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Abstract

The low frequency E x B turbulence driven by the shear in the mass flow velocity
parallel to the magnetic field is studied using the fluid theory in a slab configuration
with magnetic shear. Ion temperature gradient effects are taken into account. The
eigenfunctions of the linear instability are asymmetric about the mode rational sur-
" faces. Quasilinear Reynolds stress induced by such asymmetric fluctuations produces
momentum and energy transport across the magnetic field. Analytic formulas for the
parallel and perpendicular Reynolds stress, viscosity and energy transport coefficients
are given. Experimental observations of the parallel and poloidal plasma flows on

TEXT-U are presented and.compared with the theoretical models.
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I. Introduction

Since it was first studied in early 1970’s,! the instability driven by the cross-field gradient
(shear) of the plasma mass flow velocity parallel to the magnetic field in an inhomogeneous
plasma has been investigated extensively in fusion?~® as well as in space plasmas.”® Such
instability can be strongly driven by neutral-beam-injection in tokamak discharges. In addi-
tion, a strong gradient of the flow velocity may appear near the plasma boundary due to the
presence of the limiter or divertor which is known to dramatically alter the plasma dynamics
in the scrape off layer (the shadow of the poloidal limiter or the divertor region) from that
in the bulk . In space plasmés, high streaming velocities parallel to the magnetic field and
rapid variation of the parallel flow velocity with the distance perpendicular to the magnetic
field are measured in the plasma sheet boundary layer due t;) the influence of the solar wind
c;n the plasma éheet.sf9

Such turbulence driving mechanisms are understood and the characteristics of the in-
stability are well documented.'=® In this work the emphasis is not on the study of the
instability itself but rather on momentum and energy fluxes described by the turbulence in-
duced Reynolds stress. From the Reynolds stress parallel and perpendicular to the magnetic
field we determine the associated viscosity and energy transport coefficients generated by
the turbulence of the instability. The transport coefficients are characterized both by their
magnitude at the mixing length level of the turbulence and by their dimensionless ratios,
the Prandtl numbers, which are independent of the turbulence level.

It was first observed on the TEXT tokamak'® that a poloidal flow shear is formed at the
plasma edge. Such flow shear may suppress the plasma density fluctuations and affect the
local plasma, conﬁnemenf improvement. Later, the L-mode to H-mode (L-H) transition in

tokamak plasma confinement was found to be related to the presence of the poloidal flow




shear near the plasma edge." Theoretical work has been carried out to study the poloidal
flow shear effect on the plasma turbulence.!?

Several possible sources for the generation of such poloidal flow shear have been
proposed.'*~2° Among them two models are widely studied. One is the particle losses caused
by the interaction with the limiter or divertor.'*!4 An alternative explanation is the Reynolds
stress produced by the turbulence in the plasma.®® This latter mechanism requires a phys-
ical driving force for the turbulence. A few physical models such as drift-resistive ballooning
mode,*® resistive pressure-gradient driven mode®® have been proposed and studied.

In this work, the parallel velocity shear, combined with the ion temperature gradient,
is proposed as the driving mechanism for the poloidal sheared flow. It has been pointed
out by several authors'>® that there must be a symmetry breaking mechanism such as
boundary conditions in drift waves, or some symmetry breaking seed introduced in the
study of pressure-gradient driven turbulence in order to generate nonzero Reynolds stress
from fluctuations. One of the features for the model proposed in this Work is that the
mode eigenfunction is intrinsically asymmetric about the mode rational surface so that the
Reynolds stress generation is independent of, or at least not sensitive to, boundary conditions.
Symmetry breaking seeds are not needed even in the nonlinear simulations.5

: Experiméntal measurements of the parallel and poloidal flows are carried out on Texas
Experimental Tokamak Upgrade (TEXT-U) and some of the results are presented in this
work. The measurements from a Mach probe show that there is a strong radial gradient of
the parallel ion mass flow at about the same region as the poloidal shear layer. The sharp
spatial gradient may be created and maintained by the transition from a confined interior
plasma to a scrape-off layer plasma regulated by the cold plasma sheath surrounding the
limiter. The sheath condition on the net parallel plasma electric current requires the build
up of a parallel ion velocity to a fraction of the ion acoustic speed. The turbulence is now

driven by the free energy associated with the radial gradient of the parallel flow velocity,




and in turn, produces an acceleration in the poloidal direction. The preliminary evidence
that the plasma parallel velocity changes at about the same radial position as the poloidal
shear layer supports this scenario for the poloidal shear flow generation. The theoretical
results are compared with and shown to be in reasonable agreement with the experimental
observations if a neoclassical damping mechanism is introduced to balance the driving force
from the Reynolds stress.

In large tokamaks the toroidal velocity gradients are measured by spectroscopic tech-
niques and may be driven in the interior by parallel beam injection. In a recent analysis of
the high poloidal beta discharge regime on JT-60U, a transport barrier is reported at the
g = 3 surface where the foroidal velocity gradient, measured in terms of the dimensionless
stability parameter defined here, has a value close to that found in the TEXT-U scrape-
off layer. We speculate that same physical processes proposed here for local confinement
improvement on TEXT-U may be involved in the transport barrier generation on JT-60U.

