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Abstract

The influence of a general static external magnetic perturbation on the stability of
resistive modes in a tokamak plasma is examined. There are three main parts to this
investigation. Firstly, the vacuum perturbation is expanded as a set of well-behaved
torofdal riﬁg functions and is, thereafter, specified by the coefficients of this expansion.
Secondly, a dispersion relation is derived for resistive plasma instabilities in the pres-
ence of a general external perturbation ;md finally, this dispersion relation is solved for
the amplitudes of the tearing and twisting modes driven in the plasma by a specific
perturbation. It is found that the amplitudes of driven tearing and twisting modes
are negligible until a certain critical perturbation strength is exceeded. Only tearing
modes are driven in low-f plasmas with €8, < 1. However, twisting modes may also
be driven if ¢, 2 1. For error-field perturbations made up of a large number of dif-
ferent poloidal and toroidal harmonics the critical strength to drive locked modes has

a ‘staircase’ variation with edge-q, characterized by strong discontinuities as coupled

rational surfaces enter or leave the plasma. For single harmonic perturbations the
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variation with edge-q is far smoother. Both types of behavior have been observed ex-
perimentally. The critical perturbation strength is found to decrease strongly close to
an ideal external kink stability boundary. This is also in agreement with experimental

observations.
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I. Introduction

Recent experimental and theoretical results have lead to a greatly increased understand-
ing of the influence of a static external magnetic perturbation on resistive mode stability in
a tokamak plasma.'=1° It is found that plasma rotation inhibits externally driven magnetic
reconnection until a certain critical perturbation amplitude is exceeded. The critical ampli-
tude decreases strongly with increasing machine dimensions because of the relatively slow
intrinsic plasma rotation in large devices,® but can be artificially increased by spinning the
plasma with unbalanced neutral beam injection (NBI).® The critical amplitude is sufficiently
small in the largest present-day devices to allow field errors, due, for instance, to misalign-
ment of poloidal field coils, to drive magnetic reconnection in otherwise stable plasmas. 110
This effect can significantly redﬁce the disruption-free operating space at low plasma densi-
ties, and may, therefore, need to be taken into account in the ongoing International Tokamak
Experimental Reactor (ITER) Engineering Design Activity.!!

Existing theories describing the interaction of a static external magnetic perturbation
with a rotating tokamak plasma are limited to zero-3 in slab or cylindrical geometry.%68?°
We aim to extend the theory of this interaction to both finite-# and toroidal geometry.
There are, of course, a number of complications. At zero-G only tearing parity plasma
instabilities need to be taken into account, whereas at finite-3 twisting parity modes must
also be included in the analysis.!? Furthermore, in toroidal geometry magnetic perturbations
with different poloidal mode numbers are coupled together. As is described in Sec. II, the
dispersion relation for externally driven resistive modes in a plasma possessing NN rational
surfaces takes the form of two coupled N x N matrix equations.? In Sec. III we use this
dispersion relation to investigate the respbnse of intrinsically stable tearing and twisting

modes to a generalized external perturbation. In Secs. IV and V we classify and characterize




the external perturbations which are likely to occur in experimental situations, using results

from the recently developed T'7 code.!® Our main conclusions are summarized in Sec. VL.

II. The Dispersion Relation for Externally Driven Re-
sistive Instabilities

A Asymptotic matching

The analysis of resistive instabilities in a high temperature tokamak is generally facili-
tated by dividing the plasma into two regions.!* In the ‘outer’ region, which comprises most of
the plasma, a general instability is governed by the equations of ideal magnetohydrodynam-
ics (MHD), which are equivalent to the requirement of force balance in an incompressible,
perfectly conducting fluid.'® The ‘inner’ region is localized around so-called rational flux
surfaces, where the helical pitch of equilibrium magnetic field lines resonates with that of
the instability. The ideal MHD equations are, in fact, singular at the rational surfaces. The
physical solution is obtained by asymptotically matching the outer solution across a set of
thin layers centered on the rational surfaces. In these layers nonideal effects such as plasma

resistivity, inertia, viscosity, and compressibility are important.
B The dispersion relation

S(ilppose that there are N rational surfaces in the plasma resonant with toroidal mode
number n. Let r; < 7o < ---7y be the minor radii of these surfaces, and m;, ma, - - - my the
resonant poloidal mode nurnbeiis. There are, in general, 2N independent resistive modes.
It is convenient to resolve a general mode into components of N basis tearing modes and
N basis twisting modes. The jth basis tearing mode (1 < 7 < N) is defined to have unit
tearing amplitude and zero twisting amplitude at rational surface j, with zero tearing or
twisting amplitude at any other surface. Likewise, the jth basis twisting mode ‘has unit

twisting amplitude and zero tearing amplitude at surface j, with zero tearing or twisting




amplitude at any other surface. Here, the tearing amplitude at surface j is basically the
even (with respect to the rational surface) component of the perturbed normal resonant
magnetic field, whereas the twisting amplitude is the odd component (see the appendix for
more exact definitions).

