a fusion environment. This system

8-10 and

has all the advantages inherent in previous mirror-based neutron source cohcepts,
the system’s toroidal linkage eliminates the longitudinal energy losses, thereby raising the
electron temperature and enhancing the power efficiency of the source. The advantages of
the LMS-based neutron source can be seen in two parameters. The 'ﬁrst is the large ratio
or/pe (Pr/D: > 5), where pp, is the pressure of the mirror confined hot ions and p; is the
pressure of the toroidally confined warm ta.fget plasma. The second parameter is a high
ellipticity (E > 10) of the plasma cross-section in the toroidal linkage cells which appears as
a result of high ellipticity of the mirror end fans. |

Previous research’ has revealed the main properties of plasma equilibrium and magne-

tohydrodynamic (MHD) stability in the LMS. Its conclusions were reached, however, using

some simplifying assumptions. Thus, an advanced self-consistent analysis is needed to en-




hance the reliability of the LMS neutron source concept. The previous formalism* developed
fo;' isotropic low-beta paraxial (long-thin) plasma equilibrium and MHD-stability analysis
of closed field line systems is not applicabl_e to LMS due to the strong plasma pressure
anisotropy. Here we develop a generalized formalism which allows analysis of the equilib-
rium and stability of the paraxial low-beta plasma with arbitrary pressure profile along field
lines in a wide class of closed field line plasma confinement systems. We have obtained
that the nonuniform longitudinal pressure profile results in some new qualitative features of
plasma equilibrium and stability in the above systems. According to the previous study,*
the isotropic low-beta plasma equilibrium and stability are completely determined by the
magnetic system parameters. We show that existence of anisotropic pressure equilibria, and
the position and the‘shape of the equilibrium plasma column, all essentially depend on the
longitudinal pressure distribution; changing this pressure distribution can stabilize an un-

stable equilibrium without changes of the external magnetic system. We also reveal the very

unusual feature that the stable and unstable equilibria are separated in parameter space by

a region containing no anisotropic pressure equilibria. We apply our formalism to analyze

the plasma equilibrium and stabi]ity in LMS and to optimize LMS parameters.
II. PLASMA EQUILIBRIUM
An anisotropic plasma equilibrium is determined by the following equations:
V.P=jxB, (1)
V x B =j, ¢
where j is the plasma current and B the magnetic field. The pressure tensor is of the form:

P=p, X+ (p —pL)bb, (3)



b = B/B and I is the unit dynamic. The longitudinal component of Eq. (1) is automatically
satisfied, if py and p, are calculated using a plasma particle distribution function which
depends on the integrals of motion. From the transverse component of Eq. (1) it follows,

using standard techniques,'! that:
jr={(p1 = p2)(bx k) +b x Vp.] /B, (4)

k=(b-V)-b=-bx(Vxb).
The longitudinal current jj is found using V - j = 0 which leads to the relation l

1 . bxk :
b-V [Egin(Bz +pL —PII)] =-—gr V@ +pL). - (5)

Equation (5) must satisfy the following solvability condition:

ds
gz (b X K)- V(g +p1) =0, (6)
where the integration is along a closed field line. Equation (6) is the most important condition
of the equilibrium. Physically it corresponds to a closure of Pfirsch-Schliiter currents within
the system considered.

Following the conventional procedure? used as the first step of plasma equilibrium and
stability analysis we assume that (3 is asymptotically small and invoke a rather reasonable
paraxial (long-thin) approximation. These assumptions'®!3 are justified for 8 = 2p/B? <
|k>a® < 1, where a ~ p/|V 1p| denotes the cross-field pressure gradient scale and & is the
field line curvature defined by Eq. (4). The assumptions allow us to neglect the magnetic
field distortions caused by plasma currents. Therefore, wé may substitute the vacuum (non-
perturbed) magnetic field into Eq. (6), which appears to be the necessary and sufficient
condition of plasma ‘equilibrium under the above assumptions.

