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Abstract

Models of the electron behavior in the scrape-off layer (SOL) of diverted and limited

tokamak plasmas must retain the abrupt change in boundary conditiohs that occurs

. 8cross the separatrix or lAa.st» closed ﬂuXISUrfac.e as well as the electron reflecting Debye '. ,
sheath estabhshed at the Imnter or dlvertor plates The balance between 1on radlal

“diffusion and streammg to the plates sets the SOL w1dth a.nd the electrons must adJust.-'-
the Debye sheath at the plates to maintain quasineutrality and amblpolanty in the
SOL beyond the last closed flux surface. We consider the long mean-free-path limit
where a bounce-averaged kinetic electron model results in a steady-state balance in
the SOL between radial diffusive feed from the core and velocity space diffusive loss to
the plates due to collisionel detrapping. In this double diffusion model a velocity space
boundary layer occurs about the trapped-passing boundary where strong velocity space
gradients must balance the streaming of the newly de-trapped electrons to the plates.
The behavior of the electron distribution function in the velocity space boundary la/yer
provides the information needed to evaluate the Debye-sheath-dependent electron loss

rate.



I " Introduction

The scrape-off layer. near the edge of a limiter tokamak, or near the separatrix of a divertor
tokamak, results from the abrupt changé in boundary conditions that occurs across the
critical radiﬁs, a. However, the effect of this change is very different for ion and electrons.
In the zero gyration radius and long mean-free-path limit, an ion outside a quickly streams
to the limiter or divertor collector plate, so that the layer thickness, w, is set by balancing
radial diffusion against parallel streaming:
DI Y2
v~ (%)
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where D is the diffusion coefficient, L the connection length and v; an ion thermal speed.!
The behavior of electrons is more complicated. Because of the Debye sheath surrounding any
collecting surface, most electrons outside a are 'electrosta.tic&lly trapped and: merely bounce

back and forth between plates. As in a rnagnetlc mlrror dev10e, some. colhsxona.l process is

necessa.ry to detra.p electrons a.nd a.llow thelr eﬂc.a,pe.2 Hence, even in the sma.ll colhsmna.hty '

limit, collisions, as well as the sheath potentlal play a crucxa.l role in electron scrape-off
physics.

Note that two diffusion processes must occur in order for a typical electron to be collected.
It mﬁst first diffuse radially to reach the scrape-off region where it becomes electrostatically
trapped. Then, and equally importantly, it must diffuse in velocity space in order to overcome
the sheath potential barrier. The main objective of the present work is to analyze this double
diffusion process. |

The radial structure of the scrape-off is fixed by ion dynamics, essentially because ions
are relatively insensitive to the sheath potential. Ion scrape-off physics has been studied in a

number of previous papers." * 4 Electron scrape-off physics is studied in order to obtain, from



quasineutrality and ambipolarity conditions, a prediction for the sheath potential amplitude.
A main result of this work, Eq. (41), specifies the ambipolar sheath potential as a function
of the (radially local) ion loss rate.

Loss of particles from a tokamak is a distinctly two-dimensiona.l process, involving both
radial motion and motion along the magnetic field (in addition to its velocity space de-
pendence). The present analysis, like our previous ion treatment,! emphasizes this two-
dimensional feature. Other aspects of the scrape-off layer, such as more detailed geometrical
 effects, are ignored.> * Our purpose is to bring out certain physical effects that seem to be

crucial, rather than to present a detailed, realistic description of the tokamak scrape-off layer.

/

IT Model Geometry

We use the two-dimensional model of Ref. 1. The z-direction is radial, with separatrix radius
at £ = 0: electrons with z < 0 move on closed flux surfaces, while those at larger radii can
stream to the dlvertor {or limiter) collector platw The polmdal dlrectlon is denoted by. y,
.w1th collector pla.tes at y = iL For T < 0, a.ll physma.l quantltlw musf: be penodlc in'y, -
a whlle for > 0 absorbmg bounda.ry oondltlons are apphed at y Y A ‘

This model oversimplifies the geometry and omits several potentially 1mporta.nt physica.l
processes. It does however include geometrical and kinetic features that will play an essential
role in any more elaborate model of the scrape-off layer.