The most general dispersion relation for coupled tearing and twisting modes in the pres-

ence of an external perturbation takes the form (see appendix)!?16
{A*(w)-E*} @t —HET =C*, - (la)
{A~w)-E "} -HIgt=C", (1b)

where E* is an N x N real symmetric matrix, H is an N x N real matrix and Hi is its
transpose, A*(w) is the N x N complex diagonal matrix of the A;-E(w) values, ¥¥ is the
1 x N complex vector of the \If;'= values, and C* are 1 x N complex vectors characterizing
the external perturbatioﬁ. Here, Af(w) is the tearing parity stability index for the layer
at rational surface j, and A} (w) is the corresponding ‘twisting parity stability index [see
Eq. (A.11) and Sec. ILF]. Also, ¥} is the tearing amplitude at surface j, and ¥Uj the
corresponding twisting amplitude [see Eq. (A.10a)]. The tearing amplitude is sometimes
termed the ‘reconnected flux.’

The E* Matrix determines the intrinsic stability and mutual interaction of basis tearing
modes in the plasma. The E~ Matrix governs the intrinsic stability of basis twisting modes,
and the H Matrix specifies the interaction of basis tearing and twisting modes. The evalua-
tion of these matrices in a large aspect ratio, low-g3, weakly shaped tokamak equilibrium is
discussed in Refs. 12 and 13. The appendix describes how the components of the CE Vectors

are calculated for a given external perturbation and plasma equilibrium.




C The ET matrix

Consider a plasma with a monotonic safety factor profile containing no rational surfaces
resonant with poloidal mode number m = 1. (The restriction to m > 1 modes is necessary
because the m = 1 mode generally requires special treatment in tokamak plasmas.!”) In such

a plasma the diagonal elements of the ET Matrix take the form
B = A3+0(), ©

where A} is the standard cylindrical tearing stability index for the m;/n mode (normalized
with respect t0 ;). The off-diagonal elements of the E* Matrix are O(e). Coupling of
basis tearing modes with resonant poloidal mode numbers differing by unity is effected by
the Shafranov shift of flux surfaces, which is driven by toroidicity and the plasma pressure.
Coupling of modes with poloidal mode numbers differing by two or three is effected by flux
surface ellipticity or triangularity, respectively.!® (The ‘resonant’ poloidal mode number of

the jth basis tearing or twisting mode is, of course, m;.)

D The E- matrix

For a plasma with a monotonic safety factor profile the E~ Matrix is diagonal (for the
ordering adopted in Refs. 12 and 13), indicating that there is no direct coupling of basis
twistiﬁg modes possessing different resonant poloidal mode numbers. The jth diagonal
element can be written!2

Ej; = =47 +ejmy(ay)* (3)

where Af is a stabilizing term emanating from the layer at rational surface j, and

 (2Rouop'¢? |
%:_@%%— @

is a measure of the local pressure gradient at surface j. Here, Ry is the major radius of the

plasma, By the vacuum magnetic field strength on the magnetic axis, r the minor radius
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of flux surfaces, p(r) the equilibrium pressure profile, q(r) the safety factor profile, and '
denotes d/dr. In Eq. (3), e; is an O(1) parameter which can be evaluated using m; £ 1/n
cylindrical basis functions. In Ref. 12 it is demonstrated that to a good approximation

7_2/3
A5 = 2.104 8;/* (—R—> (5)

1/3_1/3
g Tv

in a typical ohmically heated tokamak plasma, where compressibility, (anomalous) viscosity,
and resistivity are the dominant nonideal effects. In the above, 74 = (Ro/Bo) \//—,LT(’I‘) /ms(r)
~ is the hydromagnetic timescale, T(r) = por?/n(r) the resistive timescale, 7v(r) = r2p(r)/pL(r)
the viscous timescale, and 8; = 7,pop(r;) /B2 is a measure of the stabilizing effect of plasma
compressibility at surface j. Here, «, is the standard ratio of specific heats, p(r) the plasma
mass density, 7;(r) the parallel resistivity, p (r) the (anomalous) perpendicular viscosity,

and s(r) = rq’/q the magnetic shear.
E The H matrix

For a plasma with a monotonic safety factor profile the H Matrix is tridiagonal, indicating
that basis tearing modes can couple to basis twisting modes with the same resonant poloidal
mode number and with mode numbers differing by unity, and vice versa. The jth diagonal

element is written!?