InAthe case of closed field lines it is possible to introduce Clebsh coordinates ¥, ®, X to

deécribe the vacuum magnetic field:
B =VX=VV x V3. (7)
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Below ¥ is an appropriately chosen magnetic flux, so that @ is a corresponding poloidal
angle. X plays a role of longitudinal coordinate. If the plasma pressure is isotropic (p = py),
we can always choose ¥ to provide p = p(¥) due to relation B+ Vp = 0. In the general case
of an anisotropic plasma the effective pressure depends generally on all three coordinates:
P =p, +py = P(¥,®,X). The form of such a dependence is specified by the coordinate
dependence of particle motion invariants. Nevertheless, we can again define ¥ to provide
P = 2p(7) in the regions where the plasma pressure is isotropic. Such the definition of ¥
is possible, because the isotropic pressure component has to be constant along field lines.
Under the above definition of ¥ the ®-dependence of P has to be rather weak—it can only

appear in small paraxial corrections to the main part of P ~ P(¥, X). These corrections

could be determined from the extremely complicated kinetic consideration a,ccountingﬂé.' -

self-consistent radial electric field which appears to unify the drift trajectories of different
plasma particles’ and also to reduce the ®-dependence of P. Therefore, taking into account
the above qualitative arguments we shall assume below that dP/8® = 0. Of course, this

assumption should not contradict the longitudinal pressure balance:

9 pu—m> 109P_
o (O5) + 0.

The solvability condition of this equation is the following:

_a_li ft.& =0
ox B2

This condition can be satisfied by P(¥,X) for a wide class of closed field line magnetic
confinement systems. In particular, it can be identically satisfied for some symmetric config-
urations (e.g., linked mirror system conside.red below) in which P and B are even functions
of X with respect to a certain plasma cross-section.

Under the above assumptions we can rewrite Eq. (6) in the following simple form:

§POBdX 1 8P 9 (dx)_o

57 5% B° 22 8

2/ 0¥ 8%
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The Clebsh coordinates depend on parameters of the system considered. To determine
these coordinates we suppose that the plasma column is located in a vicinity of a closed field
line whose physical characteristics (magnetic field, curvature, etc.) are given. We denote
this field line as a “magnetic axis.” In the case of isotropic plasma pressure equilibrium it
is reasonable to define the magnetic axis as the center of closed nested surfaces of constant
§ dl/B so that it would appear as the center of the plasma column.? In the general case of
anisotropic pressure, as will be shown below, the position of the plasma column axis depends
on longitudinal pressure distribution, so the plasma column is not attached to the surfaces
¢ dl/B = const. Thus we have a lot of freedom to concretize the magnetic axis. As a rule,
a spatial symmetry inherent in the closed field line magnetic systems!~¢ allows us to choose
the magnetic axis to be a rather simple untwisted planar curve.

Further, we introduce the local cartesian coordinates {s,z,y} where s is the distance
along the magnetic axis,  is the distance measured from the axis along its external normal,
and y is chosen to complete the right triad.

Under the paraxial approximation it is sufficient to consider an expansion of X of up to
third order in distances from the magnetic axis* the corresponding expression fa.kes the form:

/

= [° _nB
X—/O B(s)ds

T @ -y - 5 (z® + %) — Bs(z® - 3zy®) — dr(z® + zp¥) +..., (9)

4

where B(s) is toroidal field at the axis, Bn'(s) and Bs(s) characterize quadrupole and
hexapole poloidal field components correspondingly, prime denotes the derivative with re- -

spect to s, ¢ has the form:
_ O 1oy 1 '
¢k—168k+88k+163kn, (10)
and k(s) is the axis curvature. Using Egs. (7) and (9) we calculate the magnetic field:

B, =—=(B' +1/'B) — z*(3B; + 3¢x) + v*(3B3 — ¢x) + . ..,
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By =Y (B ~B) + 20y(3B — ) + .., (1)
1

B, = 1-kz

B-Z(8+(1B)) - L (8"~ (1B)) +

To obtain the appropriate expressions for ¥ and ® we have to solve the field line equatiohs:

£ g -
Using renormalized coordinates: |
X = zBY2e2, Y =yBY%e/?, (13)
we can rewrite Eq. (12) as follows:
2 - 2‘;;7//; <—3B*°’§3¢’° +hS +k17) +y? e;f//: (3331; "”‘) fon ()

dY e~™2 [ 3B3 — ¢dx
xy° (2 = k—B-—kn

ds T BR
The right-hand sides of Eq. (14) consist of second order terms only. Thus, the solution of