The electrostatic potential, ®(z,y), varies in two dimensions. However we assume that
its y~dependence is restricted to a narrow region near y = +L; in other words, ® is constant
along the magnetic field everywhere except in the vicinity of the Debye shea.ths,’ of width
Ap, at each plate. The radial depen&enoe of ® is not restricted. We take the plates to be

conducting, and set the plate potential at zero:

&(z,2L)=0. (1)



In velocity space, convenient variables are the total energy
E=1m?-ed ()

and the parallel energy,
' U=3muf —ed. (3)

Here vy is the velocity component in the direction of the magnetic field, and the minus signs
reflect the sign of the electron charge, whose magnitude is e > 0. Note that in view of (1)

we may assume

&(z,y) >0, | o (4)

since the potential acts to confine electrons. Because the magnetic field has constant mag-
nitude in our model, the adiabatic invariance of the magnetic moment implies that both E
and U are constants of the collisionless motion.

It is convenient to denote the parallel velocity by
- 'bll =.U.u- ,
where ¢ = 1 and u = [iy].'In tetmms of the basic variables, -
2 1/2 A .
u= {(E) U +e®(z, y)]} . ' (5)

Thus, in view of (4), the trapped and passing regions of velocity space are demarcated by

U:
U > 0 = passing electrons ;
U < 0= trapped elect;rons . (6)

Finally we note that velocity space Jacobian is given by

Joe (B2




T1I Electron Kinetic Theory

We express the electron drift kinetic equation as
Vyf+vp - Vf=C(f) (8)

where f is the electron distribution, vp is the guiding center drift velocity and C denotes
the collision operator. The drift term could be replaced by an explicit diffusion term, as
~in Ref. 1, without changing the argument; in either case the integral of this term gives the

divergence of the particle flux, I':
/dava-Vf=V-I‘. 9)

The first term in (8) represents streaming of electrons along the magnetic field, and is

measured by the transit frequency, ws:

Vi~ w = % . . : ) .(10)
" Here ‘ S : o | L

is the thermal spéed, with T the electron femperature. Thé drift term represents the .radi-
ally local electron loss rate (tha.t is, the rate at which electrons are lost from a particular
flux surface); it is consistent to assume this rate to be compa.ra.ble to the electron collision
frequency, v

i vp-Vf~C(f) ~vf . (12)
Thus (8) coﬁtains two frequencies, w and v. Our analysis assumes that the dominant physical
process is electron streaming:

we>DV. (13)

This long mean-free-path ordering is consistent with that of Ref. 1; of course it is not

pertinent to every tokamak scrape-off layer.



We expand the distribution function in powers of v/wy,

f=fotfit.. fw(-’i)" ,

Wt

and thus decompose (8) into a sequence of equations for the f,. Only two members of that

sequence are needed:
Vifo=0, . (14)
ouVfi+vp:Vfo=C(fo) . (15)
Because the plates are assumed to absorb incident electrons, (6) and (14) imply that
fo=0, for U>0. (16)

Hence (15) is of interest only in the trapped region. We annihilate its first term by means

of the orbital or “bounce” average,

B ST

where the loop integral is performed between bounce points. Since
<auV||f1> =0, for U<0, (18)

we have

- (vp-Vfo) =(C(fe)) , for U<O. (19)

It is important to appreciate that (19) pertains only to electrons trapped by the Debye
sheath, and does not hold in the entire velocity space. The point is that its right-hand side
conserves particles at each radius, so that extending the equation to all U would lead quickly
to contradiction. (An underlying circumstance is that the streaming term has no general

annihilator in the presence of passing particles hitting an absorbing wall.) Indeed, there is

6



a stronger restriction on (19): it fails, not only for U > 0, but also in the close vicinity of
. U = 0, where a narrow velocity-space boundary layer develops, invalidating the ordering.
We consider the boundary layer in detail below, but note here that (19) holds only in a

region R given by
R= {—e<I>0<E<oo, —e<I>0<U<——AUforEZOand—e<I>0<U<EforE<0} (20)

where ®; is the maximum value of the potential along a field line (that is, the potential far

from the Debye sheath) and AU, which satisfies
AU T, - (21)

is the width of the boundary layer.