Hj; = —g‘ Sjl +0(%) | (6)
where
(e o

2

is a measure of the local equilibrium current gradient at rational surface 5. The element of
the H Matrix which couples the basis tearing mode associated with surface 7 to the basis

twisting mode associated with surface k takes the form?!?

ij = hjk m;ar , (8)




provided my = my; == 1. The O(1) parameter hj; can be evaluated using m;/n cylindrical

basis functions.

F The layer responses

The responses of the resistive layers at the N rational surfaces in the plasma to tearing
and twisting parity perturbations from the outer region are specified by the diagonal matrices
AT and A~. The jth diagonal element of A™ (i.e. AY) specifies the response of the jth
layer to a tearing parity perturbation, and the jth diagonal element of A™ (i.e. A}) specifies
the response to a twisting parity perturbation. It turns out that the responses of resistive
layers to external perturbations are resonant in nature.?!® That is, there is virtually no
tearing or twisting amplitude driven in a layer unless the external tearing or twisting parity
perturbation rotates in a certain very narrow band of frequencies. The optimum frequency
for externally driven tearing amplitude at surface j is equal to the ‘natural frequency’ of
the jth basis tearing mode (i.e. the propagation frequency of the uncoupled, intrinsiéally
unstable jth basis tearing mode). Likewise, the optimum frequency for externally driven
twisting amplitude at surface 7 is equal to the na..tural frequency of the jth basis twisting

mode. In Ref. 12 it is shown that to a good approximation
M) = —i(w—wi)7 ©)

in a typical ohmically heated tokamak plasma. Here, w is the mode rotation frequency [all

layer quantities are assumed to vary like exp(—iwt)],

r1/3,.5/6
75 =2.104 | £ ' (10)
rj

Ty
is the reconnection timescale at surface j, w; is the natural frequency for tearing parity
modes at this surface, and wj is the corresponding natural frequency for twisting parity
modes. Both natural frequencies are determined by local equilibrium plasma flows. Typ-

ically, the natural frequencies of tearing and twisting modes differ by of order the local
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electron diamagnetic frequency.!? In addition, sheared rotation and diamagnetic flows in the
plasma ensure that the natural frequencies of basis modes associated with different rational

surfaces are not the same.

G The C* vectors

The C* Vectors are functions of both the plasma equilibrium and the external perturba-
tion. Typical values are given in Secs. IV and V, but for the moment they are assumed to

be arbitrary.

ITI. Externally Driven Resistive Instabilities
A Introduction

In this section we aim to characterize the solutions of the dispersion relation (1), as fully
as possible, for the case of an arbitrary static external magnetic i)erturbation interacting with
an intrinsically stable plasma. Section III.B examines the simple case where there is only
one rational surface in the plasma. Section III.C describes the more complicated situation
where there are two rational surfaces, and Sec. IIL.D briefly examines the case of three (or

more) surfaces.

B Stability of a plasma containing a single rational surface

1 Introduction

Consider the simplest possible situation where there is only a single rational surface in
the plasma, radius 71, resonant with poloidal mode number m;. In this case the dispersion

relation (1) reduces to

ot — (A7 - ER)Cf + HuCF
' (AT - Ef) (AT - BR) — (Hu)?




(AY — Ef)(AT — Ef) — (Hu)? -

U7 =

1218 where wi is the

Now, |wi — wi|m > 1 in a typical high temperature tokamak plasma,
natural frequency of tearing parity modes at the rational surface, w; is the natural frequency
of twisting parity modes, and 7 is the reconnection timescale. It follows from Eqgs. (9) that
AT and AT are never small simultaneously, so Eqs. (11) reduce to

C+

+
v N—E ,
1w1 1 1

Cr
Uy ——L 12
' Tiwim—En - (12

assuming that the perturbation is static (i.e. w = 0). It is also assumed that the tearing and
twisting modes are both mtrmsmally stable, so that Ej; < 0 and E; < 0. It is clear from
(12) that the C* Vector drives tearing parity modes in the plasma, whereas the C~ Vector

drives twisting parity modes.