The remainder of this work is organized as follows. In Sec. II the physics model is de-
scribed, and the eigenmode equation is given and solved analytically. Analytic formulas for
the Reynolds stress are derived in Sec. III and the numerical evaluations are presented in
Sec. IV. In Sec. V the eprerimental observations on TEXT-U are presented and possible cor-
relation of the theoretical results obtained in this work with these experiments are discussed

in‘ detail while Sec. VI is devoted to the conclusions of this study.

II. Physics Model and Eigenmode Equation

We consider a slab magnetic configuration B = Bo(2+ £- ¥), where Ls is the scale length
of magnetic shear. Here the z-, -, and 2-directions in the sheared slab geometry are defined
as the radial, poloidal and toroidal directions in the tokamak conﬁguration; Fluid theory
is used to describe the ion motion and the electrons are adiabatic. Equilibrium parallel

velocity shear duj(z)/dz = const. is considered and ion temperature gradient (m;) effects
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are included in the instability study. The perturbed electrostatic potential is expressed as
é(z,y,t) = Re{d(x) exp(ik,y—iwt)}. Under these assumptions it is straightforward to derive

the linear eigenmode equation for the function ¢(z) as follows,*

d2¢(m) @ s'a® _ Uyse _
~bubla) + 2 pla) + [ 52 - gt =0, <1>

where b, = k2p2, © = w/wke, K = 14+ m)/7, 7 = Te/T;; 3 = d In Ti/d In n, wee =
kypsCs/Ln is the electron diamagnetic frequency, z is normalized to p, = ¢,/ = (Te/ mi)3 /=
c(miTe)%/ eB, € is the ion gyrofrequency; Uy = Lndv|/csdz, s = Ly/Ls with L, being the
density gradient scale length. Here T, and T; are the electron and ion temperature, respec-
tively. Equation (1) is valid in the hydrodynamic-like limit and the full kinetic equation is
also given in Ref. 4.

The dispersion relation obtained from Eq. (1) is

S St NN N (AP )
D+K 4@+K)?|is '

The corresponding eigenfunction is
#(@) = g 2 — H, ((is/0)? <x+A>) etV (3)

where H,, is the Hermite function of order n and

- L @
2s(@ + K)

In the rest of this work only the n = 0 mode will be considered.
It is easy to notice that the mode growth rate is independent of the sign of 176" from
Eq. (2). However, the asymmetry element, the shift A of the position of the maximum
#©(x) from the mode rational surface (z = 0), depends on the sign of ¥, and is important
for the Reynolds stress calculation. For cold ion approximafion (K — 0) A is a real shift in

z-space. In general A is complex and introduces a deformation of the eigenfunction given

by Re {45(“) ) exp(ikyy — zwt)} as well as the shift.
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III. Equations for Reynolds Stress

The general expression for the perturbed electrostatic potential is ¢ = Re{Xx, ¢od(x) exp(—iwt
+ikyy)}. The E x B drift velocity is

~ c 0 ~_£@T_ (5)

e = B oy’ W= Boz’
where B is the toroidal magnetic field and c is the speed of light. In the representation of é
we use ¢ to characterize the rms fluctuation level and ¢(z) the normalized wave function.
Now we introduce the two components of the micro-Reynolds stress that measure the

radial flux of the parallel and perpendicular momentum,

Ty (%) = Ve Dy + Uy (6)
may (%) = T3y + Tl (7)
where in the quasilinear approximation 7j = (escs /T.)zp. In writing Egs. (6) and (7)

we leave implicit the summation over all poloidal mode numbers and all rational surfaces
determined by the toroidal mode number spectrums. It is straightforward to obtain the

analytic expressions for Egs. (6) and (7), using Egs. (3) and (5), as follows:

2 2k, o g
=|¢0|2pCBz . Y 2z, + AD* + A*D)e P E+ATY =0T @A/ 20 8)
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where * stands for complex conjugate, &, and v are the real and imaginary part of @,
respectively.

For energy transport we need the radial flux ¢,(x) of the ion pressure fluctuation

Po(1+m;)S 2vky zsr(m+A*)2—A*(x+A)2]/2!W|2 (10)
psCsB? 82

0(2) = 5+ 55" = |gol




where again we use the quasilinear approximation p = —0,d Py /iwdz for the perturbation of
the pressure. Here P, is the equilibrium pressure and the equilibrium pressure gradient is
dPy/dx = —KPO/Ln.

All the quantities given in Eqgs. (8)—(10) are function of x = r — ro with 7o being the
position of the mode ratioﬁal surface. In order to obtain the effects of these quantities on ﬁhe
macro-motion, or background motion, these micro-fluxes that are localized to small layers
around the resonant surfaces (z + A = 0) must be integrated over z. The results are the
corresponding values used in thé macro-motion equation on the mode rational surface.

In this way we have

Aky \/-—Iw|3KU0|| 7@’2||K2/4s|75+K|4 (11)

+o0
_ k|~ ok _ 2
(’?Tmy> = /_oo (’Um'vy —l—’Ug;’Uy) dr = _|¢0| B2p, 52 2|w +K|2 ’

oo ccse 'yzlwl Vo o2 w2 4
(ﬂ'm||>=/_°° (v 7 +'Umv”) = —|do? : _JT Tw_I_KIzO” e K? 4o+ K] . (12)
and
Fy(1+mn)c (7 7 ky ~o2 K2 /4slo+ K4
(¢z) —/ (a2 P+ 8, p*) dz = |gol® 020122) ( 7)s%| Olky 1 K2 2ol (13)

In Egs. (11)—(13) the mode growth rate -y and real frequency &, must be obtained from the
/mode dispersion equation (2) (with & = &,.+ i), for each k, and the mean fluxes summed
over all ky.

