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Abstract

A simplified two-dimensional nonlinear fluid model is developed to elucidate the
basic mechanism of the formation of multifaceted asymmetric radiation from the edge

" of tokamak plasmas (MARFE). In the framework of a mixed Eulerian-Lagrangian de-
scription, the problem is reduced to a reaction-diffusion-type equation with nonlocality,
which obeys the constraints of length constancy and mass conservation along the mag-

netic field. With a simple cooling function, this model predicts formation of stationary

MARFE-like structures.

PACS numbers: 52.55.Fa, 52.35.Py, 47.54.+r, 47.70.Mc



The edge plasma plays an important role in the problem of pl%ﬁa confinement in toka-
maks. One of the major factors determining the global stability of a tokamak discharge is
impurity radiation at the edge.b % %% 5 At the so called density limit (or Murakami limit)
the total impurity radiation power (which for the optically thin plasma is proportional to the
square of density) becomes equal to the total input power into the tokamak discharge. Above
the density limit the discharge undergoes a thermal collapse.® 5 ¢ MARFEs, toroidally sym-
metric, but poloidally asymmetric standing or moving radiative condensations, form at the
edge of tokamak plasmas, and they were observed in almost every tokamak somewhat be-
low the density limit.” & % 10:11, 12,13 MARFEs significantly increase the impﬁrity radiation

power. On the other hand, experiments with reproducible MARFEs provide a convenient

means of the edge plasma diagnostics.!* MARFEs are related to radiative condensation -

instability (RCI),'4 ** discussed earlier in astrophysical contexts,'® and they are indeed sim--

ilar to a number of self-organizing radiative condensation phenomena in astrophysics (solar
- prominences,'” interstellar clouds,® etc.).

Theoretical studies of MARFEs proceeded in the following three directions: (i) the linegr
analysis of the radiative condensation instability, (ii) search for possible MARFE-like steady
states of a tokamak edge plasma, (iil) attempts to simulate the formation of MARFEs nu-
merically. Drake'® was the first to understand that an adequate theory of MARFEs must be
at least two-dimensional (2d). Using fluid equations in the cylindrical geometry, he analyzed
the linear stability of a simple (constant densify, but radially non-uniform temperature)
thermal equilibrium. He showed that the RCI starts when the plasma density exceeds a
critical threshold that is somewhat lower than the density limit, in agreement with obser-
vations. Also, he found that the poloidally symmetric perturbations are normally damped,
which agrees with the observed poloidal asymmetry of MARFEs. Subsequent extensions of

Drake’s linear theory addressed ionization effects, edge density gradient, different forms of




the radiative cooling function and ”detached plasma” regime.2% 22 21

The search for possible MARFE-like steady states involves the énalysis of a 2d-thermal
balance equation, which includes a (nonlinear) heating-cooling function and anisotropic heat
conduction. Krasheninnikov®® and Kaw et al.?* analyzed simplified versions of this equa-
tion analytically?® * and numerically?* for possible poloidally symmetric and asymmetric
(MARFE;like) solutions and transition between them. Also, dependence of the transverse
heat conduction on the poloidal angle was introduced,?® to interpret the localization of
steady-state MARFEs at the smaller major radius side of tokamaks.

The linear stability and steady-state analyses, though important steps, are not sufficient
for elucidating the (still pooﬂy understood) physical mechanism of pattern formation in
this system. This problem requires a nonlinear time-dependent analysis. Neuhauser et al.'®
studied the nonlinear RCI dynamics numerically, employing a one-dimensional multi-fluid
code with the ionization-recombination balance for the hydrogen and impurities. A number
of interesting effects were found, such as relaxation oscillations during a plasma density rise,

“condensation” front propagation and effects related to inhomogeneous power and impurity
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input. However, it became clear after the works of Drake,'® Krasheninnikov?® and Kaw

et al.,** that 2d nonlinear dynamics should be addressed.

