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Abstract

The effects of the beam-beam interaction on particle dynamics in a synchrotron -
collider are investigated. The main highlight of this work is the investigation of collec-
tive effects of the beam-beam interaction in a self-consistent approach that naturally
incorporates the correct single particle dynamics. The most important target of this
simulation is to understand and predict the long-time (108 — 10° rotations) behavior
of the beam luminosity and lifetime. ‘

For this task a series of computer codes in one spatial dimension have been de-
veloped in increasing order of sophistication. They are: the single particle dynamics
tracking code, the strong-strong particle-in-gell (PIC) code, and the particle code b;lsed
on the §f algorithm. The later two include the single particle dynamics of the first.
The third approach is used to understand beam lifetime by improving the numerical
noise problem in the second.

Scans in tune ¥y and tune shift Avy show regions of stability and instability which

correspond to the regions predicted by a linear theory. Strong resonance beam blowup
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is observed just above vy = 1/2 and vy = 1/4, where the rate of beam blowup drops
‘with the order of the resonance.

In both the strong-strong code and 6 code using the reference parameters of the
SSC (Superconducting Super Collider), oscillations in the tune shift, Av, are observed.
The odd moments of the beam are increasing in oscillation amplitude with rotation
number, while the amplitudes of the even moments either decrease or remain constant.
The “flip-flop” effect is observed in the strong-strong code simulations and 1s found to
be sensitive to the initial conditions.

In studying slow particle diffusion in the phase space of the beams away from
resonances, the tracking code shows no diffusion of particles from the beam-beam
interaction after 10° rotations. The strong-strong code is found too noisy to study
particle diffusion from the beam-beam interaction. The much quietef 6f code shows:
all particles diffusive after 10° rotations in contrast to single particle tracking results.
The diffusion coefficients are several orders of magnitude higher than the tracking
code and increase exponentially with the action. However, this amount of diffusion
(D ~ 10710 — 10.“11 in the normalized unit) is still permissible for the SSC design
parameters. This diffusion is caused by the collision induced variation of the seéond'

moment of the beams (z2).




I Introduction

The key goal of high energy particle accelerators in addition to achieving high energies is

achieving a high number of collision events from high energy colliding beams. In circular

accelerators or synchrotrons this is accomplished by colliding two focussed beams which are
travelling in opposite directions. The beams can be either of the same or opposite charge

sign. The number of collision events depends on the interaction rate, R'3:

where L is the beam luminosity and o is the interaction cross section of the particles in
the beam. The luminosity of the colliding beams is defined as:

N2
4ro?

L=f

where N is the number of particles, o is the rms beam size, and f is the frequency of collisions.
To achieve a large interaction rate, it is necessary that the lurninesity to be as high as possibie.
High lnminosity is achieved by high collision frequencies, a large number of particles per
beam, and small beam sizes. However, higher N increases collective effects, higher f results
in multi-bunch instabilities, and lower ¢ places more demands on .focusing systems and
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beam sources. Typically the luminosity L is a number between 10%° and 10% cm=2sec™! for

contemporary high energy accelerators. At high energies the interaction cross section i

tends to be small on the order of 10732 to 10733 cm?, as it is inversely proportional to the
square of the beam energy. A.large number of collisions is necessary to e,chjeve a statistically
signiﬁcant amount of data. For example, in the Superconducting Super Collider (SSC) the
projected storage time in the main ring is 24 hours. In this amount of time the bunched
beams will undergo approximately 108 rotations and collisions. Therefore, the beams need

to remain coherent for a long period of time. The major concern with circular colliders is
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long term beam stability. Beam instabilities can lead to beam spreading which reduces beam

luminosity and beam lifetimes. Beam instability is caused by many factors:
o longitudinal and transverse momentum spread of the beam
~ ® noise in the system

e magnetic field gradient errors

resonances

steering errors
e focusing errors

@ beam-beam interaction

\

One of the principle limitations on beam intensity is due to the beam-beam intéractioﬁ
via their collective electromagnetic fields.* 7 For hadron colliders the beam-beam interaction
is expected to be even more crucial, since there is no synchrotron radiation damping to stop
beam blow-up as in electron storage rings.”

In this paper we will concentrate on the beam-beam interaction with emphasis on the
beam-beam kick and beam-beam piasma collective effects. In the beam-beam interaction
each beam imparts an impulse on the other beam at the interaction point where the beams
cross. This impulse may be treated as a kick, as the interaction time is much shorter than the
beam particle dislocation time due to collisions. The kick can include both the impulse acting
on whole beams and impulses acting on individual particles within each beam. Beam-beam
plasma collective effects inclﬁde plasma instabilities or “soft” collisions. These instabilities
modify the beam profile and can contribute to increasing beam size. Collective instabilities
have the most effect in the interaction region where the beam densities are highest in the

accelerator. One of the fastest growing collective instabilities which can occur in a plasma
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is the filamentation instability. However, in typical high energy heavy particle colliders the
beam-beam interaction times are very short relative to the filamentation instability growth
rate. In the SSC the interaction time is about 2% of the maximum growth rate time. The

relative importance of colle(;tive effects in plasmas is determined from the plasma parameter

g:
_ | 3)

| T |
where 7 is the density and Ap is the Debye length. If g < 1, collective effects play an
important role. For SSC-type parameters g = 2.66. So collective effecté are not dominant
for a single beam-beam interaction. However, the effects of a large number of successive
interactions have yet to be determined.

The objective of this study is to determine beam-beam interaction effects on particle
dynamics using a collective plasma model at the interaction point. A one dimensional model
is employed at the interaction point s‘d that oscillations in oniy one transverse direction
due to the counterstreaming beams ére studied. The rest of the machine is treated by
simple harmonic transport (betatron oscillations). By erﬁploying a fully self-consistent model
at the interaction point, an assessment of the relati\'ré importance of collisions as a whole
and individual “soft” collisions (collective effects) can be determined. Specifically, we will
examine the contribution of self consistent effects on beam bldw up and particle diffusion

after a large number of interactions.

IT Simulation Models

In the course of our investigation various simulation models have been developed to study
the beam-beam interaction. These models are presented in increasing order of sophistication
and inclusion of physical effects.

Numerical simulation of accelerator beam dynamics has a relatively short history. As
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accelerators became increasingly more costly and complex, computérs and computational
techniques also became increasingly more de\{eloped.- Computer simulation has recently
become an accepted standard method of investigation of accelerators. It certainly is this
way for the Tevatron. For the SSC one may say evén that it has become one of the central
design techniques. An obvious reason for developing computer models is the cost. It is
much cheaper to run a simulation than to build a device. Also simulations allow the study
of the problem under very controlled conditions with accuracy limited by the precision of
the cbmputer. This is not the case with experimental setups. Analytical methods provide a
means to study the problem in the linear regime. However, nonlinear aspects are not easily
accessible. Numerical methods allow the study of this regime with fewer approximations
than analytic methods. Simulation schemes such as the Particle-in-Cell (PIC) methods® %
represent a medium ground between the 2 particle picture of the beam-beam interaction and
the full statistical picture representing all particles in the beams.

" In the following sections the various numerical codes used to study the beam-beam in-
teraction will be described. They are the tracking code, Particle-in;Cell (PIC) codes, and.
the 6f algorithm. |

Tracking code

The basic principle of tracking codes is to follow the dynamics of single particleé around the
" machine.?8 In the beam-beam interaction the tracking code consistls of two components: a
target beam and a projectile beam. The target beam is treated as a rigid smooth Gaussian
distribution of a large number of particles. It remains unchanged from interaction to interac-
tion. The projectile beam is considered to be a collection of mutually noninteracting particles
Whlch are perturbed by the target beam. This is.the so called “weak-strong” approximation.
In tracking code simulations in the “weak-strong” approximation, trahsport about one turn

is simulated as the product of two matrices, one for the one turn Courant-Synder map,? and



the other for the impulsive application of the beam-beam interaction discussed above?:

[m] .y [x] M= [ cos(2mvy) S sin(27r1/o)] [ 1 O] 4
L 3 —sin(2r1p) /B8 cos(2rwe) | | dmAunF(x)/B3 1]

where z is the position of the particle, &’ is dx/ds, s is the distance along the collider,
vo = § ds/[3(s) is the tune, Ay is the input tune shift, G5 is the betatron oscillation amplitude
at the interaction point (IP), and F(z) is the 1-D truncation of the force from-a round

Gaussian beam

1 — exp(—x?% /202
F(x) = =0 5
)= L), ®)

where o0, is the beam standard deviation in z. This formulation is similar to that of
Neuffer et al.;® however, here both beams are of the same charge. For comparison with one

dimensional simulation results, F'(z) becomes the force of a 1-D Gaussian slab:

Flz) = \/g ("7) exf ( ﬁ’; zo) e

where erf is the error function.

The first matrix in Eq. (4) takes into account the particle motion from the lattice mag-

nets.® The second matrix takes into account the kick from the beam-beam interaction.

Particle-in-cell codes

In this section collider models using Particle-in-Cell (PIC) codes are described. In these
models the collider is broken into two sections. One section models the interaction region.
’I‘he other section models the rest of the storage ring. In the interaction region it is neces-
sary to take into account the.beam-bea.m interaction. Since self-consistent effects play an
important role in the beam dynamics there, PIC codes are used. The rest of the collider is
modelled using the Courant-Synder map which simply involves a symplectic rotation of the
particles in phase space.®

A Particle-in-Cell (PIC) strong-strong code is used to model the beam-beam interac-

tion region where the strong-strong code uses the “strong-strong” model where there is a
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many particle-many particle interaction in the relativistic limit. Our model differs from

previous models of the beam-beam interaction.'® 17 26, 3 Previous models approximated the
beam-beam interaction as either a two particle interaction, a single particle-many particle
interaction (“weak-strong” approximation),'® 26 or a many particle-many particle interaction

(“strong-strong”) where the beam is constrained to be a Gaussian.'” 3 Using a PIC code in

the beam-beam model allows a many particle-many particle interaction with internal degrees -

of freedom in the beam shapes.

. 'The steps of the simulation for one turn in the collider are:
1. interaction region
2. reset of ﬁelcis to 0
3. symplectic mapping,
These steps are repeated until the necessary number of turns are attained. Figure 1 shows

the basic geometry used in the simulation models.

Accelerator model

The model we use for the accelerator is shown in Fig. 1. Outside of the interaction region

self-consistent effects are not as important as in the interaction region, since the density

of the beams is much lower. -Therefore, the approximation of single particle dynamics is a -

very good one. With this approximation a linear map can represent the collider in matrix

z '_ 1 —As 308(27%) B3 sin(2m14) . i
@ n+1_— 01 % sin(27 ) cos(21r1/0) z n’ ()

0
where As is the drift length along the collider path. The first matrix accounts for the finite

notation:

length of the region as a free drift space and subtracting it from the full rotation. The




Storége Ring
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Interaction Region

Figure 1: This shows the two components used to model the collider




second matrix is the Courant-Synder map' around the collider where vy = § ds/G(s) is the

unperturbed tune and a = 0 everywhere in the ring.8

Strong-strong code

A fully self-consistent electromagnetic treatment of the beam-beam interaction is severely
constrained. Typically, fully electromagnetic codes solve the full set of Maxwell’s equations.
The main constraint on these types of codes is the time step size At which needs to be small

enough to follow light waves for numerical stability® %:

At <A, | ®)

where cis the speed of light and A is the grid size of the simulation. Because of the small timé
step size the number of time steps to follow particles in the interaction region is prohibitively
large for SSC parameters. For realistic SSC parameters 30000 time steps would be necessary
for one interaction. To eliminate this, a strong-strong code is developed. The code has one
spatial dimension z and three velocity coordinates (vg,vy,v;). In this strong-strong code
two approximations are made: (1) light waves are ignored and (2) self-fields (space charge
effects) among particles of the same beam are ignored. Ignoring the effects of light waves can

be justified for the SSC by considering the collisionless skin depth, )., of the beam where:
e=— | ©)

4mecny
YNy

(10)

Wp =

Using parameters for the SSC, A, > w where w is the width of the beam. )¢ is the scale
length over which a plasma responds to light waves. Since ). is much larger than the size
of the beam, particles do not strongly interact with light waves. Self-fields of the beam are

neglected, since the forces from the other beam are much larger. The ratio of the self fields
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to the kick fields from the other beam goes as:
(self-fields) ~ ;12. (kick fields), = . (11)

where v = 2.13 x 104 for SSC parametérs.

With the elimination of light waves the time step of the simulations can be on the order
of the plasma frequency w,, which occurs on a much longer time scale than light waves. The
time of interaction between the two béams is Ting = As/2¢. Tint is vthe time the simulation is
rﬁn before the particles are rotated in phase space. With simulation time steps in units of
fractions of wp the time period can now be represented by 1 — 4 simulation time steps.

In particle simulations the beams are represented by a number of macroparticles. Each
particle in the simulation has a particle shape factor S(z). S(z) is chosen to give the particles
finite size, so that short wavelength oscillations are filtered out in the fields.® @ This reduces

noise and short range collision forces. The particular form chosen is:

. 1 - x?
S(x) = Tora exp (—2—(1—2—) , (12)

where a is the finite particle size.