Our next step is to integrate both sides of (19) over the region R. For the left-hand
side, we note that the lowest order distribution is localized to the trapped region, so that.
the . integra.l can be e;xtended over all U without changing its value. This approximation

- rmstreats only the contnbutlon from bounda.ry layer electrons, it. does not reqmre edo >T.

L Hence Eq (9) is apphcable, smce we ha.ve already 1ntegrated over y, the result ls S
. /d3v (vD Vfo) o - (22)

the (surface-averaged) radially local loss rate. | ,
To compute the same integral of the right-hand side of (19), we need an explicit expression

for C. The electron collision process is represented by a Lorentz gas operator,

- (2 (2 a-en (2
o=+ (2)(5)a-(x) )
where ¢ = vy /v. This form describes collisions accurately when the scrape-off region con-

tains a significant fraction of impurities, and gives qualitatively correct scrape-off physics in
general. In terms of the variables U and E we find that

, | o
C= uT?/?(U +ed)/? (%) U+ ecb)lﬁ(_é?;i%)ﬁ (a%") . (24)
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Here ®(z,y) can be replaced by ®o(z), simply by restricting our attention to the y-region
inside the two Debye sheaths. The bounce average then becomes trivial, and, with (7) and

(24), it is a simple matter to find that

' © JdEE 8f |
3 _ .3 1/2 9jo
/Rd v {(C(fo)) = mv;v(ePo) o (Bt e®o) 80 lyess® (25)

~The evaluation of the derivative at the edge of the boundary layer might seem problematic,
in that boundary layers do not have well defined edges. However we find in the next section
that 8 f,/8U approaches a constant near the layer, so that (25) is unambiguous. A similar

procedure can be used to evaluate the energy loss rate.

IV Boundary Layer

Since fo has a finite slope for U < 0 but uniformly vanishes for U > 0, we expect a boundary
layer to appear near U = 0. In this layer, the sharp U-curvature of f causes collisional
~ effects to be magnified, without-any enhancement of radial mot;ion'.i The domigant. terms.in

.the kinetic equ_a;'t_ionla.ré.thelje_fore -

au%zC(f), for  Um0. (@)

This form corresponds to a tokamak with L = rqR, where R is the major radius and q the

safety factor. It is convenient to introduce the normalized variables

_Y _¢% _FE |
- s—L’ ‘P—T ’ ¢—"T (27)
and
U
"=x0 (28)
where
a0 = (3) Gy AL o) (29)



Equation (26) then becomes
of _&f
%8s o

Here f must be periodic in s, for n < 0, while satisfying absorbing wall conditions at s = £1,

(30)

for n“> 0. These coriditions, together with (30), define a familiar Wiener-Hopf problem whose
solution is well known.? (The same solution, with a different interpretation of the variable »,
was used in Ref. 1 to analyze the ion scrape-off layer. The point is that an ion outside the
separatrix is subject to the same loss process as an electron in the untrapped velocity-space
region.) Without repeating the analysis that solves (3), we note that it yields the asymptotic
behavior [cf. Eq. (15) of Ref. 1] '

Bf VT
- , — —00 31
where ¢ is the Riemann ¢-function, satisfying {(1/2) ~ —1.46, and fu is a Maxwellian
distribution: . _
fM 3,2 -3¢-,<<E+°°°>/T B ¢

o "Here the densn:y no mea.sures the amphtude of the Ma.xwelhan dzstnbutlon descnbmg the -

deeply trapped electrons, beca.use only trapped electrons contnbute the actua.l electron

density is
Te ='/RfMd3v = noerf(/) - (33)
EQuation (31) is equivalently expressed as
- _  0fo _ VT fu | | ' (34)

oU ~ ¢(1/2) AU °
Note that this quantity is independent of U, as anticipated: fo has asymptotically constant

slope.