Apparently, (m,y) and (m) vanish linearly with 9 — 0 while (g,) does not. Considering
that the ion temperature gradient is taken into account, the instability is still possible under
such limit. This clearly shows the importance of the parallel velocity shear for the momentum
transport from turbulence in the quasilinear theory.

With this presentation of (may), (7s|), and (gz) we are giving the intensity for per unit
_ spectrum of the fluctuations at the specified k,. The complete flux is then the integral of
the intensity over the spectral distribution of the fluctuations [ I(k,)dk,. When one scale



dominates the fluctuation spectrum it is adequate to take @2 as the rms amplitude and
choose k, corresponding to the dominant scale.

In integrating the micro fluxes over & we obtain the weight for a single rational surface. To
obtain the total flux across the sheared magnetic field, we must introduce the mean density
of the rational surfaces® px, (r) = (6|¢|/n%¢?)kyr and define (m4y) = S, [ pi, (r)Toydr. Note
that pg, (r) varies only on the scale of g(r) and is then essentially constant over the shear flow
layer and the mode width. The total fluxes is given by the integrated formulas Egs. (1 1)—(13)
multiplied by the function p, (r) and summed over all k,. Here we report the flux per unit
of these weighting factors.

The momentum transport coefficients p) and p are defined by

1A~
Ly = (W2y> |¢ |2 c2ky(7r5)2|(1"j|3KLn evvoliK2/4slw+Kl4 , (14)
- csB2pss? v2 |0 + K|?
and
Ly = <7r-’5") I¢ |2cek ("T) lwl Ln'yz '700||K2/4s[w+K|4 ’ (15)
— dm BT, ‘Iw + K|?
The energy transport coefficient X is defined as
X = (g) _ Ln <~*'ﬁ+ ’17mﬁ*> — |¢0|2 Ly, @] ky (7"7)2 "/’uonKz/43|w+K|4 (16)

—%B " Po(1+m) csB2p,s?

The transport coefficients (11, ), X) are proportional to the square of the fluctuation
level (%2) It is important to consider the ratio of the coefficients for which the dependence
on ¢ is removed.

The ratios of the energy transport coefficient to the momentum transport coefficients are,

X 4o+ K)?

X |o+KP?
P (18)

The ratios in Eqs. (17) and (18) are the reciprocal of the perpendicular and the parallel

Prandtl numbers for the turbulent plasmas. The approximate solution for the dispersion



equation can be written as

T=E—=5 (19)

if 3|94y S sK, which is generally true in tokamak plasmas nowadays. As a result, in this

parameter regime we have

v
X 1-—
— ~ K gK?
pL s
and ’
;;12
X ( n%)
i s

The comparison with the Prandtl numbers for Coulomb collision plasma will be given in

Sec. IV.

IV. Numerical Evaluation of the Transport Coeffi-
cients ' | |

The dispersion equation (2) ié solved numerically. Typical mode growth rates and fre-
quencies are shown in Fig. 1. The reference parameters are s = 0.1, b, = 0.1, and 7= 1. In
Fig. 1(a) the mode growth rate is shown as function of %, = Lady)/csdz for 5 = 0.5, 1.0,
1.5, and 2.0. It is clear in the figure that there are two regimes for the mode development.
In the first regime, where 7 S 1 and the growth of the mode is dominated by the ion
temperature gradient, the mode growth rate increases slowly with '176”. In the second regime,
where Ty, 2 2 and the growth of the mode is dominated by the parallel velocity shear, the
mode growth rate increases rapidly with 176”. The approximate mode growth rate is given by
Eq. (19) in the first regime. The higher the n; value (deeper T;(r) profile or flatter density
profile n(r)) or the lower the 7 value (lower T or higher T;), the flatter the curves v versus

o
'Uoll .



In the second regime the approximate solution of the dispersion equation (2) is

1
. 1 , 2 n 2K(1+b,)% )|’
o ST 5 {1 is+ | (1 —is)* — (1 + bs)Tg) (1 o] + 1 , (20
if K is small compared with |3 |. For small magnetic shear Eq. (20) gives
1 o K+s
& [ |Vl — == | - 21
v 2(1 + by)? ( ol oyl ) | @)

The mode real frequency exhibits two flat regimes and a transition regime. The higher the
n; value the larger the difference between the two flat regimes. Generally speaking, the mode
rotates in the ion diamagnetic direction and frequency increases with #. The frequency in
the laboratory frame is Doppler shifted from what is given here where vj(z = 0) = 0.