Care must be taken when choosing the particle size a. When it becomes compa.ra.ble to

the beam width w, the tune shift Av is reduced. This can be expressed by:

1/2 :

i”—;;:‘i= (1+4(%)2)/ , | (13)

where Avpoins is the tune’ shift for a point particle, Avgp is the tune shift for a finite size
particle, a is the particle size, and w is the beam width. This calculation is based on the
assumption that the particle is Gaussian in shape as in Eq. (12). The particle size must be

chosen so that a < w and, therefore,

AVpoini: ~

ALt N | (14)
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The macroparticles are advanced by the Lorentz force equation:

% = /_°° dzS(z — CL‘,)(E(X) +v; x B(x)/c) , . ' (15)

oo

where x; is the position, p; is the momentum, v; is the velocity of particle i, S(x) is the
particle shape factor, and E(x;) and B(x;) are the electric and magnetic field of the other
beam, respectively. The integral over z takes into account the finite size of the particle.
The calculation of the fields can be simplified by performing the appropriate Lorentz
transforms and taking into account the highly relativistic nature of the beams being studied.
For a general Lorentz transformation to a frame moving at velocity ¥ the transformation of

the fields can be written?®:

_ ’ ' v? ’ . ,
E—’Y(E'FﬁXB)—,Y_l_lﬁ(ﬁ'E), (16)
_ '/ /‘ v | /
B=1(B - xE)- -1 p(5-B) 7

where 8 = v/c and v is the relativistic factor. Equations (16) and (17) can represent
transformations of the fields from the frame moving with the beam (E',B') to the lab frame

(E,B). In the beam frame the beam particles only have thermal velocities. These velocities

are small and randomly oriented. Therefore, only small remnant currents are present and -

the approximation |B'| ~ 0 can be made. Equations (16) and (17) become:
/ '7'2 / /
E = E _—_— . E y 18
gt B(B - E') ‘ ( ._)
B=—y(BxE). (19)
Assuming the motion of the beams is in the z direction the fields can be written:
E.=1E, , ‘ (20)

By =BE; . (21)
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Since the beams are highly relativistic v > 1, the approximation |8| ~ 1 can be made.

Thus, E, ~ B,. Using this in Eq. (15), we obtain:

%I-;i A e/: dzS(x — z;) Bz (z)(1 + v; /c) (22)

where v; is the velocity of the beam kicked by the other beam. Again the approximation

v; & ¢ can be used:

dp,-" - bl
e /_ _ doS(e - 5) Ex(a) . (23)

Therefore, including the effects of the magnetic field kick to the beam simply involves dou-

bling the contribution of the electrostatic field of the other beam.
The electric field E, is calculated from:

8(91;,, = 47re/S(a: — 2 )p(x')dz' (24)

~ where p(x) is the charge density and S(z) is the particle shape factor. The charge density

p(x) is the accumulation of the finite size macroparticles:

N ' .
p(z) = ;‘b’s (z —x5) , (25)

where N is the number of particles and g; is the charge of particle j. Since the charge is
accumulated on a grid, Fast Fourier Transforms (FFT) can be used to transform the grid to

k space where manipulation is easier:

‘ N : ,
—(z—2:)2 /202
p(z) =Y g™V (26)
J=1 ‘
pk) = qe—k2a2/2 Z e~ ikzg Z e~ k; , (27)
g Jj€g

where a Gaussian shape factor is used S(x — z;) = exp[—(z — z;)?/2a?], the sum on g is over
the grid points, a is the particle size, and §; is the distance of the particle from the nearest
grid point z; — Zg. The summation term with j € g is a sum over all pa.rticlés 7 in grid cell
g.
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In order to increase the accuracy, the accumulation is done using cubic spline interpo-
lation.?’ 3 This assignment technique allows a smoother grid assignment than lower order
methods such as the subtracted dipole scheme (SUDS) or area weighting scheme.® ¢ The
charge density then takes the form?®:

plk) = g2 [E’“ (Z st 3 )

jeg Jj€g—-1

A_Zkze ikzg (253—1— > 34)] , (28)

jeg JEg—-1

where the summation terms with j. € g — 1 are sums over all particles j in grid cell g — 1

and the s terms are the weighting factors:

s1=(1-6;)*(1+26;) , (29)

= 63(3 — 26) (30)
s3 = 6;(1 — &;)°A (31)
se=—(1—6;)8A . (32)'

The electric field in Eq. .(24) can be transformed to k space using the FFT:
— tkE, = 4mep(k) , (33)

where p(k) is from Eq. (28). Using Eq. (28) and rearranging terms®®:
—k2q2 /2

Eu(k) = %———[FFT(GIX) _ KFFT(G2X)] , (34)

where FFT is the Fast Fourier Transform and

G1X = 281 + Z Sa (35)
j€g j€g-1

G2X = Zsa-l— > s, (36)
j€g j€g-1
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where G2X corresponds to derivatives of the charge density. Note that two quantities, G1X
and G2X, need to beAaccumulated in this method. The force on the particles F'(z) can be

calculated in a similar manner®:
F(z)= qE(m) (37)
= 31(5)Fs(mg) + 32(5)Fs(3’g +A)

+ 53(6)Fd(:1:g) + S4(5)Fd(.'17g + A) , ‘ (38)

where § is the distance from the nearest grid point z — z, and

9 —11,—k2a?/2

F,= 5L FRT e B (R)] (39)
— q —1:1.,—k2%a?/2 .

Fu= 5= FFTike ™" E(p)] , (40)

where L is the system length, and FFT~! is the inverse transform.
. The previous field calculation solves the field for periodic boundary conditions. Note
that the field equation does not take into account finite charge in the system. Finite charge

is included in the k = 0 term. However, this term cannot be incorporated, since one gets a

division by zero. To account for finite charge in the system, the £ = 0 term in E; can be

explicitly calculated®: _
| Bw) = ~4mp0) (2 -5) . (4)
where L, is the length of t_he system and p(0) is the k = 0 component of the charge density
which calculates the total charge in the system. By adding this field to the field calculated
from Eq. (34) one gets the field with vacuum boundary conditions. '

In the SSC design each beam has ~ 10 particles and a large number of beam-beam

interactions (10®). Due to computer time limitations the beams may only be represented

by ~ 10% — 10* particles. We find that the representation of Eq. (24) and (15) by the well

known PIC method® 3¢ with macroparticles shows a large amount of noise due to the small
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number of computational macroparticles. This is especially apparent when single particle
diffusion is studied. To study particle diffusion we, therefore, implemented a few improved
algorithms for noise reduction. One is the cubic spline for smoother interpolation,® which
was described above. ‘Another is to load the macroparticles using a quiet start.> The third
is to follow the portion of the particles due to the perturbed distribution only.!% 2% 3 This
is described in the next section. |

| Normally simulation macroparticles are distributed initially in a Gaussian'proﬁle via
random number generators. A distribution produced from thié method is shown in Fig. 2.
The distribution integratéd over p. is shown in Fig. 3. Although the distribution resembles
a Gaussian, it contains spikes and peaks which produce start-up noise.

This start-up noise can be minimized by using the technique of the quiet start to load
the macroparticles.®> Two methods of loading simulation macroparticles are described. One
method distributes the particles uﬁiformly in phase space and assigns charge nonuniformly to
the particles based on the initial particle distribution. The other method involves nonuniform
distribution of the i)articles in phase spéce and uniform charge for each particle.

In the first method the particles are distributed uniformly in r and 6 where  and 6 are

defined in terms of x and p, as:

2 2 '
tan(d) = -B% pﬂ.’ : | - (43)

where (33 is the betatron oscillation length at the interaction point and p the particle mo-

mentum along the collider. The increments in r and § are determined from values input into

the code. The r increment Ar is Tiax/Mr, Where Tmay is the maximum value of r and nr is
: )

the number of r segments. The angle increment Af is 2m/ng, where ng is the number of

" angle segments. The initial distribution for 10000 particles is shown in Fig. 4. Assuming a
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Figure 2: A Gaussian distribution of particlés produced from a random number
generator
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space positions
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* Gaussian profile for the beam in & — p, of the form:

N A |
—— . 44
2T 040y, P ( 202 202 (44

FEach particle can be assigned charge ¢; where:

f(@,pz) =

r2
or(-5)

¢ = Ne (45)

Eizil Ti €Xp (—2—:,’27) ’
N is thé number of simulation particleé, e is the unit charge, r; is obtained from Eq. (42) for
particle i, and o is 0. Although each particle is assigned a different charge g;, each particle
is also assigned a different mass m; so that the force on each particle is the same.

| The disﬁribution integrated over. pe is shown in Fig. 5 after the charge assignment. In
comparison with the random distribution [Fig. 3] this distribution is much smoother in the
tails and is more symmetric about the center. This symmetry reduces the higher order
moments in the distribution and therefore produces less start-up noise.

In the sécond quiet start method particles are distributed nonuniformly in r and 6, where
r and 0 are defined in terms of & and pz in Eqgs. (42) and (43).1* The number of particles
at each 7 value is detefmined by a cumulative integration method.> ¢ Again a Gaussian
distribution f(z,p.) in = and p, is assumed [Eq. (44)]. This function can be integrated in r

and 6 coordinates to yield:

N(r)=N (1 —~ exp (— 27;22)) , (46)

r

where N(r) is the number of particles contained within radius r and N is the total number

of simulation particles. Equation (46) can be used to obtain the number of particles to add

worfo(D) (€22,

T

between r and r + Ar:

where AN is the number of particles to be ddded. The AN particles between r and r + Ar
are distributed uniformly in 8 with a random offset Gm_ at r+ Ar/2. The initial distribution
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for 10000 particles is shown in Fig. 6. The distribution integrated over p. is shown in Fig. 7.
This distribution is smoother than both the random distribution of particles [Fig. 3] and the
uniform distribution of differently charged particles [Fig'. 5].

Noisy model

In order to study particle diffusion brought about by the beam-beam interaction, sources of
numerical noise in the PIC codes need to be quantified. One source of noise is the fluctuations

due to the use of a finite number of particles. To model this noise in PIC simulations, noise

is added to the tracking code described in Sec. 2. This is done by adding a fluctuation term

-

to the tune shift Avg:

Av = Ap(1+ R n(z)) , | | (48)

1
n(x) - \/'mm—) )

where N(z) is the number of particles contained between —z and += and R is a random

(49)

number between —1 and 1. n(z) gives an idea of the fluctuation level where

N(x)zNerf( 7 ) | | (56)-

V20,
N is the total number of particles. Equation (50) is calculated for a Gaussian distribution

of particles.
6f algorithm

PIC codes typically use macroparticles to represent the the entire distribution of particles.
In the beam-beam interaction for the SSC, the beams consist of 10'° particles each. Simu-
lating this many partiéles with the PIC technique is computationally prohibitive. With the

conventional PIC code 10 particles are represented by only 10° — 10* simulation particles
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allowing simulation of the beam-beam interaction in a reasonable computation time. How-
ever, the fluctuation level of various quantities such as the beam density p in the code is
much higher than that of the real beam. The fluctuation level §p goes as approximately:

6p VN
i (51)

where N is the number of particleé. Therefore, the fluctuation level of the PIC code is about
108 times higher than that of the real beam. Although this probably is not significant for
beam blowup near resonances, the higher fluctuation level has a large effect-on more subtle
phenomenon such as particle diffusion. To facilitate the study of subtle effects, a 6f code

has been developed.1 22 35, 36

The §f method follows only the fluctuating part of the distribution instead of the entire
distribution. This is essentially modelling the numerator on the right hand side of Eq. (51)
which goes as v/N. So the 10° — 10* computational particles are used to represent'\/lO10

~ or 10° real fluctuation particles. This is only one or two orders of magnitude beyond the

" number of computer particles.

~ In the previous sections the strong-strong code used a finite number of particles to repre-
sent the Vlasov equation or Klimontovich equation.?’ In the particular case of the beam-beam ‘

interaction:

0f , OF _ i _wwand o
Bs +x B (K(s)x—F(x,s))% =0, .(52)
where K (s)z is the usual magnetic guiding force and F(z, s) is the beam-beam force
: 2eE,(x) '
P9 =27 60, (53)

where E,(z) is calculated from the distribution of the particles and 8p(s) the periodic 6-
function. 8,(s) = 1 when s = nL where L is the accelerator circumference and n = 0,1,...