We substitute (34) into (25) and recall (29) to obtain
[ &% (€U = () "m0 Fig) @)
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where w; is the transit frequency of (10) and
Fly) = 11/¢(/2)l0" e [ dpy2(w+ )™ e . G

This is proportional to a confluent hypergeometric function (Kummer’s function).ﬁ The

asymptotic form
F(p) ~0.61p™2e™ | o>1, (37)

is easily deduced from (36).

V Scrape-off Ambipolarity

We now return to Eq. (19), which can be made explicit using (22), (33), and (35):

F(o) _ _12 dl
e T E

where v /wt x n/T depends on z..Equation (38), whose right-hand side measures the electron

(38)

" loss rate, determines: the sheath potentla.l o(x). Notxce that since <p is presumed ’co vamsh

- fon the plate a.nd to be constant along B 1t effectlvely measures the radla.l plasma potentzal -

in the z>0 pa.rt of the scrape—off Our model does not conta.ln enough physxcs to determine
the plasma potential inside the separatrix (z < 0), where there is no parallel loss mechanism.
The calculation of the core plasma potential profile, apparently inv'olving the effects of finite
Larmor radius, velocity shear, or otlher phenomena which modify the Maxwell-Boltzmann
response, is beyond the scope-of the present study. |

We assume that in -equilibrium the total loss is locally ambipolar,

o _an
de  dz ’

Then, since

10



we can write (38) in the form

G(p) = (vwy)™2 5; (41)
where |
| Glo) = s (42)
and
Si=n;! % (43)

is the density-normalized ion loss rate. It is evident that for large @, G has the same
asymptotic behevior as F, given by (37). At very small p, G ~ /4 diverges. The singular
behavior can be traced back to a breakdown of the thin trapped-passing boundary layer
assumption. As ¢ — 0 the boundary layer response becomes comparable to the adiabatic
response of the deeply trapped electrons. However, this sing'ula.r_ity affects our results only
for ¢ S (Lv/us)¥? <« 1, a domain that is not observed experimentally, so we are content to
. use (36) A plot of G(p) is shown i in Flg 1. h

Equatxon (41) deterrmnes the a.mblpola.r potentlal 1n terms of qua.ntltlw cha.ractenzmg L

T 'the 1en scrape-oﬂ’ Its content can be compared to’ that of conventlonal one-dlmensmna.l "

| theories of the Debye sheath. Note that such theories are consistent only 1f some source is
provided to maintain the assumed steady-state. In the present two-dlmensmnal theory, this
source is made exp.l.icit in terms of radial diffusion aeross the sepax"atrix.. On the other hand
we do not study the parallel structure of the Debye sheath, on the scale length A D, predicting
only the potential barrier height. | o | |
The quantity S; is the less rate for ; single particle; frpfevl)varticle1oense:1fyefion we find
that '

F||(y=L)+IF“(y=_L)l4~ : h o ,
2Ln; (44)

where [y is the ion parallel flux satisfying oT'/0z + 0T'/8y = 0. Since ion streaming to the

Si =

plates is unimpeded by the potential, this rate is essentially determined by the radial motion