2 Electromagnetic and viscous torques

- The nonlinear toroidal electromagnetic torque acting at rational surface 1 is given by

2nm 2R0
X

6T ry) =
sEM(T1) o

win Wi T
(win)? + (—Ef)? (wim)?+ (—Ep)?

where use has been made of Egs. (9), (12), and (A.12). This torque modifies the bulk

ICF1? + ICT P (13)

toroidal rotation.%1%19

(It is assumed that any modifications to the bulk poloidal rotation
are prevented by strong poloidal flow damping.) The steady-state shift induced in the plasma

toroidal angular rotation velocity is™19

r<rmr

)=l (14)
[ / [mm nsrse



where a is the minor radius of the outermost plasma flux surface. Here, it is assumed that

the toroidal rotation is ‘clamped’ at the edge (r = a), so that Q4(a) = 0.5° The viscous

restoring torque which develops at the rational surface is given by®1°

2 2, A0 ™
(5T¢vs(’r‘1) =4x Ro X (’r‘]J,_LRO)?

T1l—

' e dr
= —4n®Ro x Qu(r) B3 x [ [ . 15
PR x QR x [ [ = (15
In a steady-state plasma the viscous and electromagnetic torques must balahce, so
(5T¢EM(T'1) -+ 5T¢Vs(’l"1) =0. (16)

Finally, the changes induced in the plasma toroidal angular velocity profile Doppler shift the

various natural frequencies, so that
Wi = Wi —nQy(r1) (17)

where wi now denote natural frequencies in the unperturbed plasma.

3 Torque balance

The balance of electromagnetic and viscous torques in the plasma yields

ey ey TS 1o
where
i nﬂjigri) ;;w; | (19)
fi= ﬁ , (19b)
b= IUT:—E%‘E : (19¢)
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¥y = Az (19d)
2o B v o °©_dr |
W=l B [ O (19¢)

In the physically relevant asymptotic limit 5* < 1,!2 Eq. (18) possesses bifurcated solu-

tions. Bifurcations occur in the y*-y~ plane when the curve of locus
yt=42f - )1 - 1),

y~=4(1-2f + fi)f? (20)

is crossed in the direction of increasing y* and y~. This critical curve is plotted in Fig. 1.
The solution can either bifurcate to the tearing resonance at surface 1 (f = 1), or the
associated twisting resonance (f = 0). Prior to bifurcation there is very little driven tearing
or twisting amplitude, whereas after bifurcation, or ‘lockz'ng ’ to the tearing resonance there

is substantial driven tearing amplitude at surface 1,

Ut o~

CED) @)

and likewise after locking to the twisting resonance there is substantial driven twisting am-

plitude,
Cr
(—En)

Locking to either resonance is associated with a sudden change in the steady-state plasma

Ul ~ (22)
rotation such as to bring the Doppler shifted natural frequency of the tearing or twisting
mode at surface 1 (as appropriate) into coincidence with the applied frequency (which is, of
course, zero for a static external perturbation).

Suppose that |Cif|2 > |Cr|? (i.e. the locking torque exerted at the rational surface due

to externally driven tearing amplitude is much greater than that due to driven twisting
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amplitude). As is described in Sec. V, this is likely to be the case in low-3 tokamak plasmas.
In this limit, locking to the tearing resonance takes place when the Doppler shifted natural
frequency for tearing modes is reduced to one half of its original value [i.e. wi — nQy(r1) =

1 wi]. This takes place when

dr

G 23)

2 a
+2 > A2 = Mo By g
ICT|* 2 A} = ) n(""1)7'1//r1

4 Discussion

- It is clear that the tearing and twisting amplitude driven in a stable tokamak plasma by
a static external magnetic perturbation i; a highly nonlinear function of the perturbation
stréngth. In fact, there is virtually no driven amplitude until the perturbation strength
exceeds a critical value (i.e. |C{|, |CT| ~ A), at which point substantial tearing or twisting
amplitude is driven in the plasma. Externally driven tearing amplitude at surface 1 leads to
the formation of a stationary chain of magnetic islands whose width is proportional to the
square root of the amplitude.?® Externally driven twisting amplitude leads to the formation
of a much narrower chain of ‘skewed’ magnetic islands whose width is directly proportional
to the amplitude. Thus, locking of the external perturbation to the twisting resonance at
surface 1 is likely to cause less degradation of the plasma confinement than locking to the
tearing resonance. A threshold effect for externally induced magnetic tearing in tokamaks

has been observed experimentally.»%10

C Stability of a plasma containing two rational surfaces

'

1 Introduction

Suﬁpose that there are two rational surfaces in the plasma, (labelled 1 and 2, with r, > 7).
It is assumed that the basis tearing and twisting modes associated with the two surfaces are

all intrinsically stable, so that Ef < 0 and Ef < 0. In the following, our investigation
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is limited to tearing parity modes, for the sake of simplicity. In fact, as is discussed in
Section V, the corhponents of the C~ Vector, which drive twisting parity modes in the
plasma, are proportional to the plasma pressure and can, therefore, be neglected in low-8

devices.