The distribution fﬁnction f is represented by a finite number of pérticles by:
N ' ‘
flw,2',8) =3 _6(z — :(s))6(a’ — 2i(s)) , - (54)
i=1
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where N is fhe number of simulation particles used.
In the 6f method only the perturbative part of the distribution is followed.!% 223 The

total distribution function f(z,2’,s) is decomposed into
f((lf,.’L‘,,S) = fo(x; .’E’,S) + 5f(.’L‘, xla 8) ) (55)

where fo(x, %', s) is the steady or slowly varying part of the distribution and éf(z,2’,s) is
thé perturbative part. The key to this method is finding a distribution fo(x,2',s) which is
close to the total distribution f(z,z’,s). The perturbative part §f(z,z’,s) is then small,
causes only small changes to ’qhe distribution, and thus represents only the fluctuation levels.
If a distribution fo(z,2’,s) close to the total distribution is not found, then 6f(z,2’,s)
represents more than the fluctuating part of the total distribution. This defeats the purpose
of the method. The ideal situation is for fo(z, 2/, s) to have an analytic solution. In this case
any numerical truncation errors which result from the necessary derivatives of this function
are eliminated. If an analytic solution cannot be found, then a numerical solution needs to
be found which is close to the total distribution f (z,7’,s) and is slowly varying. Continual -
numerical update of fy(z,z’,s) would also defeat the purpose of the §f method, since the
PIC technique essentially does this also.

In the particular case of the beam-beam interaction an analytic solution to an equation
close to the original Vlasov equation can be found. In the case of a linearized beam-beam

force the Vlasov equation can be written in the form:

%J% +a! % — (K(s) - Fo<s))x%§3 =0, | (56)

where

Fo(S) = F05p<8) . (57)

Fj is the linear portion of the beam-beam force F(z). The solution is a Gaussian of the
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form:

2mo? 202

where 72 = 22 + 822, N is the total number of particles in the beam, 3* is the betatron

folr) = 22 exp (——’"—2—) , "

oscillation length, and o is in the z direction. Note that if the beam-beam force were linear
this solution fo(r) would represent the distribution for all time in the interaction region as
well as in the rest of the storage ring.v Only the values of §* and o differ between the two
regibns. In the interaction region the 8* and o are calculated using the dynamic 8 model

which assumes a linear beam-beam forcel 30:

cos(2mv) = cos(2mup) + 2rAvsin(27yy) (59)

B* _ sin(2mp)

7 @) | “

where v and G} are the unperturbed quantities valid in the rest of the storage ring and v
and (* are the quantities perturbed by the linearized beam-beam force. From the perturbed

B* the perturbed beam width o can be calculated from the formula:

G _ o | - (61)

,3* T g2
where o is the unperturbed beam width which is obtained from the assumption that the

beam emittance is unchanged due to this linear beam-beam force. An equation for the

perturbed 3* can be written in terms of unperturbed quantities from Egs. (59) and (60):

+ 2 ‘ «\ 3/2 ,
(,Ig_(’,‘) — 47 Ay cot(2m1s) (,Ig—é‘) — @1Aw)? (g_g) _1=0, 6

where Ay is the unperturbed one dimensional tune shift. Equation (62) can be expressed

in terms of the perturbed o using Eq. (61):

o\t o\ 3 L /o\2

(-) _ 4w Ave cob(2m5) (-—) — (27 Awp) (—) —1=0. (63)
o) 0o 0o

Both equations can be solved for the perturbed o or #* using a root finder. Once this is

obtained the other perturbed quantities, v and Av, are obtained from Egs. (59) and (60).
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Subtracting the linearized equation in Eq. (56) from the total Vlasov equation in Eq. (52),

we obtain the perturbative part of Eq. (52) for §f :

0 % (ko) - Folw, ) 2L =

ds o —(F(z,8) = Fo(s)z) 55 af > (64)

Fy(z,s) is the kick from a Gagssian beam and F(z,s) is the kick from a Gaussian beam |
Fo(z, s) plus the pertux;bation 6F(z,s). As a result of using the dynamic beta model for the
stationary solution f, 'bnly the nonlinear part of the beam-beam force on the right hand
side of Eq. (64) is used to advance § f. The terms %f% and Fyp(z,s) are calculated using
the perturbed dynamic beta quantities 3* and o. Note that the unperturbed Gaussian field
Fo(z, s) is used on the lefthand side of Eq. (64) which makes the equation lineér in §f. The

term which has been neglected is

5P (@,5) 5 5‘5f . (65)

This term can be shown to be small in our problem. A possible incorporation of this term
in the algorithm is described in Sec. 4. The reason for choosing the particular form of the
steady state solution is apparent. It is chosen so that the right-hand side of Eq. (64) is small.

Finite particle representation

The perturbative par{: of the distribution 6 f [Eq. (64)] can be represented by a finite number

of particles (characteristics):

~

1o 5) = 3 sl (), 249160z — 24(6))5(E — 21(5) - (66)
i=1 .
Substituting this into the equation for 6 f advance, we ‘obtain: |
oo eeo-neagk| 7)
where :
- (A:z],ﬁ:c’ ) ' | (68)
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This density n is calculated on the assumption that the particles are distributed uni-
formly in phase space. The density n is assumed constant thrdugh the entire run. This

approximation is no longef valid when there is either significant clumping of particles or the

particles have spread out in phase space. Thus, the §f algorithm is most suited to problems '

that occur far away from resonances. |

In the §f algorithm i, x;, and w; are advanced. The advance of the extra term w;
increases the number of operations over the PIC method and leads to other numerical con-
straints which will be described in the next section.

The simulation particles are distributed evenly in phase space upon initialization. The
particles are djstributed uniformly in z and p, phase space in a cylindrical coordinate system

r and 6. r and @ are defined in terms of z and p, as:

2 2
r’ = ,—3% + Z—;;i , (69)
tan(6) = 75% pﬂ , (70)

where (; is the betatron oscillation length at the interaction point and p the particle mo-
mentum along the collider in s. The maximum r value is input into the code and is broken
up into segments of length Ar. The number of particles at each r value is determined by a

cumnulative integration method.%® The particular functional form is:
N .

where AN is the number of particles to be added, N is the number of particles, and N, is
the number of Arl segments to the édge of the distribution. Once the number of particles
between r and r+ Ar is known they are distributed uhiformly in 0 with a random offset Opan
at 7 + Ar/2. The initial distribution for 1000 particles is shown in Fig. 3. The purpose of

this method is have each particle cover an equal area of phase space.
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Symplectic mapping

Results from previous runs indicate that a higher order integration scheme for the charac-
teristic advance is necessary for the §f algorithm. In runs where just the leapfrog scheme is
used, the code is inaccurate in the particle push. This higher order integration scheme for
the particles is needed in the §f algorithm because small changes to the initial distribution
are being studied. In the PIC codes the numerical noise caused by the finite number of
pa.rticles is larger than that produced by thé numerical diffusion of the particles caused by
the leapfrog integration scheme.

In this section we describe a symplectic finite difference scheme to counter the effects of
numerical diffusion on the particle motion. In this scheme the normal symplectic mapping
is used to advance the particles with an additional perturbation term.'

Without the beam-beam force term a sympléctic transformation map for the character-
istics with the magnetic field can be written. Also in the case of a linearized beam-beam

force a symplectic transformation map can be written with slight modifications. The map

can be written in fhe form:

(f) " (——E—a()ss(ifl?(O) ﬁgjf(la(f )) (f,) . ()

where z = dz/ds, s is the coordinate along the collider, § = [; ds/f;, and the indices 4 and
f refer to the initial and ﬁna.llpos'itions, respectively. This map is used at all places in the
storage ring including the interaction region. Upon adding the symplectic map the particle
motion is accurate to many decimal places.

A simple implementation of the beam-beam force whiéh preserves symplecticity involves

appro:dma,fing the force with an impulse. Using Hill’s equation:

2+ K(s)z = Flz)

(o= 2560 (73

Where the term on the right-hand side of the equation is due to the beam-beam force. The .
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mapping is the same as a tracking code with the beam-beam force:
T 1 O) (:c) (
= 74)
(:c’)f (G(x)l x! D

= | (75)

where

and Fp(z) is the unperturbed force due to a Gaussian beam.

~ In the particle advance scheme the particles are advanced first using the transfer matrix ,
for a distance in § = As/40; where As = cAt. The particles are then kicked by the
beam-beam field for As/283 and then advanced again As/4G;. The total matrix is:

T\ _ 1 0 T
(2) =30 (5 1) M0 (2), (7o
. cos(d) G§sin(9) .
MO = (_sale) st ) @
where § = As/(4(3) and z used in G(z) is the intermediate = value obtained from the first

transfer matrix application.

e (78)

Time advance

In this section the time advance scheme of the code is described. The entire predictor-
corrector advance scheme is shown in Table >1. |

The n in Table 1 refers to the time step number. In step 2 6 f’?!eglct is calculated from the
discretization of Eq. (67):

Bfo(w, 2%) | 4

Wt gt [(F“( 617) — R 27 (79)

Tpredict

where As = cAt, and F™(z,6f™) is the force calculated from the unperturbed Gaussian

beam Fp(x}) plus the perturbation force §F™(zl,6f™). &fmtsies is then calculated using
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[N)

Start with z®, 2™, 6 f*, 6!

6f;ﬁ'téict from "Bny mln, 6fn_17 Fn(xn, 5fn)

1 .
n+5
2 _ 1 n+1 n
o predict ™ '2'(6fpredict + 5f )
1 1
wn+2’ mln+2
y

n-l—%

. 1 1 1
n+1 n+s5 Jnt35 Fm+- onehal
6f correct from "2 » & 2 5f n, 2 (xn+ f7 6 predict

xn+1’ zln+1
repeat steps 1-6 until the end of the interaction region| -
rotate z™*1, /" |

repeat steps 1-8 until the end of the simulation run

Table I: Steps for advance of 6 f algorithm
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Eq. (66): .
8F(x,', 8)prbdict = D Wity (& — 7:(8))8(2" — zi(5)) - (80)

tpredict
. i=1
The same procedure is used in step 5 to calculate & fitae:

Wit =ul+A, B Y

tcorrect

‘ : 1
1 1\ 0fo (x:z+2 ) x;n+2>
1 1 nt+y 1 n+a
Ay = —— (F"‘+2 (xi 2,6fn+2) — Fo(s)xi 2) As . (82)

n ox!

In steps 4 and 6 z and 2’ are advanced using Eq. (77). Instep 8 z 'and‘a:’ are advanced using

Eq. (72):
2\ « cos(2mv) B sin(2nv) £\
(xl ) . —i* sin(2rv) cos(27v) (z’) ) (83)
b B ;
Where ‘
v (84)

0

which takes into account the finite length of the interaction region As in the phase space '

rotation.
Diagnostic quantities

Analysis of the dynamics of the beam-beam interaction requires diagnostics of several quan-
tities. Two typical accelerator quantities, the beam-beam tune shift parameter Av and the
beam emittance ¢, are calculated from the simulation. These quantities give an idea of the
beam strength and beam size, respectively. Various moments of the beam are also measured
to get an idea of macroscopic beam behavior. It is also important to determine the amount
of particle diffusion occurring Withjn the beams. This diffusion is measured usihg the method
of Chirikov.” Each of these diagnostic quantities are described in more detail in the following

sections.
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Emittance

A quantity of importance to accelerator physics is beam emittance e. R is a measure of
phase space area occupied by the beam particles. In a Hamiltonian system phase space area
is conserved and therefore, the phase space area should be conserved. The quantity often
calculated in accelerator physics is the normalized emittance €,:

= (1) o 2067+ 85 (85)
where B and v are the usual relativistic ‘quantities, 3 is the betatron oscillation length at
the interaction point, ' = p./p, p; is the transverse momentum, p is the momentum along
the collider path, and N is the number of simulation particles. By including v, €, remains
constant even during the boost or acceleration phase of the beam. In the PIC codes €, may
be calculated by just summing over the number of particles. In the §f algorithm an initial
unperturbed emittance is calculated: ‘

€ng = (ﬁ’Y) T3 -,3—0 Z(x + )sz ) ' (86)

j=1

where wy, is the initial unperturbed distribution function f, for particle i. The perturbation:

= (B7)73 == 5 2 Z(w +Bim Jwi (87)
where w; is the time evolving perturbation §f for particle 4. This perturbation emittance is

" calculated and added to the initial €, to get the total e,.