Eq. (14), accurate up to the second order in distance from the magnetic axis, takes the form:
X = X + XZu(s) + Yiv(s), : (15)
Y =Y + XoYouw(s),

where Xo = X|s=0; Yo =Y|s=0, s=0Iis an arbitrary point at the axis, and

S / -n/2
“=/o (kn’+k§_3M) e b,

B B VB
_ [S3B3— ¢ e3n/2
v_A B \/B_ds, (16)
B 3B3—¢\ e "2
w= /(k +k—-+2 . )\/Eds.
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The above expressions are used to determine the Clebsh variables ¥ and ®. At the main
order of the expansion, which corresponds to the paraxial approximation, a transversal cross-
section of the surface ¥ = const has to be a closed second order curve (ellipse). Therefore,

we can write the expressions for ¥ and ® in the following general form:

= (XO - A)2 + },02a

Yy
® = arctan (Xo — A) , (17)

where A is a renormalized displacement of a plasma axis with resp‘ect to the magnetic axis,

and U is taken to be the magnetic flux. It is not difficult to verify that expressions (17)
satisfy Eq. (7). Using Eqs. (7), (11), (13), (15), and (17)We obtain, by means of algebraic
transformations, the following expression:

dX  dX 2 e"/? [ 2 1(8’ ,)2 1 (B’ ,)’]e‘"
ﬁ"zy(x){ ZkBmA-i-A [ 2k31/2 ¥-2g+7) +3(5+7) |5

-n/2

e/ e/, 1(B N2 1/B )\
+‘/50°S‘1’[ s + 8 - G+ 2 (B -1 ( +7) +3(5+7))]

e—n/2 e[, 1/B N2 1/B )\
# 0| =k ko) + g [ - 3 (5 +7) +5(5+7)]
el B , 2 1/B , r
+5l- G-+ 3G w0
e~n/2 e[, B N2 1/B N
*“’?"SZ‘I’["“sz(“ 0+ 35 -5(G+) +3(5+7)]

el B, B !
~sl-iG ) 3G -]}
which has an appropriate form to be used in the equilibrium condition (8).
. The high plasma pressure anisotropy in a steady state plasma confinement systems has

to be sustained by some auxiliary heating (neutral beam, ion—cyclotron heating, etc). The
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heating conditions are very similar for each magnetic surface inside of the paraxial plasma
column. Therefore, it is reasonable to expect that the pressure distribution along field lines
must be approximately the same for the each magnetic surface. That is why we assume

below that the pressure distribution can be written in the following form:
P(T,X) = P(X)(¥), (19)

where @ = 1 at the magnetic axis and & = 0 at the plasma edge. Substituting Egs. (18) and
(19) into Eq. (8) we suppose that s is independent of ¥ and ®, because 9s/9®, ds/0¥ could
only add terms of the order of ¥%2 and higher to the equilibrium condition (8). Changing

the integration along field lines by the integration along the axis we obtain the following

e—n/2 en(, 1(B 2 /B )\ ‘
k33/2u+~g2-(k —Z<-B-+n) +§ *E+77 ds
. L€ . 1(B  \°
+ \I's1n2<I>}(P(s) - 33/2 (u 'v)+ 5 k -1lg*n

L35 —%"a[-i(%'- Jra-flee e

Both the terms in Eq. (20) have to equal zero independently. The first and the second terms

equilibrium condition:

VU sin® ?(P(s) { k——

e~n/2

63/2 +A

-n/2 e~ "

describe the closure of the dipole and the quadrupole Pfirsch-Schliiter currents correspond-
ingly.

Introducing the useful notations

weefor-3(50) (59)
Jz=—fds%{e‘"[—%(%,—ﬁ’> +%(% ﬁ)]—zke—"ﬂBW }ds (21)

— Qke~"2B1/23; }ds




where =1 —17, 1 = ns=0 , and
s, B B + ¢ | €712
— , — —
i= [k(n+8> R

5 (3B3— ¢\ €M
o= [ ( - )31/2ds, (22)

we rewrite the equilibrium conditions in the following form:

1k s
bo= gy, $ PEe s @3)
Eg = 62770 = J1/J2, (24)

where 6§y = Ae~"™/2 /Bcl,/ 2 is the displacement of plasma axis from the magnetic axis, and E,
is the ellipticity of the plasma cross-section at s = 0. When the pressure distribution P(¥, X)
cannot be presented in the form (19), the integrals Ji, Jz and, correspondingly, &g, Ep will
slightly depend on ¥.