The micro-Reynolds stress m,, without the factor |¢o|*c?/psB? is plotted in Fig. 2 as
function of  for 7 = 1, 7 =1, b = 0.1. In Fig. 2(a) s = 0.1 and 9p; = —1.5, —1.0, —0.5
and 0.0. It is easy to see that 7y, is antisymmetric about the z = 0 surface for ;%Il =0
and that the asymmetry develops dramatically with the increasing of |7 In addition, the
magnitude of the micro-Reynolds stress 74y increases significantly with [3g|. In Fig. 2(b)
s = 0.5 and 776[! = —1.5, —0.5, 0.5, and 1.5. Comparison of the two cases with 1’}6” =-1.5
shows that the asymmetry is higher while the amplitude is lower for s = 0.5 than that for
s=0.1. |

The Reynolds stress (m,,) (Eq. (11)) without the factor |@o|?c?/psB? is given in Fig. 3
as function of ¥y for 7 = 1, b, = 0.1. In Fig. 3(a) m = 1.0, s = 0.1, 0.2, 0.3, and 0.4. It
is shown that for the same Ty, |{may)| decreases with the magnetic shear s, and that for all
the s values studied here the Reynolds stress increases with the parallel velocity shear %) |-
The sign of (my) is opposite to the sign of 3. In Fig. 3(b) s=1, 7, =2, 3, 4, and 5. It is
seen that [(m,,)| increases with the increasing of #; for 7, S 1.5 where the ion temperature
gradient is the dominant driving force. For 7 R 2 it is the opposite, |(my)| increases with

the decreasing of ;.
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The micro-Reynolds stress 7, without the factor |¢o|*ccse/ BT, as function of x is plotted
in Fig. 4 for 7 = 1, by = 0.1, s = 0.1. In Fig. 4(a) m = 1, T = —1.5, —1.0, —0.5, and 0.
Similar to 74y, the stress my is inversely symmetric about the 2 = 0 surface when 95 = 0
and such symmetry breaks as long as 7 # 0. In Fig. 4(b) 9y = —1.5, 7 =1, 2, 3, and 4.
Both the amplitude and the asymmetry of 7y (2) increase with parallel velocity shear [T |
as well as with the ion temperature gradient 7; for the parameters studied here.

The Reynolds stress () (Eq. (12)) is plotted as function of parallel velocity shear oy,
in Fig. 5 for 7= 1, b, = 0.1. In Fig. 5(a) s=0.1 , 7, = 2, 3, 4 and 5. The Reynolds stress
(mq)) increases with the increasing of #; for [0f)| S 1.5. For || R 2 it decreases while 7;
increases. In Fig. 5(b) n; = 3, s = 0.1, 0.2, 0.3 and 0.4. The Reynolds stress (m)) increases
when the magnetic shear s decreases. For 7; ~ 1 the Reynolds stress (7)) is not sensitive
to the magnetic shear s. In addition, () has the opposite sign to the flow shear 7.

A cémmon feature of (myy) and (mg)) is that both of them are equal to zero for 9p; = 0
and that the magnitudes increase with the increasing of the flow shear ¥

The micro-thermal flux ¢, is given in Fig. 6 for =1, b, = 0.1, and s = 0.1. In Fig. 6(a)
176” =-1.5, 7, = 1, 2, 3, and 4. In contrast to the momentum fluxes 7, and 7, the energy
flux is always positive and increases with #;. In Fig. 6(b) 7 = 1, % = —1.5, —0.5, 0.5, and
1.5. It is easy to notice that the curve for % = —1.5 is identical to the curve for ¥f; = 1.5
but shifts towards the left. It is the same for the curves of 7y = —0.5 and 0.5.

The integrated energy flux (g,) (Eq. (13)) is shown in Fig. 7 as function of the parallel
flow shear 6{)” for 7 =1, by = 0.1. For given magnetic shear s = 0.1 the energy flux increases
with the increasing of 7; (see Fig. 7(a)) while for 7; = 1 it decreases with the increasing of
the magnetic shear s (see Fig. 7(b)). The momentum fluxes (mz,) and (7)) are zero while
the energy flux is not for 7, = 0. | '

All the above mentioned variations of (), Tay, (Ta)); Ta|, (¢z) and ¢, with the param-

eters (s,7; ,0o|) are like at a fixed ¢§ so that additional variation through the dependence of
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@2 on the parameters must be calculated by other means in a comparison with a real physics
system.

The ratio of the energy transport coefficient X over the poloidal momentum transport
coefficient p; (the inverse Prandtl number) is independent of @2 and given in Fig. 8 as
function of ¥y for 7= 1, s =0.1. In Fig. 8(a) bs = 0.1, n; =1, 2, 3, and 4. One interesting
point of the result is that X/u1 decreases when 7; increases for |7y S 1 while it is the
opposite for |7y 2 1.5: lower 7; corresponds to lower X/uy. In Fig. 8(b) n; = 1, bs = 0.1,
0.2, 0.3, and 0.4. The ratio X/u, monotonously decreases for increasing b,. Not shown here
is the results we obtained that X/u, monotonously increases for decreasing magnetic shear
s. The common feature is that X and u, are always positive and the value X/py decreases
with the increasing of the parallel flow shear [T .

Figure 9 shows the inverse Prandtl number defined with respect to the parallel turbulent
viscosity X/py. The results are similar except that X/y is more than one order of magnitude
higher than X/, , which means that 4, is much higher than .

For Coulomb collisions the corresponding inverse Prandtl numbers are

ﬁ27, ﬁ21.7.
251 K2

Here p5 corresponds to y in the turbulence case and p; is perpendicular viscosity coefficient
with no direct correspondence to the turbulent viscosities given here. Thus the turbulent
Prandtl numbers (=2 0.01) are small compé.red with the Coulomb collisional values (=~ 0.6).
There are no parameters in the theory based on the Coulomb collision corresponding to fu .
The parameter p, introduced in this work is unique for the theory of turbulence driven by

velocity shear.
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V. Discussion

It is widely recognized by fusion physicists!®2?324 that the plasma dynamics in the bulk
region and in the scrape off layer (SOL) are significantly different from each other. As a
consequence there must be a transition region around the edge of the limiter or the last closed
flux surface (LCFS), where some of the plasma parameters change rather rapidly across the
region. In other words, the edge plasma is characterized by a rapid radial dependence of
the plasma parameters such as parallel plasma flow. Particles may move freely along the
magnetic field lines in the bulk plasma while such freedom does not exist in SOL due to the
presence of limiter or divertor plates.