Tune shift

As described in previous sections, the tune shift Av stands as a measure of the strength of
the beam-beam kick. As the beams expand and contract, the kick weakens and strengthens,

respectively. The various methods by which Av can'be measured are described.
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One method for measuring Av involves a least-squares-fit to the kicks of small and large

- amplitude particles. We use Sands’? expression for linear tune shift, which is valid for small

amplitude particles:

Av=S ApAs, - ) (88)
4T ,
AK As = ATxI , (89)

where Az’ = pr /p and Ap, = 2eE,(z)At. A least-squares-fit to Av can be performed:

(Av)z = (B1) ap (90)
(3 47_‘_ p i .
where x; and Ap,, are for individual particles and the average Av is given as
| B 1A ,
=0 - = 1
Av wpB’ (91)
where
N N N
A=N> z:ilAp,, — > z: ) Aps, , (92)
i=1 i=1  i=1 ’
N N N
B=NY 2?-> ) =. (93)
i=1 i=1 =1 ‘

The sums are over the number of particles N used in the fit. The tune shift for small
amplitude particles is measured from simulation particles lying within 0.1oo of the beam.
Tune shifts measured using \particles of the entire beam are smaller than for only small
amplitude particles, since Av drops off at large amplitude. In the PIC codes the sums are
carried out over the number of particles. In the §f method the sums are also carried out -

over the number of particles with the modifications:

N N N
A=NY_ ziAp,wi — Y ziw; Y, Apgwi (94)
= =1 im1 :
N N N
B=NY zlw; — ) zw; Y ziw; -~ (95)
i=1 i=1 i=1 '
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where w; is the total distribution function value f(z,z’) = fo (.'I:, z') + 6 f (x,2') for particle i.
~ Another method for calculating Av uses the electric field E;(z). This can be done at one

point 2 in the beam or as an average over several points. For one point:

_ B
Av==AKAs, , (96)
47 _
ax=2ED L (97)
ymv?:
and for several points:
Av =2 Ax A (98)
4 ’
AK =Ly 2B 1 | (99)
T OON&Y ymivi om’

where the sum is over N particles. The tune shift Av is calculated in the §f algorithm at
one point from Eq. (97) by using E,(z) = Ey,(z) 4+ 6E,(z), where E,, (z) is the unperturbed

- field and 6E,(x) is the perturbation field. For several points in the §f method Eq. (99) |

becomes:
Av = A As (100)
dr ’ , : _
N oeE(zm) 1 & | )
AK = i . L w; w; , o 101
; ymiv? ,;1 | (101)

where w; is the total distri_bution function value f(z,z') = fo(z,z') + 6f(z,2') for particle i.
The power spectra of the x position of sample particles are.another diagnostic method.
The z positions are sampled after each complete turn around the collider. The power spectral

density P(v) is calculated from?®:

o0 ’ ‘
P) = / dn' exp(—in'v)C(n') (102)
where n refers to the turn number and C(n), the autocovariance function, is given by:
o) = g (o [ oto) 2+ ) | (103
n)=lim yo | 2 & (ntn)dn,, |
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where 7/ is the lag in the number of rotations. The previous expression assumes that z(n)

is a continuous function of n. In the simulations, C(n') is calculated from a discrete set of

values!®:
N—r

C(r) = ]—V—l—_r Y a(m)z*(n+1) (104)

where 7 =0, ...,m, 7 is the rotation lag, m is the maximum rotation lag, and N is the total

n=1

number of rotations. The autocovariance function may be calculated using an FFT with -

N = 2*. The maximum rotation lag was constrained to be less than 0.25 NV for accuracy.

The power spectral density is calculated by:
P(v) = FFT[C(r)W (r)] | (105)

where W (r) is the window function, the Parzen lag weighting functions.?® The tune shift can
be determined from the frequency shift in the power spectral peak. The frequency spectrum
peaks at the unperturbed tune v when the beam-beam interaction is not present. The error

in measuring the tune shift Av is given by:

§(Av) = % , (106)

where m is the maximum lag in rotations.

Determination of beam moments

Other quantities of importance in diagnosing beam dynamics are the beam moments. The
beam moments may be studied in two different approaches. One way involves calculating

the cumulants of the particle positions z for each beam?:

. 1 N '
(@) =+ Z;x (107)
N
() = -]%,- ;(mi — (2))? | (108)




(@) =5 T~ @) - (109

=1
a1 & 4 g
(at) = § 2@ — (@) = 3(z: = (2))°, (110)
i=1 :
where N is the number of particles. In the §f technique the cumulants are calculated:
CEED> | )
T) = LT 111
' N o
o 1 X ) .
<‘” == > (zi — () *w; (112)
N i=1 ' .
()= ~ ZN:(””' —@)’w (113)
N i3 ' '
4 1 Y 4 9 .
<3" >: N D (s — () w; — 3(zi — () wi . - (114)
=1

Power spectra of the cumulants give the frequency components which contribute to each

mode.

Determination of diffusion

In this section a method to calculate the diffusion of particles is presented. Diffusion coeffi- -

cients may be calculated in the following manner” 4:
. X — X (D2 \l ‘
2 [X(m) — X(1)] k=12 (115)

De= =D 2 @ANgm-0 ' T

where N is the number of subintervals, AN} is the size of the subinterval in terms of -

rotations, k refers to the subinterval type, and X (m) is the average of x,, over the subinterval

m.
. 1 ANy Tipm
X(m) = 3 11
(m) =z o, (116)

where | = m ANy. The total number of rotafions is broken up into two different subinterval

sizes. Diffusion coefficients are calculated for each different subinterval. If we find the
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coefficients computed with different sampling intervals,

D; ~ D, , ‘ (117)

then the motion z is diffusive. This occurs since a diffusive process should be independent
of the number of subintervals. On the other hand, if the initial conditions are chosen within

“islands” of stable oscillatory motion : [X(m) — X (I)] o< (ANk)™!, then

D; (AN
D; & (AN,

<1. (118)

The average in Eq. (116) is intended to lower the influence of bounded energy oscillations
and pick out accumulating changes.” The averaging made 6ver all pé.ir combinations of
intervals is intended to increase the time scale for which diffusion is described by the raten
and facilitates thé separation of diffusion processes from side effecﬁs. The mean value of At

is about half the total time and is independent of the length of the interval At,.”

Simulation Results

In this chapter we describe results of the study of the beam-beam interaction with the
various codes which have been déveloped. Beam-beam collective effects are examined using
the strong-strong code, and §f code. Particle diffusion is also examined with the use of all

the codes. A co{mparison of the different codes is made.

Collective beam-beam effects

In this section the object is to describe the effects of the beam-beam interaction on macro-

scopic beam behavior, that is, phenomena which deal with the entire beam such as beam

blowup.
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Ixwxh =75cm x10~3cm x10~%cm
Np = 7.3 x 10°
T = 20 Tev protons
G* = 50 cm
Avgo = .84 x 103
Vgo = 0.285
Luminosity = 1033 cm—2 g1
Lifetime = 24 hours or 10® turns

Table II: SSC Parameters

Reference parameters

Our research is generic enough to cover the beam-beam interaction of various colliders or
storage rings. We make specific reference to the parameters of the SSC. Table 2 shows

parameters for the SSC. Using the numbers from the table we have: v = 2.13 x 10% and

wyTint = 0.035 where wy = y/4mwe2ny/ymp, ny = Np/(lwh) is the beam density, my is the

mass of the beam particles (protons), 7 is the relativistic factor, and 7y = L/2c is the
interaction time of the colliding beams. The horizontal tune shift Avgo is calculated for a
two dimensional Gaussian beam. Since the present simulations deal with only one dimension,

this quantity is recalculated. Using the equation for the one dimensional tune shift:

2,3*T‘NB
Ayy = 4| === - 11

and using values from Table 2, the one dimensional tune shift is Avy = 2.1 x 1073,

A series of simulation runs is performed using the parameters described in Table 2.

Strong-strong simulation results

A series of strong-strong simulations have been performed to determine long time charac-
teristics. The initial distribution of particles is shown in Fig. 4. In this run 10 particles

are used in each beam with variable charge per particle initially to maintain a Gaussian

41




distribution. The tune v = 0.285 and the tune shift Ayy = 2.1 x 1073, The simulation box
size is 128A where A is the cell size. The beam width w is 30A and the particle size a is A.

The particle size a is small enough in relation to the beam width w so that from Eq. (13):

Ay, ‘point

=1.0022, 120
Ave, (120)

where Avpoint is the tune shift for a point particle and Avgp is the tune shift for a finite size
particle. Thﬁs, finite size particle effects on the kicks that the simulation particles receive are
minimal. By normalizing the code to a plasma with density lower than the beam where wyp is
the normalization plasma frequency and w is the beam plasma frequency, only 4 simulation
time steps are needed to cover the interaction region. So woAt = 0.25 where At is the
simulation time step size.

Figure 9 shows thé distribution of 10* particles in (z/0z,p=z/0p) Phase space for one
beam after 10240 rotations. The particles were initialized using the nonuniform charge
distribution [Fig. 4]. After 10240 rotations the particles are no longer uniformly distributed
in (x/0z,pz/0p) space. Clumping of particles has occurred and small regions contain no
particles. However, no dominant mode such as a m = 2 mode (football shape) or m = 4
mode (square shape) has appeared, which would distort the shape of the whole beam. A
profile in z of the distribution of particles in Fig. 10 shows the deviation of the distribution
from the initial Gaussian profile. The center of the beam is at © = 64A. Large spikes in the
distribution are visible at © ~ 50A and x ~ 80A.

We measure the tune shift Av by two Ihethods described in Sec. 2. One method involves
a least-squares-fit to the -kicks of small and large amplitude particles.

Results from the lea;st-squares-ﬁt method for one beam are shown in Fig. 11. The fit is
done for small amplitude particles z < 0.10,, at the top of the figure and for the entire beam
for the bottom of the figure. The tune shift Av oscillates around the ;mperturbed values of
Avy = 2.1 x 1073 for small amplitude particles and Ay = 1.55 x 1073 for all the particles.
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Figure 9: Distribution of 10* simulation particles in (z/o, Pz/0p) space after
10240 rotations with v = 0.285 and Ayp = 2.1 x 1073,
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Figure 11: Tune shift Av from a least squares fit to small amplitude particles
z < 0.10; (top) and all particles (bottom) for M = 10240 rotations




The discrepancy is due to the drop-off of the kick at large values of z. When all particles -

are included in the least-squares-fit, the measured Av is lowered by the particles with large
z. The amplitude of the variation in Av for small amplitude pa.rticles is approximately
+20% of Ay near the end of the run. The tune shift obtained from all particles decreases
in amplitude with the number of rotations. The maximum variation of Av is approximately
+3% of its average value and occurs within the first 500 rotations. The oscillations in Av
indicate expansion and contraction of the beam. The expansion and contraction of the
beam decreasés and increases Av, respectively. Notice that the beam is expanding and
contracting differently at different particle positions. The small amplitude portion of the
beam is increasing in oscillation amplitude, while the entire beam is decreasing in oscillation

amplitude.

" The other method by which the tune shift Av is measured is by getting power spectra-

of the z positions of sample particles which are sampled once every complete rotation. Fig-
ures 12 and 13 show the particle positions and power spectra for a small and large amplitude
particle, respectively. .T,he tune shift Av is medsured from the shift in the power spectral
peak from the unperturbed tune vp. The small amplitude particle in Fig. 12 shows smearing
in the particle position in phase space, which is indicative of particle diffusioﬁ which will be
discussed in Sec. 3. The peaks'in S(v) are at v = +0.2827148. The difference from v is
2.2852 x 10~3. The error in this measurement is §v = 7.8125 x 10~*, where the maximum
lag time is 2560 rotations for the power spectrum calculation. Although the value is higher
than the unperturbed tune shift Ay, it is within the errors of the calé.ulation. The large

amplitude particle in Fig. 13 also shows smearing in the particle position in phase space,

but it is less than that observed for the small amplitude particle. The peaks in S(v) are at

v = 40.2832031. The difference from vg is 1.7969 x 10~3. The error in this measurement is
also dv = 7.8125 x 10‘4 The tune shift, Av, for the large amplitude particle is smaller than

the one measured for the small amplitude partlcle, since Av drops off with large z for the
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Figure 12: Position of an initially small .a.mplitude particle g = 0.lo; in
(x/0z,pz/0p) space for M = 10240 rotations (top) and power spectrum of z
position of the particle versus v (bottom).
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(x/02,pz/0p) space for M = 10240 rotations (top) and power spectrum of z
position of the particle versus v (bottom).




beam-beam interaction.

Moments of one beam are shown in Figs. 14 and 15. At the top of Fig. 15 the oscillation
of the average beam center () is apparent. The beam oscillates with a maximum beam
amplitude of 6z/0, ~ £8 x 10~%. The average (z) and ((z — (z}))?), the odd moments, are
both increasing in oscillation amplitude with rotation number. The increase is more obvious
for ((z - (z))3) at the bottom of Fig. 16. At the top of Fig. 15 the oscillation of the beam
width can be seen. The beam is oscillating about the initial beam width o2 with a maximum
amplitude of approximately +0.0402. Oscillations are also apparent for ((z — (z))*) at the
bottom of the figure. The amplitudes of the even moments ((z - (z))?) and ((z — (z))*) are
both deéreasing with the number of rotations. Note that the variation in the second moment

{(z — (z))?) élosely corresponds with the variation of the tune shift measured from all beam

particles in Fig. 11. Both Av and ((z — (z))?) give a measure of the width of the kicking

beam and the kicked beam, respectively. Since both beams are oscillating in width in the
same manner, the agreement is expected. |
| Figures 16 and 17 show the moments and their associated power spectra. The power

spectra of the average of z, (z), is shown at the bottom of Fig. 16. There is a peak in S(v)

at v ~ 0. This peak corresponds to oscillations seen in (x) with periods between 500 and -

1000 rotations. The smaller peaks at v & *(1p — Ayy) correspond to the betatron motion.

In Fig. 17 the peaks in the power spectra S(v) at v = £(1 — 2(vp — Ap)) also correspond -

to the betatron motion of the beam.

The emittance ¢ of each beam for 10240 rotations is shown in Fig. 18. The emittance for

one beam is at the top of the figure and the other is at the bottom. Until about 6000 rotations

the beams show similar behavior. They oscillate about the initial emittance e = 9.586A.