2 Electromagnetic and viscous torques -

In the physically relevant limit, wir; > 1 (where j is 1 or 2), the tearing amplitudes

driven by a general static external perturbation are given by

+
Ut ~ —i CJ'
b

(24)

and the localized electromagnetic locking torques exerted at the rational surfaces are written

onm?Ry  |CH|?
oT, ;) J 25) -
sEM(T;) ke o (25)

The steady-state shift induced in the plasma toroidal angular velocity profile by these torques

takes the form
(Q4(r1) r<mr

Qulr) = | olrs) + [%(n)—%(m)]r o / [ oEs nsrsn g

Q a / re<r<a,
2 [ / e 2<TS

which implies the following localized viscous torques acting inside the plasma:

8Tyvs(r1) = —4n® Ry x [Qg(r1) — Qg(r2)] RE / / (27a)

THL (7")

— (r) (27b)

- 8Tyvs(re) = —6Tyvs(r1) — 47® Ry x Qy(ro) R2 //

T2

As before, the changes induced in the plasma rotation Doppler shift the various natural
frequencies, so that

wi — wf —nQ(rs) . (28)
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3 Torque balance

After some manipulation, torque balance at the two rational surfaces yields the following

pair of coupled quadratic equations:

‘ 1 132
2 L P 2 _
z (1 4Ky) +4a 0, (29a)
1)« 1
2 [y _LtAa” 12
Y (1 4&3:) +4ﬂ 0, (29b)
where the variables
wi — nQy(r wf — nQy(r
T = 1 w+ ¢\( 1) , y = 2 w+ ¢( 2) (30)
10 2

are the Doppler shifted natural frequencies normalized with respect to their unperturbed

values. The components of the external magnetic perturbation are specified by the parame-

ters
et _|cF
o= 7\—1' H ;B - A2 ) (31)
where
=t RO )2 / 32
2w [ [ (32)

Note that o = 1 corresponds to the critical external perturbation strength required for
locking to the tearing resonance at surface 1 in the absence of any torque exerted on surface

2, and wvice versa. The two remaining parameters,

w

K= w_§' , : (33a)
a dr o  dr

A= —_— _—, 33b

ra T (7) / Al Ty (r) (33b)

depend on the nature of the unperturbed plasma equilibrium. Note that 0 < A < 1, since

re > 1y and uy (r) > 0.

15




4 Locking at surface 1

According to Egs. (29), locking to the tearing resonance at the innermost rational surface

(i-e. surface 1) occurs when o > oy, where

- (-1 AT 0B e

The normalized Doppler shifted natural fr/equencies just prior to locking are given by Ze =

1 1A\ 1 12)° 1
ychﬁ(l“a;)*aJ(l‘i;) -#(1-9) (35)

Locking to the tearing resonance at the outermost rational surface (i.e. surface 2) occurs

1
5 acrit aand

when > B, where

ﬁmébﬁ{% (1—%/€)-—-%\/<1—%m>2—a2 (1—%A>} . (36)

1 1 1 1 2 1
P I _ — — 2 =
=1 (1 2ﬁ)+2¢(1 L) —ar(1-10) (37)

with Yo = % Berit- Finally, simultaneous locking to the tearing resonances at both surfaces

and

occurs when a = ap and G = [y, where

(-3, (o3)
010=’(—T)\), ﬁo=m- (38)
The normalized Doppler shifted natural frequencies just before simultaneous locking are
Zo = 3 o and yo = 3 fo.

Note that if § = 0 (i.e. if the external perturbation exerts no torque at surface 2) then
locking to the tearing resonance at surface 1 occurs when o =1 (i.e. |Cf| = Ay) with z = §
li.e. w1 — nQg(r1) = §wi], which is equivalent to the simple cylindrical result of Sec. IIL.B
(neglecting tWisting modes). However, if # > 0 then locking to the tearing resonance at

surface 1 occurs when @ <1 (i.e. the threshold locking torque at surface 1 is reduced) with
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T < % [i.e. wy—nfe(re) < %wl] Similarly, if o # 0 then both the threshold torque required
to lock the tearing resonance at surface 2 and the critical Doppler shifted natural frequency
just prior to locking are less than the cylindrical values.