~In this Letter, we develop the first 2d nonlinear time-dependent fluid model, aimed at
elucidating the basic mechanism of MARFEs formation. Similar to a number of previous
studies of MARFEs,'® 25 we shall assume that the tokamak magnetic field completely sup-
presses the plasma motions across the field, but not the transverse heat conduction. We
start with the simple fluid equations, including the thermal balance equation for an optically
thin plasma:

dn

E+nb-VU‘|i0, (1)
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where n, T and p = nT are the plasma concentration, temperature and pressure, respectively;
b = B/B is a unit vector along the magnetic field B; v, is the longitudinal (along B)
velocity; m; is the ion mass; s and k1 are the coefficients of léngitudinal and transverse
heat vconductions; L = n?F(T) is the radiative cooling function; H is a heating function.
The total time derivative in Egs. (1)—(3) is d/dt = 0/0t +vyb - V. Now, let us explicitly use
the fact that the typical longitudinal acoustic time scale is normally mﬁch shorter than the
other relevant time scales (the radiative cooling time scale and longitudinal and transverse
heat conduction time scales). In this case, thé 'plasma préssure rapidly becomes uniform
along the magnetic field lines, so that the Euler equation (2) can be replaced by the simple
relation b - Vp = 0. |

MARFEs form in a thin region at the plasma edge. Therefore, the problem can be
" considered in slab geometry (2, 2), if we supplerflent it by periodic boundary conditions with
respect to the magnetic field direction z. Let the left boundary of the plasma, z = 0, be
kept at a constant temperature T = Tp (this condition simulates the hot plasma inside the
discharge), While. the right boundary, = a, be kept at a (signiﬁc:antly lower) constant
temperature T}, which simulates the discharge periphery. The boundary -conditions along »
are periodic: n(z,0) = n(z,1); T(z,0) = T(z,l) and v“ (z,0) = v(z,1), where | = 277R, and
R can be identified with the major radius of the tokamak. From this periodicity immediately

follows mass conservation along z:
! :
M(z,t) :/0 n(z, z,t)dz = const(t) . (4)

Introduce the specific volume of the fluid, u(z,z,t) = n~*(z,2,t), and eliminate the
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temperature, using the equation of state. We arrive at the following two equations for the

three variables u(z, 2,1), vj(z, 2,t) and p(z,t):

du Oy
30p, 5 owl 0 ( ou)_ 0 ( O
25t 27702 p@z(”@z) 8x(m' Ox +L-H=0, (6)

“where it is assumed that K|j,%1,L and H are expressed as functions of u and p. Integrating

Eq. (6) with respect to z over the period !, we obtain a nonlocal evolution equation for the .

pressure:

o 2 d(pu)
= (L H)dz+31/ (l = )dz. G

The equations (5)-(7) are closed, and they represent the Eulerian version of our reduced

model. They can be further simplified by introducing a Lagrangian mass coordinate

. _ z -1 / ! )
m(zx,z,t) = /0 u (2,7, t)d2 . (8)
Transforming to the coordinates z and m, we are left with only two gbverning equations:
ou 2 0 [k Ou\ 2ud Apu)\ 2u - 3uop’
8t 50m (u 8m> + 5p Oz (m‘ dr ) Bp (L - H)  Bp ot ®)
o 2 M@ 2 M@ & [ B(pu)

where M (z) = flu(x, z,t)dz is the (z-dependent) total mass content of each magnetic field
line. Because of mass conservation along z, the quantity M(z) is independent Uof time and
determined solely by the initial density profile. Note that the constancy of the system length
[ in the z-direction, while trivial in the Eulerian coordiné,tes, appears as a conservation law

in the Lagrangian description: ' ‘

M(z) 4
/0 u(z,m,t)dm=1. (1)
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The Eulerian-Lagrangian form of the reduced model (9) and (10) has similarity to some
known equations. Indeed, Eq. (9) for u(z,m,t), which should be solved subject to the peri-
odic boundary condition with respect to m, u[x,m = M(z),t] = u(z,m = 0,t), resembles a
well-known reaction-diffusion (RD) equation for an active medium (see, e.g.2%) However, in
our problem it is coupled to the nonlocal evolution equation (10). Tt is important that this
nonlocality arises due to the constraints of the time-independent mass M (z) and length [ of
the system along the magnetic field. Qualitatively similar nonlocalities have arisen in a num-
ber of one-dimensional bistable RD systems, where they introduce “global negative feedback”
and contribute to the formation of persistent stationary structures, normally impossible in
non-constrained one-component RD equations.?® 27 2 2% The mechanism of stationary pat-
tern formation in bistable systems with globai negative feedback consists, essentially, in the
arrest of motion of “phase transition” fronts, which otherwise would make the system uni-
form. The arguments developed in%: 2728, 2% can be extended to the more complicated (in
particulé,r, non-bistable) 2d model (9) and (10). Therefore, we can interpret the development
of MARFEs in terms of the formation of stationary patterns in a RD system with global
negative feedback.