After this the beams begin to deviate from one another. One beam is decreasing in phase
space area and the other beam is increasing. This phenomena is similar to the “flip-flop”

effect observed experimentally with equal strength beams.!® One beam blows up and the
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Figure 14: Beam moments (z) and ((z — (z))®) for M = 10240 rotations at the
top and bottom of the figure respectively.
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Figure 16: Beam moment (z) and power spectrum S(v) for M = 10240 rotations

 at the top and bottom of the figure respectively.
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Figure 17: Beam moment ((z — (z))?) and power spectrum S(v) for M = 10240
rotations at the top and bottom of the figure respectively. '
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Figure 18: The emittance € of both beams for 10240 rotations. One beam is at
the top and the other beam is at the bottom of the figure




other decreases in size. - The difference in ¢ is small between the two beams. By the end of
the run it is 56/60 = 4.4 x 10-3. This variation in € is very sensitive to the initial conditions.
Figure 19 shows the emittance for both beams when the distribution is initialized with
different random offsets in @ for the nonuniform charge distribution. The increments in r/o
are the same. The beams begin to deviate from one another at about 9000 rotations. The
deviation is much smaller than the previous case. By the end of the run it is §¢/eg = 5x 1074,

Runs with the uniform charge and nonuniform position initialization show different be-
havior than the runs with nonuniform charge and uniform position. Figure 20 shows the
distribution of 10* particles in (z/04, pz/0p) phase space for one beam after 10240 rotations.
The particles were initialized using the ﬁm‘form charge distribution [Fig. 6]. After 10240
rotations the particle distribution shows spiral arms in (m/ Oz, Pz/0p) space. However, no |
dominant mode such as a m = 2 mode (fdotball shape) or m = 4 mode (square shape) has
| appeared which is distorting the shape of the whole beam. A profile in x of the distribution
of particles in Fig. 21 shows the deviatioﬂ of the distribution from the injt'ial Gaussian profile.
The center of the beam is at £ = 64A. The profile is much smoother than the profile from
the nonuniform charge distribution run [Fig. 10].

Res_ults from the least-squares-fit method for one beam are shown in Fig. 22 The fit is done
for small amplitude particles z < 0.10,. Av oscillates around the unperturbed tune shift
values of Ayy = 2.1 x 1072 for small amplitude particles. It is found that Av ~ 1.55 x 103
for all the particles. The discrepancy is due to the drop-off of Av at large values of z.
When all particles are included in the least squares fit, the measured Av is lowered by the
particles with large . The arﬁplitude of the variation in Av for small amplitude particles is
approximately +3% of Ay near the end of the run, which is about a factor of 6 smaller than
the deviations observed in the nonuniform charge run. The tune shift Av obtained from all
particles decreases in amplitude with the'nﬁmber of rotations. The maximum variation of

Av.is approximately £+3% of its average value and occurs within the first 500 rotations. The
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Figure 19: The emittance € of both beams for 10240 rotations with a slightly
different initialization. One beam is at the top and the other beam is at the
bottom of the figure




-2k

-4

Figure 20: Distribution of 10* simulation particles in (z/0s, pz/0,) space after
10240 rotations with vp = 0.285 and Ay = 2.1 x 1072,



150 F
140 b
130
17¢ F

EEIT RS

100 1

fle)

|8

Figure 21: Distribution of 10 simulation particles in z after 10240 rotations with
vo = 0.285 and Avo = 2.1 x 107%. . |




Figure 22: Tune shift Av measured from a least squares fit to small a.mphtude
particles ¢ < 0.10, for M = 10240 rotations




oscillations in Av indicate that the expansion and contraction of the beam which is kicking
the particles is smaller than the nonuniform charge runs.

The emittance € of each beam for 10240 rotations is shown in Fig. 23. The emittance for
one beam is at the top of the figure and the other at the bottom. In this case the beams are
oscillating in ¢. The amplitude of the oscillations is largest for the first 1000 rotations. The
magnitude of these oscillations is 8¢/ep ~ 103, where ¢ is the initial emittance. By the end

of the run the oscillations are d¢/ep ~ 1074,

A. 6f simulation results

A series of § f simulations have been performed to determine long time characteristics. We use
10 particles in the runs. The fluctuation level § expected for the actual SSC beam is § ~ 10~°
for 10'° particles. Figure 24 shows the variation with particle number of the minimum and
-maximum perturbations & f/fo for runs with 10240 rotations. We see that the maximum
perturbation is nearly independent of particle number. The minimum fluctuation value
decreases exponentially with increasing particle number. It can be seen that the minimum
perturbation drops below 105 for simulations with 10® particles and larger. Because 10°
particles could be used, larger rotations of 10° could be run. The initial distribution of
particles is shown in Fig. 3. In this run 10® particles are ﬁsed in each beam with variable
charge per particle initially to maintain a Gaussian distribution. The tune 1/0'= 0.285 and
the tune shift Ay, = 2;1 X 10;3. The simulation box size is 128A where A is the cell size.
The beam width w is 30A and the particle size a is A. The particle size a is small enough

in relation to the beam width w so that from Eq. (13):

AVpoint

=1. 2
X 0022 , (121)

where Avpgin is the tune shift for a point particle and Avg, is the tune shift for a finite size

particle. Thus, finite size particle effects on the kicks that the simulation particles receive are
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Figure 23: The emittance € of both beams for 10240 rotations. One beam is at
the top and the other beam is at the bottom of the figure
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minimal. By norma.lizing the code to a plasma with density lower than the beam, where wy is
the normalization plasma frequency and Qb is the beam plasma, frequency, only 4 simulation
time steps are needed to covér the interaction region.  Thus, wpAt = 0.25 where At is the
simulation time step size. |

" Figure 25 shows the distribution of 10® particles in (z /0%, p/0p) phase space for one beam
after 10° rotations. After 10° rotations the particles are no longer unifornrﬂy distributed in
(x/0x,pz/0p) space. Some clumping of particles has occurred and small regions contain no
particles. The clumpmg is not significant enough that the constant phase space density -
assumption is still a good apprommatlon. A profile in z of a Gaussian distribution of
particles in Fig. 26 is shown.' Figure 27 shows the perturbations from the §f code to the
Gaussian profile after 10° rotations. The center of the beam is at = 64A. The maximum
perturbations are only 0.1% of the maximum in the Gaussian profile. Thus, the §f code is
still a valid approximation. Notice that the perturbed distribution makes sense physically.
There is a depletion of particles from the center of the beam and an incréase in parficles at
. about +20,. The beam is expanding slightly.

- Results from the least-squares-fit method for one beam are shown in Fig. 28. The fit is
done for small amplitude partides z < 0.10; at the top ‘of the figure and for the entire beam
for the bottom of the figure. The tune shift Av oscillates around the unperturbed values of
Ay = 2.1 x 1078 for small amplitude particles and Ayy ~ 1.52 x 102 for all the particles.
The discrepancy is due to the drép—off of Av at large values of . The amplitude of the
variation in Av for small amplitude particles is approximately +3% of 'A'uo throughout the
run. The tune shift obtained from all particles increases in amplitude with the number of
rotations until approximately 15000 rotations and then remains somewhat constant until the
end of the run. The maximum variation of Av is approximately +-4%. The oscillations in Av
indicate expansion and contraction of the beam which is kicking the particles. Notice that

the beam which is kicking the particles is expanding and contracting differently at different
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Flg‘ure 25: Distribution of 10° simulation particles in (z/ a,,,p,/ap) space after
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Figure 27: Distribution of 10° §f simulation particles including the particle
weights in z after 10° rotations with vy = 0.285 and Ayp = 2.1 x 1073,
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Figure 28: Tune shift Av measured from a least squares fit to small amplitude
particles z < 0.10, (top) and all particles (bottom) for M = 10240 rotations




particle positions. The smﬁll amplitude i)ortion of the beam is constant oscillation amplitude |
while the entire beam is increasing oscillation amplitude for the first 15000 rotations.

The other method by which the tune shift Av is measured is by getting power spectra of
the z positions of sample particles which are sampled once every complete rotation. Figure 29
shows the shift in the power spectral peak from 100 particle positions in phase space. The
tune shift Av is measured from the shift in the power spectral peak from the unperturbed
tune vo. Notice that Av decreases with increasing r/o of the éample particle, where r/o =
/7?02 + p2/a. |

Moments of one beam and their associated power spectra S(v) are shown in Figs. 30, 31,

32, and 33. At the top of Fig. 30 the oscillation of the average beam center (z) is apparent.
The beam oscillates with a maximum beam amplitude of §z/0, &~ £1.6 x 10~%. The average
(z) and {(x — (z))?) [Fig. 32], the odd moments, are both increasing in oscillation amplitude
with rotation number. At the top of Fig. 31 the oscillation of the beam width can be
seen. The beam is oscillating about the initial beam width o2 with a maximum amplitude of
approximately 0.00302. Oscillations are also apparent for {(z — (z))*) at the top of Fig. 33.
These oscillations are induced spontaneously. This is in spite of the initial lack of offset and
initial.lack of noise due to finite number of particles. The latter is due to our adoption of
the 6f algorithm. The particle weights w; were taken to be zero at ¢ = 0.

The bottoms of Figs. 30, 31, 32, and 33 show the moments and their associated power
spectra. The power spectra of the average of z, (x), is shown at the bottom of Fig. 30. There
are peaks in S(v) in descending power at v ~ +v/ and +(5¢ — 1) where V' = 1y — A
These peaks correspond to harmonics of the betatron motion. In Fig. 31 the peaks in the
pbwer spectra S(v) at v ~ £(1 —2(vo — Awp)) also correspond to the betatron motion of the
beam. The peak near v ~ 0 corresponds to low frequency oscillations with periods longer
than 10* rotations. Figure 32 shows S(v) for {(z — (z))3). The peaks in S(v) in descending
power are at £(50' — 1), v ~ £/, (1 — 3//), and £(2 — 7v/') where v/ = 1o — Avp. Similarly
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in Fig. 33 S(v) for ((x — (z))*) has peaks in descending power at +(1 —2v') and (1 — 4/')
Where vV =y — Aw. As in the case with {(z — (z))?), there is a low frequency peak with
oscillations having time scales longer than .104 rotations. It appears from these results that
the evén beam moments contain more power in the low frequency components of S(v) than
the odd beam moments. |

The emittance ¢ of each beam for 10° rotations is shown in Fig. 34. The emittance for
one beam is at the top of the figure and the other is at the bottom. The beams show similar
behavior through the 10° rotations. They expand and contract in phase space simultaneously.

The maximum expansion is about de/ey ~ 2 X 10-3.

v — Ay, stability

~ In this section we examine the variation of beam stability with tune 1o and tune shift Avy.

The éti‘ong—strong PIC simulation code is employed exclusively here. Although the 6 f code is
quieter, it is not well suited for studying beam blowup phenomena which distort the original
distribution by a significant amount.

Figure 35 shows a stability diagram of Avg versus v5. The dotted lines are obtained from
a linear theory developed by Chao and Ruth.5 The lines demarcate regions of linear stability
and instability for equal charge beams. The stable regions are those regions contained by
the dotted lines. The lines plotted are for up to 8 beam modes. As is the general case with
any linear theory the théory can predict the initial growth rates of the instability, but not
the saturation levels. The points in Fig. 35 represent strong-strong simulation code results,
in which the unperturbed Avg and vy are varied. The unperturbed tune shift Avy is scanned
between the SSC reference value of 2.1 x 1073 and a maximum value of 0.04. In each of
the simulations 10 simulation particles are used. The codes are run for 10* rotations with
the exception of onel run which is run for 3 x 10* rotations. All the runs are initialized with

variable charge and uniform distribution. All other parameters are the same as previous
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strong-strong simulation runs. Beam stability for various values of Avg and 14 is determined
from emittance growth. If the emittance of the beams ¢ increases by 50%, then the run is
designated unstable. The marginally stable case noted in Fig. 35 is determined from the
emittance growth after 30000 rotations.

The results from the simulations show good agreement with the linear theory of Chao
and Ruth.’ The beams are unstable in regions of instability and are stable in regions of
stability.

We examine in more detail the cases where A}/o is small. In this case similarly charged
beams with values of the unperturbed tune vy just above a resonance are kicked towards the
résonance by the beam-beam interaction. In this case the beams are expected to be unstable. -
For beams with values of v, just below a resonance the beam-beam kick is away from the
resonance and the beams are expected to be stable. Beam blowup due to strong resonance
is observed just above vp = 1/2 and vy = 1/4 for values of Ayy = 2.1 x 1073, Figures 36 and
37 show the phase space distribution of the simulation particles. In Fig. 36 phase space
plots show simulation results around the vy = 1/2 resonance. At the top of Fig. 36, where
vo = 1/2 + Avp the beam blows up. At the bottom of Fig. 36, where vy = 1/2 — Auy, it
is seen that mode 2 dominates the shape of the beam in phase space (football shape). In
Fig. 36 phase space plots show simulation results around the 1y = 1 /4 resonance. At the
top of Fig. 36, where vy = 1/4 + Ay, the beam particles are clumping and the emittance is
observed to increase by more than 50%. At the bottom of Fig. 36, where v = 1/4 — Ay, it
is mode 4 which dominates (square shape). The beams in the case of vp = 1/2 + Aup blow .
up very quickly. It only takes a few hundred rotations. The beams blow up more slowly for
Vo = 1/4+ Avy. This behavior is expected. Higher order resonances have lower growth rates
of instability. The beams are stable just below vp = 1/2 and v = 1/4 for small values of
Ayp.