Expressions (13), (15), (17), (23), and (24) completely determine the Clebsh coordinates
¥ and @ in the main order of paraxial expansion, and as a result they completely deter-
mine the shape of equilibrium plasma column. In the general anisotropic pressure case the
displacement &y and the ellipticity Ey are not inherent parameters of the magnetic system,
so far as they also depend on longitudinal pressure profile. Nevertheless, an appropriate
choice of the axis curvature in accordance with Eq. (23) allows us to design the magnetic
sys;cem which provides 8y = 0 for the basic regimes of the system operation with desirable

longitudinal pressure profile. Integrals Ji, Jo can change their signs due to variations of the
B pressure proﬁlé and magnetic system parameters. From Eq. (24) one can see that the plasma
equilibrium exists if J; and J; have the same signs (both are positive, or both are negative).
Either integral’s changing sign implies a loss of equilibrium in terms of the paraxial approxi-
mation. Finally we should emphasize that the above procedure allows expansions in powers

of distances from the axis to be expanded to arbitrary order. For example, if the system
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considered has a strong external hexapole magnetic field component, we should expect an
appreciable triangularity in the plasma cross-section. In this case we have to consider a
third order expansion in terms of these distances in Eq. (8). The corresponding parameter
of triangularity appears to be calculated from the hexapole Pfirsch-Schliiter current closure

condition (vanishing of the third order term in Eq. (8)).
III. Low-8 MHD Stability

The MHD-stability problem for low-3 plasmas confined in closed field line systems
(CFLS) is reduced to the analysis of flute mode stability. Under paraxial approximation,
as it follows from the energy principle, the flute-like mode stability criterion corresponds to

positive definiteness of quadratic form:

W=—-;-/-(-§-+MdV>O, (25)

B

where &, is cross-field flute plasma displacement. Using Clebsh coordinates and taking into

account the equilibrium condition (8), we can rewrite Eq. (25) as follows:

1 8P 8 [dx
W=z / (£, VU)2dTdd ]( =3 35 (EE) > 0. (26)

Here (¢, V¥)? is an arbitrary positively defined function of ¥ and ®. Therefore, the stability

criterion can be written in the following local form:

oP 9 [dx |
6_\11 a—\I" (52') > 0, (27)

which is similar to the equilibrium condition (8). Substituting Eqs. (18), (19) into Eq. (27)
and taking into account notations (21) and (22), and equilibrium conditions (23) and (24),

we obtain the following stability criterion:

G =Jie™™ + Jpe™ > 0. (28)
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According to Egs. (24) and (28), the MHD equilibrium of a low-8 plasma column in
CFLS is stable with respect to flute modes if the integrals J; and J; are both positive. If
both are negative, the equilibrium exists but is unstable. It is obvious that any approaching
the flute mode marginal stability condition (implying small values of either of integrals J; o)
means breaking the paraxial equilibrium condition as well. A similar correlation between
MHD equilibrium and stability conditions was noted earlier'4 for a tandem mirror geometry.
This geometry can be considered as a specific limit of CFLS with k(s) = 0 in mirror cells and
P(s) = 0 in a toroidal linkage. In general, J; and J, do not change their signs simultaneously
for the different pressure profiles and magnetic system parameters. Therefore, the stable
and unstable regions in a parameter space of CFLS are separated by a zone where plasma
equilibria are absent (J1+J2 £0). Such a feature is not typical for equilibria in conventional
plasma confinement systems. We shall discuss the aforementioned features of the equilibrium

in detail, when we consider the linked mirror system in the next section.