Experimentally, a poloidal flow shear has been observed in the vicinity of a material
limiter,!® in a ohmically heated plasma. The poloidal velocity shear is important in the
L-H transition.!! We present evidence that the plasma parallel velocity changes at about the
same radial location as the poloidal shear flow layer. 'These measurements were taken on
the TEXT-U tokamak with plasma conditions By = 2.5T, I, = 220kA, and a line averaged
density, 7. = 3.0 x 1013 cm™3, using a reciprocating probe array. The plasma was defined by
three rail limiters located at r = 27 cm. The probe array was mounted on the top of the vessel
separated from the limiters by 247.5° in the plasma current direction. The toroidal magnetic
field was in the same direction as the plasma current, and the ion grad-B drift was upwards.
In Fig. 10(a) we show a radial profile of the parallel flow Mach number M = v} /c, measured
) with a Mach probe with two collecting electrodes biased with —180 V to collect ion saturation
currents from upstream and downstream. The current ratio can then be used to calculate the
flow Mach number?®*—2" with the assumption that the ion temperature is equal to the electron
temperature. We used the Hutchinson model?” which includes diffusion and viscosity into
the probe presheath. The ion flow direction is in the direction of the toroidal magnetic field

and plasma current. Figure 10(b) presents the normalized radial derivative of the ion parallel
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velocity. In Fig. 10(c) we show a radial profile of the poloidal phase velocity, Uphase, used to
define the shear layer.!® The phase velocity is derived from the power spectrum measured
with a two point correlation technique, Uphase = S0 25w, k)/ Tiw S(w, k), where S(k,w)
is the measured power spectra?® as a function of wavenumber and frequency. Since the phase
velocity measurements were not taken on the same shot as the data on parallel flow velocity,
it is important to note that the conditions were similar and the location of the velocity shear
layer is generally robust for the plasma conditions used. We estimate the uncertainty in
position for the location of the flow shear layer to be of order 4mm. To within the limits
of plasma reproducibility the maximum gradient of the parallel ion flow occurs at the same
radial position as the velocity shear in the perpendicular direction.

In order to make detailed comparison possible the quasilinear saturation amplitude is
estimated in the following. Suppose that the mixing length saturation level is determined
by the condition that

dyy

T ™ hj(z) , (22)

which is valid if |z76"| R 1+ m;. Noting from the motion equation in the parallel direction
that 7 = (esc, /T.®)z@ then it is straightforward to have

Te ps .
$o ~ = L—n’U6|| . (23)

For 9 < 1+ m; the saturation level is ¢o 2 (17; — 7ic) / (kg)% ~ (i — i)/ (kj)%.
Substituting Eq. (23) into Egs. (11)-(13) gives the approximate formulas as follows

1112 e
(ey) = — ET2 ()3 kyp, 72 |0 Kog)
W =TGR 8 O+ KP

T, \2 -
__ <eBLn) Fy (15,78, 3,b5) 5 (24)

() = ——S L ()2 kyps 72 1005
WTTeBLE 5 o+ KP?
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cTs \?
:._(EBL ) Fll(ﬂiaT:S,%naba) ) (25)

C2Te2 By(1 + "71)(7"7)2'1‘:1//08 IA ol%

{g=) = e2B2L,c, Lps2 0”
2
_ [ pscs - dFy
= — (-—-—Ln ) G('I’h‘,'r, S,’U(,)", bs)_dx . (26)

To obtain the fluxes as function of system parameters the value of & = @, + %y must be
calculated from Eq. (2) and substitute into Eqs. (24)—(26).

The dimensionless functions F, Fj, and G are given by

' —1- -~ L~
(W)%kyps 7ZIWI2KU(,)?I’I
s% ILT) + K|2 ’

FL(%T, S, 77(/)[|ab8) =

l ”~ o~
(’ﬂ")% yPs v? leav(,)?l

Ey(m Bg s) = )
_ ||(77 77'a57'Uo||,b ) S% IQ+KI2
and
~ 7Y)2kyps
G(ni)7-73’v6|[7b ) - (_’Y)%_}_lﬁ_l 0[[
The equation for generation of the poloidal velocity (vs) is
0 10
ot (vg) = _;37"( T(Tay)) - (27)

In our case, suppose that the parameters are constant except i)‘(’)”, then

0 2Tez yps( )2 72 |WI2K ( ’YK2A62II )42 I

'a_m (Wwy} 62L3B2 Sg l'\ + KI2 2s l" + KI4 7'}0" UO”
2T2
= 62L332 H(n‘b) T S b87 ’UOH ) UO”) (28)

where U = L2d?v) /csdx® and

_ yps(7r)2 Vi BPK VK g o2
H (i, 8,bs, By, %) = =3 o+ K7 >t P 1 KF 0% o -
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Equations (27) and (28) clearly show that the driving force for the poloidal velocity is
independent of the sign of @ but depends on the sign of - Such dependence of the
driving force on ¥ determines the dependence of (vs) on g, and will be discussed later.
In general, the functions F, Fj, G, and H should be replaced by F, A, FjA, GA, and
HA, where the exponential part A = exp(y9g;K?/4s|@ + K|*) ~ 1 since for a real system
Yo K2 /45| + K|* ~ 705 /4sK?® < 1 when v is given by Eq. (19).