A point is scanned just above vy = 1/3 with v = Vo + Avy where Ayg = 4 x 1073, In
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Figure 36: (x/B8* z') distribution of particles for vy = 1/2 + Avyp (top) and
Vo = 1/2 — Avy (bottom) where Ayy = 2.1 x 1072
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this case the emittance e is slowly growing [Fig. 38]. The beam emittance € keeps growing
until approximately 24000 rotations, after which it appears to saturate until the end of the
run at 30000 rotations. The phase space distribution of one beam is shown in Fig. 39. It
can be seen that mode 6 is beginning to slowly dominate the distribution. Since two (i.e. an
even number of) beams are colliding, mode 2/6 is expected to dominate for vp = 1/3 + Awp.

Since this is a high order mode, the slow growth rate is expected.

Particle diffusion

In this section we examine particle diffusion brought about by the beam-beam interaction.
‘The diffusion is measured from the tracking code, strong-strong code, and the 6 f code. We
compare the diffusion coefficients measured for each of these runs. Of the three codes the
5f code gives the best representation. It is quieter than the PIC code and allows degrees
of freedom of evolution from the initial distribution that are not permitted in the tfa,cking

code. We use the two methods described in Sec. 2 to measure particle diffusion.

Tracking code results

We first examine particle diffusion for particles tracked using the 1 — D tracking code de-
scribed in Sec. 2. .
Reference parameters described in Sec. 3 for the SSC are used: The tune v = 0.285 and

the tune shift Avp = 2.1 x 10~3. The initial particle positions are shown in Fig. 41.

Diffusive motion of the sample particles can be obtained from diffusion coefficients, dfl '

and df2, calculated after 10240 rotations are shown in Fig. 41 where:

2 2
Io =+ E (122)

is the distance in phase space from the center of the beam. The D, means that dfl and
df2 are calculated for diffusion in position |z| from Eq. (115). The diffusion is normalized to
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Figure 39: (z/ ,H*,a:’)‘ distribution of particles for vy = 1/3 + Ay where Ay =
2.1 x 1073 .
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Figure 40: Initial particle positions for 100 tracking code particles in (z/0z, p=/p)

phase space.
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Figure 41: D, from the tracking code with Avg = 2.1x 1073 and v = 0.285
for M = 10240 rotations. dfl and df2 have time scales of AN; = 102 and
AN, = 1024 rotations respectively.




o2 /N, where N, is the number of rotations. In Fig. 41 it is apparent from the fact dfl > df2

that the motion is largely oscillatory in phase space. The coefficients calculated over two

" time scales differ on average by about a factor of 100. This is expected for oécillatory motion

where:

NE)
df1 AN,

o L
X 1000

Figures 42 and 43 show the diffusion coefficients calculated for M = 40960 and M = 10°
rotations, respectively. The average diffusion rate is decreasing with increasing rotations.
The range of coefficients for 40960 rotations is between 10~° and 10~ and for 10° rotations
between 10710 and 10~15. This drop with increasing rotation number is another indication
that the particle motion is still oscillatory and not diffusive. If the particles are diffusive the
diffusion coefficients would settle down to values independent of the time scale. There are
some points between r/o = 1.5 and r/o = 2 which meet the criteria for diffusivity.‘ That is,

dfl ~ df2. However, most of the coefficients differ by about a factor of 100.

So in tracking code simulations a majority of the particles exhibit oscillatory motion at

different values of position z up to 10° rotations.

Strong-strong simulation results

In this section results from the strong-strong code on particle diffusion are presented. The
effects of the particle initialization method are ekanﬁned and the results are compared with
thé tracking code. Again reference parameters described in Sec. 3 for the SSC are used. So
the tune v, = 0.285 and the tune shift Ayy = 2.1 x 1073,

Results from the strong-strong code with variable charge per particle are shown in Fig. 44.
Each beam in the simulation has 10* simulation particles with ~’che initial distribution in

(%, ps) Phase space shown in Fig. 4 and the resulting profile shown in Fig. 2.
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Figure 42: D, from the tracking code with Ayy = 2.1 x 107% and v = 0.285
for M = 40960 rotations. dfl and df2 have time scales of AN; = 409 and

AN, = 4096 rotations respectively.




The diffusion coefficients are calculated for 100 sample particles after 10240 rotations.
The initial particle positions are the same as the tracking code shown in Fig. 40. Asin
the tracking code results in the previous section the diffusion coefficients, dfl and df2, are
calculated at various |z| in Eq. (115). The diffusion D, is normalized to ¢2/N, where N, is .
the numbér of rotations. The diffusion coefficients differ substantially from those obtained
from the tracking code.[Fig. 41]. All the particles in this case show the diffusive nature. D,
is‘ uniform across the beam radial position and is nearly an order of magnitude higher than
the tracking che values. Sorhe of this diffusiveness is from fluctuations due to the finite
number of particles of the strong-strong code. This dependence is shown in Figs. 45 and 486.

These figures show the diffusion coefficients, dfl and df2, for two different particles after
1000 rotations. One is for a sample particle at 7 /o = 0.1 [Fig. 45] and the other is for sample
particle at 7/ = 0.9 [Fig. 46]. In both figures the solid line and the dashed lines refer to
the diffusion coefficients dfl and df2, respectively, calculated from a tracking code. Note
that the tracking code values are independent of‘ the number of particles, since the field is |
calculated from one Gaussian particle (“strong beam”). Both plots show a reduction in the
diffusion coefficient for the strong-strong code calculated on the longer tirﬁe scale (df2). Tt
is more apparent for the particle at 7/o = 0.1 [Fig. 45]. The reduction goes as 1/+/N, where
N is the number of pafticles. This 1 /V'N dependence shows that finite particle fluctuation
noise, 3¢ which goes as 1/+/N, is contributing to the diffusion of the sample particles.

In order to reduce the fluctuation noise, we use the nonuniform particle initialization
method described in Sec. 2. The simulation particles a.fe given equal charge and are nonuni-
formly distributed in (z,p.) phase space [Fig. 6]. The resulting profile in z is shown in
Fig. 7 for 10000 simulation particles. SSC reference parameters are used with 1o = 0.285
and Ay = 2.1 X 10~8. The nonuniform initialization of the simulation particles does make
a difference in the finite particle fluctuation noise level. ‘The reduced diffusion is evident

in Fig. 47, where the variable charge and uniform charge diffusion coefficients are shown

88



e df2
T T 1 i I T T T ] 1§ T ] ¥ ’ 1 1] 1 i ' L L i l T L 1 0-g
000000000
ooooooooos o ; 11
0 : g 8 ° 10
o °
oo 8 9
o o o: '..go!"_‘ ..O"..
o % 0.%fe 2%, i -13
“e0 ©® . o o e 10
[ ] ® [ ] ®
] )
1 0-.1 5
1 1 [ . L1 ' L ! -
! 1077

Figure 43: D, from the tracking code of the beam with Ay = 2.1 x 10~3 and
v = 0.285 for M = 10° rotations. dfl and df2 have time scales of AN; = 1000

and AN, = 10000 rotations respectively.



s o df2
107 g IR RN
i 2ae?
10° & an . Jaendn
e e TRl AL
K 8.0 Y &
D g7 DV SN Lax ik,
x Ny ‘;&xx .00. %;C
S WL RN &
i ' .‘ ° ‘A.
10'9 -ll||[.]_l-l‘lll.lll[llllllLl.lILlll
0 05 1 15 2 25 3
r/c '

Figure 44: D, from the strong-strong code with Ay = 2.1 x 1072 and v = 0.285
for M = 10240 rotations. dfl and df2 have time scales Qf AN; = 102 and

AN, = 1024 rotations respectively.
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for M = 10240 rotations. The uniform charge initialization is much quieter. It shows

oscillatory particle motion for particles with r/o < 2. The only particles which exhibit dif-

fusive characteristics are those particles with r/o > 2, that is, particles in the tails of the

distribution. In comparison with the tracking codé the sample particles from.the uniform

charge initialization show more diffusive behavior [Fig. 48]. The agreement is good between

the tracking code and strong-strong code for the shorter time scale diffusion coefficient dfl

for values of r/o < 2. However, the longer time scale diffusion coefficient for the uniform -
particle initialization shows higher values for all values of /o, especially in the tail of the

distribution.

It has been shown that finite particle fluctuation noise plays a role in the diffusion of
particles in the strong-strong simulations. This noise can be somewhat offset by using quieter
particle initialization schemes such as the smooth charge loading scheme. However, there are
still significant differences from the tracking code. Although the strong-strong code should
show differences from the tracking code because of the self consistent solution of the fields,
it is difficult to determine whether the differences observed are due t‘o particle fluctuation
noise alone. In order to get a better grasp of the effects of this fluctuation noise, the noisy
tracking code described in Sec. 2 is used. Figure 49 shows the results for 10240 rotations

where noise added to the tracking code is of the form described in Sec. 2. The noise level 6

is determined by:

5= o (124)

~J/N@)

where N(z) = N erf (z/+/20) and N is the particle number. Notice that the small amplitude

particles at r/o = 0.1 are diffusive for the noisy tracking code and the PIC code. The larger
amplitude particles at 7/o = 0.9 are both oscillatory. The PIC code is more diffusive than
the noisy tracking code at r/o = 0.1 and is less oscillatory than the noisy tracking code

at r/c = 0.9. These results indicate that some of the diffusion observed in the PIC code
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Figure 47: D, from the strong-stong code with the variable charge and uniform
charge particle initialization for M = 10240 rotations. dfl and df2 have time
scales of AN; = 102 AN, = 1024 rotations respectively.
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is from finite particle noise. The discrepancy in the diffusion coefficients between the PIC
code and the noisy tracking code may be due to other types of numerical noise or collective

phenomena.

6f simulation results

In this section we describe particle diffusion results obtained from the §f simulation code
described in Sec. 2. SSC reference parameters from Sec. 3 are used with v = 0.285 and
Ayy = 2.1 x 1073, Each beam in the simulation has 10® simulation particles with the initial
distribution in (z, p,) phase space shown in Fig. 3.

| The diffﬁsion coefficients are calculated for 100 sample particles after 10240 rotations.
As in previous sections the diffusion coefficients, dfl and df2, are caiculated using Im[ in
Eq. (115). The diffusion D, is normalized to ¢2/N,, where N, is the number of rotations.
Results from the §f code and tracking code after 10240 rotations are shown in Fig. 50. The
diffusion coefficients for the 6 f and tracking céde nearly overlay each other. Both codes
show oscillatory motion for 10240 rotations. Thus, the noise level of the § f code is less than
the strong-strong code with either the variable or uniform charge distribution.

Simulations with 100, 1000, and 10000 particles show little effect on the diffusion of
the particlés from particle number for M = 10240 rotations [Fig. 51]. For 100 simulation
- particles there is some deviation for sample particles with r /o < 1. The noise level is not as
strong a function of particle number as the strong-strong code.

~ The sample particles begin to show diffusive behavior, when the number of rotations .
is increased. Figure 52 shows the diffusion coefficients, dfl and df2, calculated for 40960
rotations. Particles with r/o > 2 are diffusive (dfl =~ df2). This same behavior is observed
for 10240 rotations in the strong-strong code with the uniform charge distribution [Fig. 48].
The particles with /o < 2 are still somewhat oscillatory in nature. It appears that the

particles in the tail of the distribution are most sensitive to either noise or collective motion
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in the beams. This diffusion in the tails is not due to finite particle noise, as is evident in
Fig. 53. The figure shows the diffusion coefficients calculated for N = 1000 and N = 10*
simulation particles for 40960 rotations. The results are nearly identical.

A comparison of the §f and tracking codé at 40960 rotations is shown in Fig. 54. The
tracking and §f code diffusion coefficients are nearly equal to the short timei scale coefficient
dfl with values of /o < 1.5. For the long time scale coefficient df2 and r/o > 1.5 the 6 f
code shows more diffusive behavior. This indicates that the phenomenon which causeé the
diffusive motions at for large /o is most evident on time scales of 409 rotations. Diffusive
motion is not evident for for particles with 7 /o < 1.5. This indicates that the diffusion oc¢curs
on longer time scales there. This is shown in longer runs. It appears that the diffusion is
largest for large /o and smallest for small r/o. |

In order to determine the source of the diffusion observed in the §f code, noise of the

form described in Sec. 2 is added to the tracking code. Figure 55 shows the results for. 40960 -

rotations, where the noise level 6 is determined by:

f=—1 | | (125)

N(z)

where N(z) = N erf (z/ v20,) and N is the particle number. Notice that the long time scale

coefficient df2 increases for small 7 /o and therefore, df2 is more uniform in r/o. The form of

D, as a function of r/¢ is different from D, calculated from the § f code. It is apparent that
the enhanced diffusion observed in the tails of the distribution for the 6 f code is due to the
self-consistent treatment of the beams. This enhanced diffusion in the tails was also observed
in the strong-strong code with the uniform charge initialization and fewer rotations.