To verify this idea and follow the MARFE formation, we solved the reduced equations (9)
and (10) numerically. As neither the linear theory of the RCL' 2! nor the MARFE-like
steady states®® ?* are very sensitive to the precise form of the cooling function, we chose
a rather crude model of the line radiation from the tokamak edge: L = w~2Ly, for the
radiatively unstable temperature interval T, < pu < Tp, and L = 0 outside this interval.
Also, Ty, was taken much smaller than Tp, so that the radiative cooling was localized near
the edge. For simplicity, we assumed the following model forms of the heat conduction
coefficients: s = T = pu, k1. = 1. (Renormalizing properly the coordinates  and m and
rescaling the dimensions a and [, we can always scale down the numerical coefficients in the

heat conduction coefficients). The simplest case of a zero heating, H = 0, was chosen.



Figures 1 and 2 show é typical example of our model edgé plasma dynamics leading to
the formation of a steady-state MARFE-like pattern. The scaled “edge plasma” dimensions
were a = 15 and [ = 120, while the parameters were the following: Ty = 45,7, = 1,1 = 3,
and Lo = 3. In this run, we started with a small 2d “seed” plasma condensation (with a
maximum of 5 - 1072 on the background of a constant (and equal to 1) plasma density. The
“seed” condensation was exponentially localized, and we put it close to the middle of the
“cold wall” of the system. For this initial density profile, the mass content of each magnetic
field line is almost independent of z and equal to M = 120 (with an accuracy better than
10~%). Recall that M serves as the Lagrangian "length” of the system in the 2-direction. The
initial pressure profile is one-dimensional and linear in z: p(z,m,t = 0) = To— (To—Ts) (z/a).
We checked the constancy of I (Eq. (11)) to monitor the accuracy of computations, and the
maximum relative error in [ was found to be 1 percent.

As the initial conditions are not in thermal equilibrium even without the small perturba-
tion (they would be if it were not for the radiative cooling), the system starts to evolve.?®. The
region with the temperature less than T}, is cooling down, as the radiative cooling operates
here, while the heat conduction supplies heat from the core plasma and tends to smooth
" the temperature profile. Simultaneously, however, the initially small 2d-perturbation grows,
and a pronounced 2d condensation develops. See Fig. 1(a) and (b) for the specific volume
dyflamics in the coordinates = and m. .Finally, a localized MARFE-like structure is formed,
as seen in Fig. 1(c) for the specific volume and in Fig. 2 for the temperature. Simulations
with other initial pressure profiles gave similar results and, therefore, we conclude that the
MARFE phenomenon has an extensive basin of attraction in the space of initial conditions.

In summary, we employed a natural hierarchy of time scales to derive a simplified model
for the MARFE formation at the edge tokamak plasma». Using a mixed Eulerian-Lagrangian
formalism, we were able to describe the MARFEs development in terms of formation of stable

equilibrium patterns in a 2d active RD system with nonlocal constraints, leading to global
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negative feedback. We demonstrated numerically that persistent, MARFE-like patterns can

develop in this system from a variety of initial conditions.
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Figure Captions

1. Formation of a MARFE-like 2d pattern. Shown is the specific volume of the plasma
as a function of = and Lagrangian coordinate m at successive time moments ¢ = 18
(a), 36 (b), and 60 (c), when a steady state was achieved. The system lengths in the

- and z-directions are 15 and 120, respectively. -

2. Steady-state plasma temperature as a function of  and Lagrangian coordinate m at

time ¢ = 60. The system lengths in the z- and z-directions are 15 and 120, respectively.
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