Measurements from the TEXT-U experiment show?® that the measured poloidal plasma
velocity shear increases with plasma current, decreases with chord average density and the
toroidal magnetic field. The shear layer width is a constant over a range of discharge con-
ditions. There is no explicit dependence on plaéma density 7 and current I, in Eq. (28).
However, both the decrease of density @ and the increase of current I, correspond to an
increase of electron temperature T, in the shear layer which explicitly appears in Eq. (28).
The poloidal driving force givén in Eq. (28) is inversely proportional to B2. In summary, the
driving force given in Eq. (28) is qualitatively in agreement with the measured scaling if the
damping mechanism is approximately independent of those parameters. There is no simple
scaling for the shear layer width from this model. Physically, it ié reasonable to think that
the poloidal shear layer Width is approximately the same as of the parallel flow shear.

Some damping mechanism must be introduced to estimate the steady state poloidal
velocity driven by the turbulence. As an example the magnetic damping is considered as
the only damping mechanism and equilibrium poloidal velocity is inciuded. Under these
conditions the plasma motion equation in the poloidal direction, Eq. (27) will be rﬁodiﬁed

as follows,51720

2 o) = 22 (rmand) — v (fo) — ) (29)

where vg° is the equilibrium poloidal velocity, and

. Vii
e7(1 4 va)(1 + ervs) ’

ne

(30)
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with vy = uiiqR/vthe% and e is the inverse aspect ratio, g the safety factor, R the major

radius and v; the ion-ion collision frequency. In steady state Eq. (29) reduces to

1 0

_W%(%ﬁ . (31)

(ve) — vg° =

For the dimensionless parameters (7;, s, T, 176”, bs) of order unity the poloidal acceleration
from the divergence of the momentum flux is of the magnitude b(cTe /eBLy)?/ Ly, ~ 'v?k /Ln
compared with the neoclassical damping rate v™.

In order to make further comparison it is assumed that the equilibrium poloidal velocity
vg® is negligible, and that the plasma is around the boundary between the Pfirsch-Schliiter
and the plateau regimes with [ ~ gR so that ™ ~ v;. Then the steady state poloidal

velocity (Eq. (31)) reduces to

1 v3, N .
(vo) = —jf‘ H (i, 7,8,bs, 0y, Tg) - (32)

Vi Lip
For the typical discharge parameters: T, = T; = 40ev, B = 20kG, n = 3 x 10'?/cm?,
L, = 3cm, it turns out that

1 2
= Ve 91 x 10° cm/s .

Vii Lin

The function H is sensitive to 66”. For the parameters used in this study, i.e. s = 0.1,
bs = 0.1,7; ~ 1, 7 = 1, the results are given in Fig. 11. H versus 7 is given in Fig. 11(a) for
¥y = 0.5. The maximum value of H is about 10 for 9 = 1. These numbers are in réasonable
agreement with the experimental observations, (vg) ~ —3 to +3 x 10° cm/s. It should be
noted that the suppression effect of the poloidal velocity shear on the ﬂubtuation is not
considered in this work. In this regard the driving force from the turbulent Reynolds stress
is overestimated. On the bther_ hand, however, the saturation level evaluation (Eq. (23)) is
made without taking the ion temperature gradient (7;) effect into account. This may lead to
underestimation of the driving force. These two factors may compensate each other so that

“the theoretical numbers are well in the regime of the experimental observations.
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According to Eq. (32) the dependence of (ve) on ¥ is the same as given in Eq. (28) for
the driving force and is qualitatively in agreement with the experimental observations given
in Fig. 10 from TEXT-U tokamak. Roughly speaking, (vg) has the same sign as that of g
and changes sign at the same location where 7, ~ 0. The correlation between (v) and g is
very impressive though the data shown here are not from same discharge. To further study
the profile of the turbulence driven (vy), the profile of the derivative of the parallel velocity
can be modeled as T (z) = —0.5sech(az), with o being a constant of order unity and z = 0
the position where ¥ (z) has minimum. Then the function H(z) is given in Fig. 11(b). It is
reasonable to assume that v2,/vi; Ly, is roughly a constant in the velocity shear layer. Under
these assumptions the poloidal velocity profile from this model is approximately the same as
that given in Fig. 11(b) which is similar to the experimental results given in Fig. 10(c) and
Ref. 29.

The width of the velocity shear layer can be estimated as

(Tay) 4 x 10°
A [asd ~ ~
valwe) " 32x10° Ll m (33)

and is in good agreement with the experimental observations.