When the §f code is run for 10° rotations, all the sample particles show diffusive behavior

[Fig. 56]. The diffusion D, is an approximately exponential function of r/o. The coefficients |

take nearly the same value as the long time scale diffusion coefficient df2 calculated for

40960 rotations [Fig. 52]. The diffusive time scale appears to be in the range of 400 to 4000
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rotations.

A comparison of the §f and tracking code results at 10° rotations is shown in Fig. 57.
As in the run with 40960 rotations, the diffusion coefficients obtained from the tracking and
(5 f runs are nearly equal for the short time scale coefficient dfl with values of r/o < 1.5. For
the long time scale cbefﬁcient df2 and r Jo>1.5 the §f code shows diffusive behavior and is
higher in value than the coefficients from the tracking code.

Figure 58 shows the diffusion coefficients calculated for N = 1000 and N = 10* simulation

particles for 10° rotations. The coefficients for both particle numbers overlap indicating that

the diffusion observed is not strongly dependent on the simulation particle number.

Diffusion from beam offset

In this section we examine the effects of beam offset on particle diffusion. According to
analytic theory on beam offset®* a Fokker-Planck equation can be derived for the averaged
perturbation of the distribution function AF = F — Fy: |

@R =12 (any) 52, (126)

where Fp is the initial unperturbed distribution function of the beam, J is the action, and
((AJy)?) is the averaged change in the action due to beam offsets. ((AJy)?) /2 can be

thought of as the diffusion coefficient. An expression for ((AJu)?) has been derived using

the “weak-strong” approximation for the beam-beam interaction and the assumption that

the strong beam is Gaussian®%:

<v(AJM)2> — 167262 Jy exp(—Jo) M ,f;, (Ik (%) + Tos (%))2 B, (127)

‘where ¢ is the beam strength parameter, Jo is the unperturbed action, Ij is the modified

Bessel function of order k, and Ry is

Re= 3 K(n)cos(2mum(k+1)), (128)

n=-oo
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where K (n) is the auto-correlation function ({m{m+n}, {m is the beam offset for turn m, and
v is the tune.

Equation (127) can be simplified Witi’l the assumption that the beam offsets ¢ are uncor-
related on a turn by turn basis. Then, K(0) is the only nonzero term in the calculation of
Ry (the Markov process assumption). Also noting that the Bessel functions fall off with £,

Eq. (127) can be written in the form®:

((AJ3)?) = 167°€* o exp(—To) M (Io (%) +1 (%))2 R . (129)

After integrating over Jy, an approximate value for the diffusion coefficient can be obtained

from the change in the luminosity of the beam®::

AL 0, 627 '
o= 6BEM L, (130)

where AL is the change in luminosity, Lo is the initial luminosity, £ is the beam strength
parameter, 6z is the beam displacement normalized to o5, M is the number of turns, dnd

Av is the distance of the tune v from the nearest ihteger. The diffusion coefficient may be

deﬁned as:

4 (%)
D= aM (131)
Thus, D can be expressed in the form:
ox?
D =-6.25¢* —— . 132) -
625'; A (132)

Simulation results are compared with the theoretical predictions of Stupakov.34 A tracking
code and a §f code are used to compare with Eq. (129). Parameters from the Supercon-
ducting Super Collider (SSC) are used to compare the analytic results with the simulation
results. In this case v = 0.285 and Av = £ = 2.1 x 1073, These numbers can be used to get
an approximate number for the diffusion from Eq. (132). An estimate of 6z can be obtained
from plots of the average z position of the beam versus the number of rotations M [Fig. 59].

The estimate of éx = ﬁ—: is 0.0005. From this an approximate value of the diffusion D is:
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D ~ 107362 /turn . (133)

Figure 60 shows the total change in the action ((AJp)?) versus the action J for various
values of the beam offset ¢ calculated from Eq. (127). The action J is normalized to po2/8* -
and the beam offset is normalized to o,. The plot is obtained With' the assumption that the
beam offsets are uncorrelated so that the k = 0 term in Eq. (129) is the only nonzero one.
The offsets plottéd are for ¢ = 0.0001,0.001, and 0.01. Note that {(AJy)?) increases with ¢
as (2, which is expected from Eq. (129).

Figure 61 shows tracking code and analytic results. The tracking code is run for M = 10°
turns with v = 0.285 and Avp = 2.1 x 10-3. The total change in the action ((AJx)?) /2 is
divided by M, thé number of turns, to get the change per turn. The data points represent 100
uniformly distributed tracking particles which are run for each value of the beam offset {. As
is evident in Fig. 61 the diffusion coefficients (df1,df2) calculated 6n different time scales for
each particle are close to one another indicating that all the particles show diffusive behavior.
There is good agreement between the tracking code results and the analytic predictions based .
on‘the random offset model of Stupakov.3¢ Both show the leveling off in the diffusion with
increasing values of the action J. |

The 6f code results over 10° turns are shown in Fig. 62. The 6f code is started with zero
offset and allowed to evolve self-consistently for M = 10° turns. Analytic results for 3 values
of the beam offset, ¢ = 0.01 to 0.0001¢, are shown in the background while the simulation
value of { is in the range of 0.0005 to 0.0010,. As is evident in the figure, the values of the
diffusion in the action variable J crosses the range of the analytic prediction. However, the
functional dependence on the action J is very different. The §f results show an exponential
dependence on the action J for large values of J, whereas the Stupakov theory shows the
diffusion leveling off.

Figure 64 shows the results of using the ou{:put (z) from the §f code shown in Fig. 59 in
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Figure 61: Tracking code results showing the change in ((AJy)?) /2 per turn
versus the action J for three values of the beam offset (. The time scales over
which dfl and df2 are calculated are 10% and 10* rotations respectively.
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the trackiﬁg code. Analytical results are also plotted for various values of the beam offset ¢.
The tracking code and analytic results show the same functional behavior with respect to
J. The corresponding beam offset is in the range ¢ = 0.001 to 0.01. Although the diffusion
from the tracking code is in the same range as the § f code results, the exponential behavior
for large J is not seen [Fig. 64].

The leveling off in the diffusion is produced in the §f code when the beam strength is
increased. When the tune shift is increased from Avp = 2.1 x 1073 to Ayp = 8.4 x 1073, the
resulting motion of the beam about the original beam center increases by approximately an
order of magnitude [Fig. 65]. The diffusion coefficients D, calculated for Ayp = 2.1 x 1072
and Avy = 8.4 x 10~2 are shown in Fig. 66. It is evident from the figure that the diffusion .
increases for the small amplitude particles (r/o < 2) when Ay, is increased to 8.4 x 1073,
The net effect is uniform diffusion across the beam in this case. The resulting diffusion is
similar to that of beam offset diffusion.4

This same behavior is seen>in the strong-strong simulations. Figure 67 shows the diffusion
coefficients calculated for the PIC and the §f codes. The leveling off in the diffusion is seen
for the PIC code and not the §f code. The §f code for M = 10240 rotations still shows
oscillatory behavior for all values of r/c.

It appears as if the fluctuation level of the simulation determines whether the diffusion
due to the presence of nonvanishing (z) suggested by Stupakov®® dominates the particle

diffusion. In the cases where the fluctuation level is high either from the strength of the kick

Ay, or from simulation noise the {z) type of diffusion dominates.

Diffusion from beam breathing

We have found that the alternate breathing oscillations of the two beams appear in the self-
consistent calculations, but not in the tracking calculations. The onset of the oscillations is

due to the collective interaction. In this section we examine the effects of this breathing on
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Figure 67: D, from PIC and 6f codes of the beam with Ay = 2.1-x 1072 for
M = 10240 rotations. dfl and df2 have time scales of 102 and 1024 rotations
respectively.




particle diffusion.

Figure 68(a) shows the diffusion coefficients of 100 randomly distributed sample parti-
cles versus their initial action calculated for the §f code and the tracking code, where the
normalized action is J = (&)1 + (%:)2) |

. The diffusion coefficients are obtained after 10° rotations using SSC reference parameters.
The diffusion coefficient D(J) in the action is normalized to 02/N,, where gy = 0,%/(* and
N, is the number of rotations so that it takes D(J)™! turns to diffuse over one standard
- deviation of the beam emittance. For example, Fig 68(a) shows on average the diffusion
time is approximately 10'° turns in our self-consistent calculations. In Fig. 68(a) the ratio -
of the coefficients calculated over intervals of 10% and 10* turns for the tracking code sample
particles is on the order of 1—]3? ~ 0.01 — 0.1 which indicates little diffusive behavior.

In Fig. 68(a) for all sample particles in the §f code the ratio D2/D; is on the order of 1,
indicating that all particles are diffusive. The diffusion coefficient D(J) is an approximately
exponential function of J for J > 0.5. The diffusion is not strongly dependent on the
number of simulation particles. In this § f éimulation each beam has 10® simulation particles;
however, the coefficients calculated for a simulation with 104 simulation particles give the
same results.?!

The source of the enhanced diffusion in the self-consistent 6 f simulation is identiﬁéd with
the observed variation of the moments of each beam which does not occur in the tracking
code. The contribution of the first two beam moments (z) and (z?) to the beam diffusion
may be estimated by varying these moments in the tracking code which assumes a Gaussian
beam.

When the beam moment (z) from the §f code is input into the tracking code, the
diffusion coefficients calculated for sample particles with J < 1.are close to that of the 6 f
code. However, for J > 1 the diffusion coefficients level off and deviate substantially from the

exponentially increasing diffusion coefficients of the §f code. Figure 68(b) shows diffusion
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coefficients from the tracking code particles when the beam o of the tracking code is varied
using (%) from the §f code. The solid curve fof the 8 f diffusion is obtained by smoothing-
the diffusion coefficients calculated for 10000 rotations. The diffusion coefficients from the
tracking code with the appropriate spectrum of variations of (z?) and the §f code nearly
o§erlap for most values of J > 2. For values of J < 2 the tracking code coefficients are -
smaller than the §f code. Thus, most of the enhanced diffusion can be accounted for by the
variation of the second moment (z2) incurred by collective ‘breathing’ modes. Diffusion at
---the core of the beam-can-be accounted for by the variations in-both the first-{z) -and secon
(x?) moments. |

Figure 69(a) shows a portion of the frequency spectra S;(f) of four different sample
' particles initially at J = 1,2,3, and 4 over M = 10° rotations where

S5(f) = FFT[C(rW(r)] . (134)

C(r) is the correlation function which is calculated from a discrete set of values of the action

J for each particle'®:
M—r

Clr) = M‘l-—r IRONCEDE (135)

where 7 =0, ..., m, 7 is the rotation lag, m is the maximum rotation lag, and M is the total
number of rotations. W (r) is a window function and FFT is a Fast Fourier Transform with
M rounded to the nearest power of 2. The frequency f of the peak in S;(f) is decreasing
with increasing initial J of each sample particle and corresponds approximately to f =
1 — 2(vy — Av(J)) where Av(J) is the tune shift of the particular particle. The decrease
in frequency can be attributed to the decrease in Av(J) with increasing J of the particle,
typical of the beam-beam tune shift. Figure 69(b) shows a portion of the frequency spectrum
Ss,(f) where the second moment of motion o, = \/Zx_?) for M = 10° rotations is used in
Eq. (135). The arrows indicate the upper and lower bounds of frequencies accessible to

" particles in the beam. The upper and lower bounds correspond to particles at the center
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of the beam experiencing the full tune shift Avp aﬁd particles with J — oo experiencing
no tune shift, respectively. The frequency f of the peak in Fig. 69(b) of the o, motion is
approximately 1 — 2(yy — Av) where Av is the tune shift of the large J particles. Sarhple
particles with large J are in resonance with the o, variation. Sample particles with small
J have a characteristic frequency f in their motion which is higher than the o, frequency
and are not in resonance. Therefore, the main contribution to the diffusion of the large J

particles is resonance overlap.”

' Fiwe*ﬁ%(c)fshowsfthe”diﬂ*uslon coefficients-obtained from-the-input-of -(x2)-variation
into the tracking'code including only the band of frequencies f shown in Fig. 69(b). There
are some partlcles in the range 1 < J < 2.2 whose diffusion coefficients are lower than
that obtained from the &f s1mulat10n However, the diffusion observed in the 6f code
can be mostly accounted for by the variation of (z?) in a narrow band of frequencies near
1 — 2(yp — Av) where Av is that for large amplitude particles.