Figures 2(a)—(e) show the locking thresholds for the tearing resonance calculated from
Egs. (29) for five different values of the parameter x, which measures the ratio of the un-
perturbed natural frequencies for tearing parity modes at the two rational surfaces [see
Eq. (33a)]. The thresholds are plotted at constant A in a2-3? space. The locus of the point
of simultaneous locking of both surfaces is also plotted. The parameter ) is strongly de-
pendent on the relative positions of the two rational surfaces: A — 1 as the two surfaces
approach one another, and A — 0 as the outermost surface approaches the edge of the plasma
[see Eq. (33b)]. The variables a? and 2 are proportional to the locking torques exerted at
surfaces 1 and 2, respectively [see Eqgs. (25) and (31)]. These torques are normalized with
respect to the threshold locking torques for each surface taken in isolation. For example,
a = 1 corresponds to the threshold torque required for locking to the tearing resonance at
surface 1 when no torque is exerted on surface 2. In Figs. 2, locking does not take place
in the region of parameter space bounded by the threshold curve and the lines a=0 and
B = 0. If the threshold curve is crossed (e.g. by increasing the amplitude of the external
perturbation) then locking of either surface 1 or 2 occurs. Surface 2 is locked if the threshold
curve is crossed on the low-o side of the simultaneous locking curve, whereas surface 1 is
locked if the threshold curve is crossed on the high-a side.

It can be seen from Figs. 2 that reducing the parameter x favors the locking of surface
2. This is not surprising, since reducing s corresponds to reducing the unperturbed natural
frequency of tearing modes at surface 2 with respect to that at surface 1. For x < ; and
A < 2k, surface 2 always locks before surface 1. Similarly, for x > 2, surface 1 always locks
before surface 2. Increasing A tends to decrease the threshold torques required to induce

locking. This is also not surprising, since if A ~ 0 (i.e. if surface 2 lies very close to the plasma

17




edge) a velocity change induced at surface 1 has little effect at surface 2 [see Eq. (26)], so
the surface 2 locking criterion is virtually unaffected by the presence of surface 1. On the
other hand, a velocity change induced at surface 2 always has an effect at surface 1, so the
locking threshold for surface 1 is reduced somewhat by the presence of surface 2. This type
of mutual interaction between the two surfaces is strongest when they are very close together

(i.e. when A — 1) so the locking threshold is naturally smallest in this case.

5 Locking at surface 2

Suppose that the tearing resonance at the outermost surface (i.e. surface 2) is locked,
so that' nQs(r2) = wy, but that the innermost surface (i.e. surface 1) remains unlocked. It

is easily demonstrated that in the physically relevant limit the tearing amplitude driven at

surface 1 satisfies
Ct

Ut~ —f , 39
e s s W) (39)
where
Gr=ct+ 2B _of (40)
! Y U(=EH) P

The usual analysis reveals that locking to the tearing resonance at surface 1 occurs when

~ 1— k|
C+>|—A. 41
lll—\/l_——/\ 1 ( )

If the tearing resonance at surface 1 is locked but surface 2 remains unlocked then the

tearing amplitude driven at surface 2 satisfies

U o~ —i 42
oF — 0 42)
where
E+
Cf=Cf + —2-Ct. (43)
(-E11
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It is easily demonstrated that in this case locking to the tearing resonance at surface 2 occurs

when
A, . (44)

6 Discussion

It is clear from the above analysis that the situation with two rational surfaces in the
plasma is far more complicated than that with only one surface, even when twisting reso-
nances are neglected. In general, locking to the tearing resonance at a given rational surface
is facilitated by the electromagnetic torque exert;ad at the other surface, so the locking thresh-
old is reduced somewhat below the single surface value. The critical Doppler shifted natural

frequency just before locking is also generally less than the single surface value.

D Stability of a plasma containing three (or more) rational sur-
faces.

Suppose that there are three rational surfaces in the plasma (labelled 1, 2, and 3, with
rs > 12 > 11). It is assumed that all of the basis plasma modes are intrinsically stable, and
the twisting resonances are again neglected.