To close this section we would like to say a few words about the L-H transition from
the point of view of the model suggested in this work. One typical feature of the L-H
transition is that vs and |vy| = |dve/dr| increase very rapidly (~ 100us) during the transition.
The driving force given in Eq. (28) exponentially increases with 9gjK?/|0 + K|*. Usually
|o| < K so that such increase is slow as long as 0| < K. However, the acceleration
increases very rapidly when |7g| & K. It may be possible that the condition ez R K,
(ie. |vy/dz| R cs(Ln+ Lr)Ti/LnLrTe,) somehow is achieved and triggers the L-H transition.
Another concern is how the acceleration process is stopped. It has been demonstrated?—412
that the mode growth rate will decrease after the poloidal flow is driven up. The driving force

in Eq. (28) is proportional to the %-power of the mode growth rate so that the acceleration
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stops when the mode becomes marginally stable. This stopping effect can be modelled by
taking v = 7o(1 — v /vd,). Another mechanism to stop the acceleration is that L, becomes
very small in the shear flow layer after L-H transition so that the dimensionless driving force
parameter Uy = Lydy)/csdr is negligibly small even though dv) /dr does not change very
much. Of course, the plasma will eventually enter into a steady state if other drag forces

such as the magnetic damping are taken into account.

VI. Conclusions

The instability driven by parallel flow shear is studied within the fluid approximation in
a local slab configuration with magnetic shear. Ion temperature gradient 7; is taken into
account. The dimensionless parameter set of the problem is (m;, 7, s, 176” ,bs). The quasilinear
expressions for the radial fluxes of the parallel momentum (m), the perpendicular momen-
tum (7g,) and the thermal energy (g,) are derived using the exact linear eigenfunction. The
perpendicular and parallel momentum fluxes, called Reynolds stress, are shown to vanish
when the dimensionless parameter 176” = 0 due to the symmetry feature of the mode structure
about the rational surface. Such symmetry property is broken leading to nonzero parallel
and perpendicular momentum transport as long as 176|| # 0. This dependence on the parallel
velocity shear does not hold for the thermal energy flux: (g;) does not vanish when % = 0.
The Reynolds stress exponentially increases with (TeLnLr/Ti(Ly + Lr)cs)?(dvy/dz)?, while
it is proportional to the square of the electron temperature 72 and inversely proportional
to thé square of the toroidal magnetic field B2 Experimental measurements of the parallel
and poloidal plasma flows on TEXT-U tokamak are carried out and the results support the
interpretation that the poloidal shear flow is generated through the turbulence driven by
parallel sheared plasma flow. The theoretical models are compared and shown to be of rea-
sonable agreement with the experimental observations for scalings as well as for magnitudes

when the neoclassical damping mechanism is introduced to balance the driving force from
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the Reynolds stress.

The transport coefficients (p.1, 14, X) induced by the E x B turbulence of the instability
are obtained analytically. They are always positive. The positivity of the turbulent trans- .
port means that entropy production from the transformation of the ordered flows into the
turbulent fluctuations is positive definite. The ratio of the energy transport coefficient to
the viscosity coefficient is obtained and studied numerically.

The suppression effects of the poloidal velocity gradient on the ﬂuctﬁations are not con-
sidered iﬁ this work. In Ref. 6 2D hydrodynamic simulations show the evolution of @fl—driven
turbulence and the reaction of the turbulence through 7, and 7., on the mean shear flows
including the creation of E x B shear flow. A self-consistent study about the poloidal flow
generation by the turbulence and the fluctuation suppression by the poloidal velocity shear
is in progress and will be published in a separate work.

As is pointed out in Ref. 23 that the tokamak plasma is a complex physical system.
The edge region, where more physics processes take place than in the bulk region, is the
most complex subsystem . The model suggested in this work does not exclude other models
for the subject of the sheared flow generation. The parallel flow shear is only one of the
physical phenomena which exhibit and influence the plasma behavior in the edge region.
The emphasis here is that a parallel velocity shear does exist in the edge region and provide
a free energy source for turbulence, as well as a symmetry breaking element which is necessary

for the poloidal sheared flow generation by turbulence in the quasilinear theory.

Acknowledgments

The authors acknowledge useful discussions with T. Tajima. This work was supported by

the U.S. Department of Energy contracts DE-FG05-80ET-53088 and DE-FG05-88ER-53267.

20



References

1.

10.

11.

12.

13.

14.

15.

P.J. Catto, M.N. Rosenbluth, and C.S. Liu, Phys. Fluids 16, 1719 (1973).
M. Artun and W.M. Tang, Phys. Fluids B 4, 1102 (1992).

F.L. Waelbroeck, T.M. Antonsen, Jr. P.N. Guzdar, and A.B. Hassam, Phys. Fluids B
4, 2441 (1992).

J.Q. Dong and W. Horton, Phys. Fluids B 5, 1581 (1993).

D.R. McCarthy, J.F. Drake, and P.N. Guzdar, Phys. Fluids B 5, 21’45 (1993).

X.N. Su, P.N. Yushmanov, J.Q. Dong, and W. Horton, Phys. Plasmas 1, 1905 (1994).
S. Migliuolo, J. Geophys. Res. 93, 867 (1988).

W. Horton, J.Q. Dong, X.N. Su, and T. Tajima, J. Geophys. Res. 98, 13377 (1993).

D. Schriver and M. Ashour-Abdalla, J. Geophys. Res. 95, 3987 (1990).

Ch.P. Ritz, R.D. Bengtson, S.J. Levinson, and E.J. Powers, Phys. Fluids. 27, 2956
(1984).

R.J. Groebner, K.H. Burrell, and R.P. Seraydarian, Phys. Rev. Lett. 64, 3015 (1990);
R.J. Groebner, Phys. Fluids B 5, 2343 (1993).