11



that brings ions to the magnetic surface at . In the simplest diffusion model,! for example,

dn,~
Li=-D@

we would have

dr?l .
S‘.:DM_ ' (45)

nyg
One does not expect this function to vary sharply with z. Furthermore, within the context of
the present idealizations (ignoring charge exchange, for example), S; seems generally unlikely

to show sharp variation. In other words (41) predicts a nearly radially uniform ¢:

g
9 ~ constant . (46)

e

The value of the constant can be estimated using (45) and the conventional estimate,’

d®n;|  nics me\ /2 -
N——=n(—) w

DE:c_f L m

where c, is the sound speed. Hence _
. 175 o\ 1/2 S T

For coﬁcreteness we consider a typiéal TEXT discharge, in which w,/u ~ 6 in the edge

region. Then G =~ 0.06 and (41) yields

6‘1)0

T, ~1.7. (48)

The excellent agreement between (48) and TEXT experimental measurements’ is not
conclusive, because of the idealizations present in our model. Furthermore it must be noted
that more conventional, one-dimensional sheath theories lead to similar results. Yet the
intrinsically two-dimensional nature of the tokamak scrape-off problem is worth emphasizing:
radial diffusion provides the necessary source for the collector plate sheath. Equation (48)
shows that a self-consistent two-dimensional treatment, involving both radial diffusion and

velocity-space scattering, gives experimentally reasonable predictions.

12



_ Of course if ¢ is presumed known, then (41) predicts the parallel flux, I'|, on the plates.
An explicit formula is obtained from (41) and (44):

[Culy = L) + Iy (y = = D)] 2L = () Gy - (49)

This relation should bear on experiments that artificially adjust the plasma potential. That
its right-hand side monotonically decreases with increasing ¢ is physically obvious: reducing
the plate sheath potential enhances the ambipolar plate flux. However the dependence on
collision frequency, and, especially, the specific functional form of G(y), are not obvious.
Both features reflect the critical role of pitch-angle scattering, in allowing electrostatically
trapped electrens to escape the scrape-off.

Equation (49) assumes local ambipolarity. However, non-ambipolar radial transport can
occur beyond the separatrix causing the radial derivatives of the electrons and ion fluxes to

differ. In such cases current flows in the SOL® and V - J = 0 may be used to obtain the

relation

B aov=-n]

Wthh can be used in (38) to genera.hze (49) Slnce equal numbers of ions a.nd electrons must

be lost from the plasma the constraint
[ ey =%L) =

must be satisfied. Employing the preceding in Eq. (38) leads to the global ambipolarity

constraint ) \
/:” dz /l.ads" (C) = fow dzni(vwe) ?G(p) = [T(z = 0)| = [Ti(z = 0)/

which must hold in the local ambipolarity limit as well. This constraint determines how

rapid the radial variation of ¢ must be for a specified collisionality and flux at z = 0.
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VI Summary

The main result of this work is Eq. (41), relating the sheath potential, near a limiter or
divertor collector plate, to the ion loss rate. An equivalent expression is given by (49). This
prediction stems from a two-dimensional (in configuration space) kinetic model of the scrape-
off region, accounting for both radial particle flux into the scrape-off, parallel streaming to
the boundary wall, and collisional scattering across the loss boundary in velocity space.

An obvious feature of the result is that the loss rate indeed decreases with increasing
sheath potential. More interesting is the detailed functional form, with departs from a
simple Maxwell-Boltzmann factor, and the relevant electron time scale, which emerges as
the geometric mean of the electron collision and transit times. The predicted value of the
sheath potential agrees well with experimental measurements in TEXT

The plasma potential can be influenced by several factors, including non-ambipolar radial
transport, space charge and plasma rotation. Most of these processes depend on finite

Agyro—radms (or ﬁmte orb1t-w1dth) physms wh1ch this work omlts 9 They ma.y be wpecxa.lly o

o dmportant 1n51de the- scrape—off where Eq (41) doee not’ apply Nonetheless the processes .

which we have descnbed are both funda.rnental and intrinsic to toka.mak operatlon It seems
likely that any finite gyro-radius theory of the scrape-off would be influenced by double

diffusion process studied here.
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Figure 1. The function G(¢)