Application of the previous analysis to this case, in the physically relevant limit w;-rTj > i,
yields the following set of coupled quadratic equations which control locking to the tearing

resonances at the three rational surfaces:

1 2 1 2 1
x2—(1—1521?—1&31%)$+Za220; (453’)
1dpa® 1 42 1
2_ (12222 L Z42 = ,
y ( 1m o 1™ Utz =0, (45b)
22 1_lﬁo‘_2_l§§%ﬁ z.,.l 2-0. (45c)
4Kk ¢ 4Kz y g7
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The additional variable z = [wi — nQy(rs)]/wi is the normalized Doppler shifted natural
frequency at rational surface 3. The parameter v = [Cy /As| specifies the locking torque at
surface 3: v = 1 corresponds to the torque needed for locking to the tearing resonance at

this surface when no torques are applied at surfaces 1 and 2. Finally, the parameters

(46a)

w= L i/ o)

depend on the nature of the unperturbed plasma equilibrium.
Equations (45) can be solved in much the same manner as Egs. (29) to give the locking
thresholds for the various rational surfaces. It is also fairly clear how to extend Egs. (45) to

describe the situation where there are an arbitrary number of surfaces in the plasma.

E Summary

The above analysis is clearly far more complicated than the zero-g, cylindrical aﬁalysis
of Refs. 9 and 19. There are two main reasons for this. Firstly, at finite-3 there is a twist-
ing resonance, as well as a tearing resonance, at every rational surface in the plasma, to
which the external perturbation can lock (see Sec. III.B). Secondly, the coupling of different
poloidal hé,rmonics in toroidal geometry ensures that even a single helicity external pertur-
bation exerts electromaghetic torques simultaneously at more than one rational surface in
the plasma (see Secs. III.C and IIL.D). In the above, these effects are investigated separately,

but the analysis can easily be extended to deal with both effects simultaneously.




IV. Calculation of the C' vector
A Introduction

The aim of this section is to classify and characterize the C* Vectors which are likely to
occur in experimental situations. It is demonstrated in the appendix that the C+ Vector is
a function of both the plasma equilibrium and the external perturbation, so in Secs. IV.B
and IV.C we describe how these are specified in our investigation. Section IV.D describes
the C* Vector associated with a narrow spectrum external perturbation, whereas Sec. IV.E

deals with the Ct Vector from a broad spectrum perturbation.

B Specification of the plasma equilibrium

Consider an equilibrium in which the locus of the flux surfaces is given by
R= Ry —rcosw — A(r) + E(r) cosw + T(r) cos 2w + O(e?a) ,
Z =rsinw + E(r) sinw + T(r) sin 2w + O(e?a) . (47)

Here, (R, ¢, Z) are standard cylindrical polar coordinates (with Z in the direction of the
toroidal symmetry axis), Ry is the plasma major radius, 7 is a radius-like flux surface label,
w is the poloidal angle about the magnetic axis (r = 0), A(r) is the Shafranov shift of
flux surfaces, E(r) is the flux surface ellipticity, and T'(r) is the flux surface triangularity.
The outermost plasma flux surface lies at r = a, where a is the plasma minor radius. The
ordering assumptions are that € = a/Ry < 1, and A(a), E(a), T'(a) ~ O(ea).

The safety factor profile ¢(r) is assumed to satisfy

) = e~ S - )], (48)

where ¢ is the central safety factor, g, is the edge safety factor, and k is a positive integer.

The O(¢?) edge shear parameter ) is chosen so that the plasma current is zero at r = a.1% In

21




the cylindrical limit, Eq. (48) corresponds to an equilibrium toroidal current profile of the
form j§(r) = jo [1 — (r/a)?|%/%-1,

The plasma pressure profile is assumed to satisfy
p=po[l - (r/a)’. (49)

Here, po is the central plasma pressure, which is conveniently parameterized by the (cylin-

drical) poloidal beta

o= tpo ()" [ ot (50)

The adopted ordering scheme requires €4, to be small compared with unity.

C Specification of the external magnetic perturbation

A static external magnetic perturbation can be generated via helical windings or saddle
coils, but can also arise by accident if the poloidal and toroidal field coils which support the
plasma equilibrium are not properly aligned. An accidentally induced magnetic pertufbatidn
is usually referred to as an ‘error field.” A general external perturbation (with a given toroidal
mode number 1) can be completely specified by a set of complex amplitudes, the I, Awhich
are basically the expansion coefficients of the vacuum magnetic scalar potential interior to
the generating coils in the well behaved (as r — 0) toroidal ring functions [see Eqgs. (A.18),
(A.34), (A.39), and (A.40)]. The vacuum perturbation within the generating coils can be

shown to reduce to

( T

8o =1 X 2 (1) expls (o — )] 1)
mzo O \@
in the cylindrical limit [see Egs. (A.4a), (A.19), (A.21), and (A.22)]. Here, 6 is a ‘straight’
poloidal angle which is defined to be zero on the inboard mid-plane.!?
Table I shows the I, for a typical n = 1 external perturbation generated by saddle coils.