IV. Equilibrium and Stability in a Toroidally Linked Mirror Sys-
tem

We now apply the results obtained in the previous sections to the analysis of low-3 plasma
equilibrium and stability in the Linked Mirror Neutron Source (LMNS).” The magnetic
configuration to be discussed is shown in Fig. 1. It consists of four individual, or equivalently,
two parallel pairs of minimum-B mirror cells (midplane cross-sections 2, 6, 8, 12) linked by
two semitori with highly elliptical cross-sections (4,10). The LMNS plasma consists of two
components. The first is a toroidally confined target plasma with isotropic pressure p;
constant along a field line. The second, localized near the mirror cell midplanes (2, 6, 8, 12),
is a hot ion component which has an anisotropic pressure.

| The LMNS magnetic system exhibits the reflection symmetry relative to the plane 1-7

and to the plane 4-10 (see Fig. 1). Therefore, it is sufficient to consider one quarter of the
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system and to perform all integrations between cross-sections 1 and 4. We also choose s =0
at the mirror midplane (cross-section 2) and assume the following magnetic axis curvature:
k(s) = ky, in the mirror cell (1-3) and k(s) = —k; in the toroidal link cell (3-4). The
toroidal and quadrﬁpole magnetic field components in the mirror cell will be modeled by the

reasonable analytical expressions:

B(s) =By (1 +(R—-1) sin® w%) ; Bn' = q(s) = qo cosm %; (29)

where R is mirror ratio, L is total length of mirror cell axis. The magnetic field in the
toroidal cell has only toroidal component B(s) = B; = ByR, so 7(s) = 0 in this cell. The
hexapole component is Bs(s) = 0 everywhere. Contrary to the previous LMNS study,”
we do not assume fhe plasma cross-section is circular in the mirror cell midplane. The
midplane ellipticity Ey will be calculated self-consistently according to Eq. (24). Therefore,
the toroidal cell ellipticity F; depends on Ej as follows: E; = EoE, where relative ellipticity

E is determined by the mirror cell magnetic field distribution (29):

E = exp{n(L/2) —no} = exp {/OL/z % ds} . | (30)

To calculate the longitudinal pressure profile we shall assume the following hot ion dis-

tribution function:
cos? @,
cos? 4y,

= £V (1 . ) 160 < O, ' (31)

which is more smooth and realistic than that which was used in the previous study.” Here
v and 6y are the velocity and the pitch angle of a plasma particle at the mirror midplane,
respectively. Using (29) and considering sin? 4/ sin?6y = R(s) = B(s)/Bo (which describes
conservation of particle magnetic moment) we come to the following hot ion pressure distri-

bution: .

_ pwo [Ra—R(s)\** 6R4 — R(s)
P"(s)_RgS)( R ) 1 @
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where Py(s) = pu| + Pri, R = R(ln/2) = sin™8;, and I, is a hot ion component length.
The total pressure distribution has the form P = Py(s) + 2p;. We shall also use an effective
hot component length [} defined as follows:

* 2 lh/2 BO
Iy = p— /0 B(s) Pr(s)ds, (33)

to compare the results of this paper with the previous results” which were based on a step-like
pressure distribution.

Even after the above simplifications and parameterization of the profiles the LMNS equi-
librium and stability depend on six dimensionless parameters which determine the magnetic
systeﬁ and pressure distribution. They are: relative toroidal and mirror cell curvatures
K; = kL, K, = kyL; mirror ratio R; relative ellipticity E; target/hot plasma pressure
ratio & = p;/pro; and relative hot component length A = [, / L. To analyze this problem, we
should define some optimization criterions in order to reduce a number of free parameters.

We shall first assume that K, is chosen from Eq. (23) to provide & = 0 for any values
of the other parameters. Thus, K, becomes a dependent parameter. We then calculate
dimensionless integrals J; , (normalized by a factor pro/B2L) and plot them as functions of
a = pi/pro in Fig. 2. The other parameters are fixed and chosen in accordance with the
LMNS proposal” as follows: K = 2, R=2, E=12, A - 03, (M =14/L=016).
Fig. 2 shows that stable equilibria (J; 2 > 0) exist if @ < 0.1. This restriction does not allow
a = 0.15 which was presented in the initial proposal” as a desirable value. Moreover, in
reality a has to be appreciably less than a = 0.1, because the toroidal ellipticity E; goes
to infinity due to vanishing of J; when a approaches this critical value. Such behavior of
E; corresponds td the loss of equilibrium discussed in the previous section. According to
Eq. (24), plasma equilibria (J; < J; < 0) exist when « > 0.15, including the case of isotropic
plasma pressure (ppo = 0), however, these equilibria are unstable.