The variation in (z) does not contribute as significantly to the particle diffusion in J as
(x?). The characteristic frequencies of the (x) motion is not as. close to the characteristic
frequencies of the J variation as the (z%) motion. | )

An analytic expression for the diffusion in action J can be obtained for beam o, veriation
by adapting the formalism of Stupakov®* which contained external kicks with (x) variation,

but no (x2) variation. The change in the action due to the beam-beam kick from a one

dimensional Gaussian slab can be written in the form:

AT = 21)¥? Avgoz erf( (136)

\/—O'w)

where ( :
= 1/2J 3 cos(¥) , ' x' = —\/2’; sin(¥) , ) (137)

and ¥ is the phase advance. Perturbing Eq. (136) with respect to o, and summing over M
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turns one obtains an expression for the change in the action J :

: M-1 JZ,B o
AJy =8rAvy Y Jiexp (— 5 ) > Al -
' =0 20500 k=0

Tusa} (=D sinf2(k + ) 228 (138)

zo

where I represents the k-th modified Bessel function with arguments. (-2%’@) The phase
z9
advance is ¥; = 27l(vp + (Av(J))) where (Av(J)) is the average tune shift that the particle

_ _.________ encounters

The diffusion coefficients can be calculated from:

- D(J) = @TJ&) ; - (139)

where

2
Oz

| AJZ = 322 Avi J? exp (— Jﬂ) X

T K(n) Sk — Tusa)? cosl2(k + 1T,  (140)

n=-—00 k=0
Equation (140) is obtained by squaring Eq. (138) and assuming that the actioﬁ, J, is not

varying much over the M turns. K(n) is the correlation function of the o, variations over

turn n: : :
M-1
Km)=3 Aoy(m) Aax(m-l-n)/M. (141)
m=0 Oz Oxq
The correlation function may be defined in terms of the power spectrum, S, (w):
M
Se. (W) = D K(n) exp(iwn) . (142)
n=1 '

- Using this expression in Eq. (140) and substituting into Eq. (139) we get

D(J) = 32 A2 P exp(—22) 3L = Tusa) S ) | (143)

zo k=0
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where wy = 2(k + 1)27(vo + (Av(J))). The peak in the power spectra S, (f) in Fig. 69(b)
is near 4wy, which corresponds to £ = 0 in Eq. (143). Figure 68(d) shows the diffusion
obtained from Eq. (143) for k£ = 0. The value of Sy, (f) in Eq. (143) for a particular action
J is obtained from measuring the frequency of the peak in the power spectra of the sample
particle with that initial J [Fig. 69(a)]. Reasonable agreement between the 6 f computation
and this analytic expression is found. If we used naive approximations for the correlation

function such as the Lorentzian, we were unable to reproduce the exponential J dependence

—  of D(J) for J>0.5.

In summary, through our extensive computation and theory we have discovered that the
diffusion obtained from the self-consistent 6 f code is several orders of magnitude higher than
that of the prediction from conventional tracking codes. The essence of the culprit of this
eni'lanced diffusion is captured by the variation of the second moment of the beams (%) which
is the result of beam-beam interaction induced collective variations of the beam distribution.
However, the numerical level of the diffusion in this 1D simulation study indicates that the
level of diffusion is still permissible for the design parameters of SSC. The 2D effects may,

on the other hand, further degrade the diffusive behavior of beams.

III Conclusions

In this chapter we discuss the results and their relevance of our investigations of the beam-
beam interaction to modern circular accelerators. Also we present future improvements

which can be made to the currently developed numerical tools.

Summary of results

We have examined the effects of collective interactions between counterstreaming proton
beams via various simulation techniques. Three types of code have been developed in

increasing sophistication to study the beam-beam interaction: (1) a tracking code, (2) a
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strong-strong code, and (3) a 6f code.

Collective beam-beam effects

Among the codes developed, the strong-strong and 6f codes are best suited for studying

beam-beam colléctive effects. An electromagnetic PIC code requires too many time steps

to cover one interaction time and the tracking code does not show beam collective motions.

The strong-strong code’s main drawback is the amount of fluctuation. noise produced by the
finite nu'rﬁbe’r’_of particles used. This noise may be reduced by initializing the particles using
| the quiet start.® Also, although tile §f code is much quieter than the strong-strong code, it
is better suited for studying the beam-beam interaction away from resonances.

~ In the strong-strong simulations using the reference parameters of the SSC oscillations
in Av are observed. The oscillations indicate expansion and contraction of the-beams.
The beam expansion and contraction varies with different particle positions. The small
amplitude portion of thé beam is increasing in oscillation amplitude while the entire beam is
decreasing in oscillation.amplitude. The odd moments of the beam, (z) and < (z — (z))* >,
are increasing in oscillation amplitude with rotation number. The amplitudes of the even
. moments, < (x — (:v))2V> and < (z — (z))* >, both decrease with the number of rotations.
The phenomena of the “ﬂip;ﬂop” effect,'® where one beam is decreasing in phase space area
and the other beam is increasing, is observed in our simulations. It is found to be sensitive
to the initial conditions.

Differences between the nonuniform charge and uniform charge initializations are found.
The beam distribution from the uniform charge initialization is smoother than the distribu-
tion from the nonuniform charge distribution at the beginning and end of the simulation.
The oscillations in Av indicate that the expansion and contraction of Athe beam with uniform
charge initialization is smaller than the nonuniform charge initialization. Overall the fluctu-

ation levels in the uniform charge initialization are smaller than in the nonuniform charge
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initialization.

The simulations based on the §f algorithm show the lowest fluctuation levels of all
the codes except the tracking code. However, the tracking code does not include internal
dynamics of the beam. After 10° rotations the two main approximations of the 6f code are |
still valid. The deviation from the initial Gaussian distribution is still small. The maximum
perturbations to the Gaussian background is only 0.1% of the background distribution. Also,
the constant phase space density assumption remains to be a good approximation. After
105 rotations in the §f code the simulation particles are no longer uniformly distributed in
(z/02,pz/0p) space. However, clumping of particles is not significant. In the simulations
using the reference SSC parameters the amplitude of the variation in Av for small amplitude
particles is approximately +3% of Ay, throughout the run. As observed in thé' strong-
strong simulations, the beams are expanding and contracting differently at different particle
positions. The small amplitude portion of tﬁe beam is constant oscillation amplitude, while
the entire beam is increasing in oscillation amplitude. The odd moments, (z) and < (x —
(z))® >, are both increasing in oscillation amplitude with rotation number. This increase in

the odd moments is also observed in the strong-strong simulations.

Stability in the tune versus tune shift space

Scans in parameters tune and tune shift, vy and Avg, show regions of stability and instability
against the beam blowup. These regions correspond closely to the regions predicted by the
linear theory of Chao and Ruth.® For small values of the tune shift Ayy the beams are
unstable just above a resonance. For beams with values of vy just below a resonance the
the beams are stable. Strong resonant beam blowup is observed just above vy = 1/2 and
v = 1/4 for values of Ay = 2.1 x 1073, Just below these tune values the beams are stable,
as expected. However, each of the beams show dominant modes distorting the beams in in

(i:/ax,pm/ap) space. For 1y = 1/2 — Ayy mode 2 dominates and for vy = 1/4 — Ayp mode
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4 dominates. It is also found that the rate of beam blowup above the resonance drops with
the order of the resonance. With vy = 1/2 + Ay the beams blow up very quickly within a
few hundred rotations. The beams blow up more slowly for vy = 1/4 + Ayy. The slowest
beam blowup is oBserved for v = vy + A, where in the case of two beams vy = 2/6 and

Avp =4 x 1072 In this case'mode 6 dominates the distribution.

" Particle diffusion

In studying particle diffueion away from resonances it is found that the tracking code shows no
diffusion of particles from the beam-beam interaction over 10® rotations. The strong-strong
codes are too noisy t’o-study process of diffusion of beam particles due to the beam-beam
interaction. With variable charge initialization all particles show diffusive behavior, after
10240 rotatioﬁs. The diffusion differs substantially from the tracking code. The diffusion
coefficient Dy is uniform ecross the beam fadius and is nearly an order of magnitude higher.

With uniform charge initialization where the fluctuation noise is lower, only particles with

large /o, where r/o = \/ (z/05)? + (pz/0p)? are diffusive after 10240 rotations. Results
from noisy tracking codes modelling the finite particle ﬂuctuation noise indicate that some
of the diffusion can be attributed to this noise. This noise can be eomewhat offset by using |
quieter particle initialization schemes sﬁch as the uniform charge seherﬁe. However, there are
still significant differences from the tracking code. Although the strong-strong code should
show differences from the tracking code because of the self-consistent solution of the fields,
it is difficult to determine whether the differences observed are due to particle fluctuation
noise alone. However, it is apparent that the enhanced diffusion observed in the tails of the
distribution for the strong-strong code is due to the self consistent treatment of the beam
dynamics.

The §f code which has the lowest fluctuation level shows no particle diffusion up to

10240 rotations agreeing with the tracking code. The noise level of the 6 code is less than
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the strong-strong code with either the variable or uniform charge distribution. However,
particle diffusion is observed after 40960 rotations for particles with large values of /o > 2.
It appears that the particles in the tail of the distribution are most sensitive to either noise
or collective motion in>the beams. Variation of the §f particle number indicates that this
diffusion in the tails is not due to particle noise. All particles are diffusive after 10° rotations.
The magnitude of the diffusion is found to increase exponentially with the action J where
J = (/02)? + (pz/00)%. This exponential dependence is found to be independent of the
number of particles used in the F; f simulations. It appears, therefore, that collective beam

effects are responsible.

Beam offset. effects

In examining the effects of beam offset on diffusion, good agreement is found between analytic

theory® and the tracking code. This is expected, since the tracking code is based on the

- “weak-strong” assumption as is the theory. Results from the §f simulations show general

agreement with the range of values for the diffusion. The §f code is started with 0 offset and
allowed to evolve self;gonsistently for M = .105 turns. The values of the diffusion in action
are within the range of the analytic prediction. However, the é f results show an e;cponential
dependence on the action J for large values of J whereas the theory shows the diffusion
leveling off. The approximate value for the diffusion from the change in luminosity is lower
than the diffusion for most of the sample particles in the §f code. Tracking code results
with (z) inbut from the & f also do not show the same functional dependence on J as the 6 f
cb\de. The values for the diffusion, .however, are within the same range. The leveling-off in -
the diffusion is observed in the 6 f simuiation when the beam strength Ay is increésed. The
increase in Ay leads to the increased beém offset (z). It appears that when this beam offset
is large enough, the resulting diffusion is dominated by beam offset diffusion.?* This leveling-

off in the diffusion is also seen for the strong-strong code. It appears as if the fluctuation
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level of the simulation determines whether the diffusion due to the presence of (z) offset
suggested by Stupakov® dominates the process of particle diffusion.

We find (i) that the D(J) is far greater in the § f code than in the tracking code, indicating -
that conventional tracking code prediction is unrealistically low; (ii) that even the highest
value of D(J) from the self-consistent result remains within typical machine design lifetimes

of 108 turns; and (iii) there appears a strong action, J, dependence.

Future improvements

In this section we discuss possible future improvements which can be made to the codes and

future areas of study.

One obvious improvement to the code is extension to z-y and z-y-z dimensions. This

extension is straightforward.
Improvements can be made to the simple storage ring model we employed.. Some of the

effects which can be included in the lattice traversal are®:
e betatron darhping
e synchrotron motion
. non-gero chromaticity
¢ longitudinal displacement
e [3* variation along the length of the interaction point
e energy loss and phase change between interaction points

¢ quantum excitation.
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As shown in earlier chapters, the perturbation ,equatioﬁ for the 6 f advance was linear in
8f [Eq. (64)]. The term which is neglected is Eq. (65):

o5 f

8 ;) ? (144)

SF(z,8) —

which was assumed to be small. This term, however, can be incorporated in the 6 f advance -

by placing it in the stationary Eq. (56):

%fo +a' == — (K(s) - Fo(s))x 3f0 =0 (145) |
in the following manner: |
66');0 z’ %J} - (K(s) — ( )):L' 6f0 <6F( z,s ) 66f> ) (146)

where ( ) refers to time average. The incorporation of this term in the stationary Eq. (56)
forces the numerical advance now of fo(x,z’,s). However, fo(x,’,s) is slowly varying as
long as it is away from resonances, so that the equation would need to be advanced only
every few thousand rotations. The term in Eq. (144) is similar to the quasilinear term used
in plasﬁa physics.!?

-Another improvement which can be made includes a higher order method of integration
of the particle positions. Higher order integration may be accomplished using the method
of symplectic integration algorithms®! or Lie algrebraic techniques.! |

Also a possibility exists of applying the techrﬁque of differential algebra? to the §f algo-
rithm. In this technique the § f method could_ be treated as a mapping function which could
be applied to any points in phase space.

Another approach to the §f method would involve using the Vlasov approach (Eulerian
method). The main problerﬁ with the Vlasov technique has been that the distribution
functions go negative due to truncation errors. However, in the 6f technique the main
part of the distribution is already determined and the perturbation can go negative without

causing problems.
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Other areas of investigation would include investigation of betatron resonance, applica-

tions to other machines such as HERA or LHC, and the effects of collision angle on beam

d&na.rrﬁcs.
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