S. Hamaguchi and W. Horton, Phys. Fluids B 4, 319 (1992).
K.C. Shaing and E.C. Crume, Jr., Phys. Rev. Lett. 63, 2369 (1989).
R.D. Hazeltine, H. Xiao, and P. Valanju, Phys. Fluids B 5, 4011 (1993).

P.H. Diamond and Y.B. Kim, Phys. Fluids B 3, 1626 (1991).

21



16.

17.

18.

19.

20.

21.

22.

23.

24.

25

26.

27.

28.

29.

B.A. Carreras, L. Garcia, and V.E. Lynch, Phys. Fluids B 3, 1438 (1991).

A.B. Hassam, T.M. Antonsen, Jr., J.F. Drake, and C.S. Liu, Phys. Rev. Lett. 66, 309
(1991).

H.Y.W. Tsui, Phys. Fluids B 4, 4057 (1992).

P.N. Guzdar, J.F. Drake, D. McCarthy, A.B. Hassam, and C.S. Liu, Phys. Fluids B
5, 3712 (1993). |

B.A. Carreras and V.E. Lynch, Phys. Fluids B 5, 1491 (1993).

Y. Koide, M. Kikuchi, M. Mori, S. Tsuji, S. Ishida, N. Asakura, Y. Kamada, T.
Nishitani, Y. Kawano, T. Hatae, T. Fujita, T. Fukuda, A. Sakasai, T. Kondoh, R.
Yoshino, and Y. Neyatani, Phys. Rev. Lett. 72, 3662 (1994).

A.D. Beklemishev and W. Horton, Phys. Fluids B 4, 2176 (1992).

B.B. Kadomtsev, Tokamak Plasma: A Complex Physical System, (IOP Publishing
Ltd., 1992) p. 63. ‘

X.Q. Xu, M.N. Rosenbluth, and P.H. Diamond, Phys. Fluids(B 5, 2206 (1993).

. P.C. Stangeby, Phys. Fluids 27, 682 (1984). -

P.C. Stangeby, J. Nucl. Mater. 121, 36 (1984).
I.H. Hutchinson, Phys. Fluids 30, 3777 (1987).
J.M. Beall, Y.C. Kim, and E.J. Powers, J. Appl. Phys. 53, 3933 (1982).

H. Lin, “Turbulence and transport studies in the edge plasma of the TEXT tokamak,”
Dissertation, The Univ. of Texas at Austin, October, 1991.

22



Figure Captions

1.

(a) Normalized mode growth rate v/wxe and (b) the real frequency w,/wxe vs. parallel

flow shear ¥y = Lndyy/csdz for s=0.1, b, =0.1, 7 =1, ; = 0.5, 1.0, 1.5, and 2.0.

Micro-Reynolds stress distribution 7, around the mode rational surface z = 0 for
7=1,7=1,b=0.1and (a) s=0.1, % = —1.5, —1.0, —0.5, and 0.0; (b) s = 0.5,

Reynolds stress (mzy) vs. Og = Lndyy/csdz for bs = 0.1, 7=1, and (a) s =1, s = 0.1,
0.2, 0.3, and 0.4; (b) s=0.1, 7, =2, 3, 4, and 5.

Micro-Reynolds stress distribution ) around the mode rational surface x = 0 for 7 =
1,b,=0.1,s=0.1and (a) 7 = 1, 9 = —1.5, —1.0, —0.5, and 0.0; (b) P = —L1.5,
7,=1,2, 3, and 4.

. Reynolds stress (my) vs. Dy = Lnduvy/csdz for by, = 0.1, =1, and (a) s= 0.1, 7, = 2,
l ojj I

3,4, and 5; (b) 7, =38, s=0.1,0.2, 0.3 and 0.4.

Energy flux distribution ¢, around the mode rational surface x = 0 for 7 =1, b; = 0.1,
s=0.1 and (a) Ty = —=1.5, s =1, 2, 3, and 4; (b) m = 1, U = ~1.5, —0.5, 0.5, and
1.5.

Energy flux (gz) vs. % = Lndy)/csdz for b, = 0.1, 7 =1, and (a) s =0.1, 7 = 2, 3,
4, and 5; (b) ;; =1, s=0.1, 0.2, 0.3 and 0.4.

The ratio of the energy transport coefficient X to the perpendicular viscosity coefficient
pL vs. Uy = Lndvy/csdx for s = 0.1, 7 =1, and (a) bs = 0.1, ; = 2, 3, 4, and 5;
(b) m =1, by = 0.1, 0.2, 0.3 and 0.4.
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9.

10.

11.

The ratio of the energy transport coefficient X to the parallel viscosity coefficient py
vs. Uy = Ladvy/csdz for s = 0.1, 7 =1, and (a) bs = 0.1, 3, = 2, 3, 4 and 5; (b) m: = 1,
by = 0.1, 0.2, 0.3 and 0.4. |

\

The profile of (a) Mach number and (b) ¥y = Ladv)/c,dz measured at the plasma
edge in TEXT-U tokamak. (c) The poloidal velocity profile in a discharge of TEXT-U
with I, = 160kA, Br = 2.2T and 7, = 1.5 x 1013 em™2.

(a) H vs. O = Lad?vy/cedx® for s = 0.1, bs = 0.1, 7 = 1, Tpy = 0.5 and 9, = 1, 1.1,
1.2, 1.3; (b) the modeling result for profile H(z) which is roughly the same as profile
(vo(x))-
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