Singularity of E; does not allow us to use J; = 0 as a marginal stability condition.
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As plasma would not be allowed to touch the material walls of a real system, E; must be
restricted. Therefore, a reasonable procedure of LMNS magnetic system optimization is to
maximize a = p;/pro for a fixed (desirable) value of E;. With E; fixed, o has a maximum as
a function of the parameters A, R, E, and increases monotonically as toroidal curvature K;
decreases. Thus, we are able to optimize the parameters A, R, E to provide the maximum
of o. However, the low-§ equilibrium and stability theory does not provide an algorithm
for optimization of K;. Therefore, we consider K; = 2, as it has been chosen in the initial
proposal.” We shall also assume a fixed value A = 0.3, because o depends only slightly on A
in the vicinity of A = 0.3, which is suitable for the high neutron ﬁux- production.”

A family of the curves a(F) for a set of different values E; and R = 2 is shown in
Fig. 3. The para.me.ters o appears to be very sensitive to variations of E. According to
the optimization procedure suggested above we choose E = E.p; which corresponds to the
maximum of a(E). Analogously vkre optimize the parameter R to maximize a(R). The
optimized values of F and R as functions of E; are presented in Fig. 4. Figure 5 presents
‘ the maximum values of « for a given E; and corresponding “stability factor” Sy considered
as a functions of E;. The factor Sy is defined as the ratio of the local potential energy G,
defined by Eq. (28), to a value G = Gy calculated for the same magnetic system parameters
with ?t = 0. The stability factor Sy characterizes a rigidity of the unstable mode anchoring
by the hot ion component; the factor Sy seems important to ballooning mode stability.

We can see from Fig. 4 that contrary to the previous study’s assumption the mirror cell
midplane ellipticity Ey = E;/E appreciably differs from unity: Ep ~ 1.7. This result means
that quadrupole Pfirsch-Schliiter current generated in the toroidal cell cannot be neglected.
Fig. 4 and Fig. 5 also show that values of o and R appropriate to LMNS operation could
be provided if E; > 15. Finally we present in Table 1 the dimensionless MHD parameters of

LMNS modified in accordance with the theory developed in this paper.
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Table 1: Parameters of LMNS magnetic system. The first column presents the parameters
of the initial proposal, the second column shows the optimized results of the present study.

Toroidal cell curvature k;L ‘ 2 2
Effective hot component length /L 015 0.16
Mirror ratio R : 2 2
Mirror cell axis curvature &,,L 0.44 0.09
Toroidal cell ellipticity E; 12 18
Mirror midplane ellipticity Eq 1 1.51
Targent/hot plasma pressure ratio p;/pre  0.15 0.086
Stability factor - 0.192

V. Conclusion

An appropriate formalism is developed to analyze the MHD equilibrium and stability of
low-ﬁ' anisotropic pressure plasmas contained in closed field line magnetic confinement sys-
tems. The formalism is shown to be completely self-consistent under paraxial approximation.
It allows calculation of the principal parameters of the plasma column. In the calculations,
all expansions in ‘powers of distance from the magnetic axis can be extended up to arbitrary
order. Regions of stable and unstable anisotropic pressure equilibria in parameter space are
often separated by a regions in which no equilibria exist; this is noted as unﬁsua.l.

Analysis of the linked mirror neutron source using this formalism not only confirms basic
results of the preliminary study, but also highlights new features of plasma equilibrium
which indicate necessary modification of LMNS parameﬁers. We have demonstrated a way
to optimize these parameters and thus improve the stability of plasma confinement in the

LMNS. All of this allows us to consider this formaliém as a fruitful and useful one.
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FIGURE CAPTIONS

FIG. 1. Structure of magnetic field lines in the toroidally linked mirror system. Cross-

sections 2, 6, 8, 12 correspond to minimum-B mirror cell midplanes.
FIG. 2. Dependence of J; and J; on & = p;/pp, for the LMNS magnetic system parameters.

FIG. 3. The family of the curves a(E) for R = 2 and E; = const. The curves 1, 2, 3, 4
correspond to the following values of E;: 12, 15, 18, 21.

FIG. 4. The optimal values of E and R as the functions of E;.

FIG. 5. The optimal value of @ and “stability factor” Sy as the functions of E,.
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