This example field was employed during a series of controlled experiments performed on
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the COMPASS-D tokamak and was designed to have predominantly m/n = 2/1 helicity.?!
Hence, I is the dominant amplitude after Iy (m = 0 perturbations do not interact with
resistive modes — see Sec. IV.E).
Table II shows the I, for a typical error field. This example field was generated by the
Joint European Torus (JET)? poloidal field coil set for a standard limiter discharge with
o =~ 3.2.1° Tt exhibits the broad spectrum which is characteristic of an error field. Note that
all of the even-m amplitudes are approximately 180° out of phase with the odd-m amplitudes,
indicating a dipole like error field source localized close to the outboard mid-plane (6 = ).
In fact, it is known that the dominant contribution to the JET error field in this discharge
comes from a pair of vertical field coils (usually referred to as P4) located just above and
below the outboard mid-plane.°
In the following, we investigate the effect of two idealized m = 1 static magnetic per-
turbations (representative of those in Tables I and II) on the stability of the 2/1 tearing
mode. The first perturbation is supposed to be representative of the type generally used in

‘resonant magnetic perturbation’ (RMP) experiments,®?! and has
I2 75 0 ’ Imyéz - O . (52)

The second perturbation is supposed to represent an error field generated by a source located

on the outboard mid-plane, and has
o=l g=h=-L1=hL=-L=I;=—I5-- . "~ (53)

Note that, since there is nothing special about the stability of the 2/1 tearing mode, the
results of our investigation are also relevant to tearing modes of other helicities. However,
they cannot be applied to m = 1 internal kink modes, which always require special treat-
ment in tokamaks.!” Such modes are, therefore, specifically excluded from our investigation

(i.e. go > 1in all of the examples considered) and will be dealt with in a separate publication.
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D Effect of an RMP field

The interaction of tearing modes with an external magnetic perturbation is governed by

the C* Vector [see Eqs. (1)], which is written
Cct=> I,C™* (54)

[see Eq. (A.44)]. If there are N rational surfaces in the plasma then the C™* are 1 x N
vectors with real components Cj** (for j = 1 to N). The component CJ** drives tearing .
amplitude on surface j [see Egs. (12)], and also gives rise to a nonlinear electromagnetic
torque acting at this surface [see Eq. (13)].

Consider the interaction of a static RMP field satisfying Eq. (52) with the 2/1 tearing
mode. The locking torque exerted at the ¢ = 2 surface (labelled surface 1 in the following)
is parameterized by |I, C?t|? [see Eq. (13)]. It is demonstrated in Sec. A.V that C}”"‘ is the
expansion coefficient (in the vacuum region r > a) of the free boundary basis tearing mode
associated with surface j in the mth well behaved (as R — o00) toroidal ring function. This
result, which is obtained from a consideration of toroidal angular momentum conservation,
is only valid in the absence of a conducting shell. |

In the adopted ordering scheme C?*, which describes the interaction of a predominately

m = 2 external perturbation with a tearing mode of the same dominant helicity, is expanded
CF =20+ AW + \B2g2 1 \Oe2g, + NOE2 + \OT2 1 O(?) (55)

where A is the cylindrical limit, A() is a toroidicity correction, A® is a pressure correc-
tion, A(® is a correction due to combined toroidal and pressure effects, A is an ellipticity
correction, and A® is a triangularity correction. Here, E, = E(a) is the edge ellipticity
parameter, and T, = T'(a) is the edge triangularity parameter [see Eqs. (475]. In general, the
free boundary basis tearing modes can only be calculated by solving the full coupled ideal
MHD equations (A.6) in the outer region. This is achieved for the large aspect ratio, low-4,

weakly shaped equilibria described in Sec. IV.B using the T7 code.!®
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Figure 3 shows the expansion coefficients of C;* evaluated from the T7 code as a function
of g, in the range 2.5 to 5.2, for gy = 1.01 and k = 4. Figure 4 shows values of C?* calculated
for an example equilibrium with € = 0.15, E, = 0.15, T, = 0.05, and 8, = 0.0 or 1.0.

It can be seen from Fig. 3 that the cylindrical part of C?* decays slowly as g, is increased.
This is quite understandable, since as the edge-q is increased (at constant central-q) the g = 2
surface moves deeper inside the plasma, so the interaction with a fixed external perturbation
is likely to get progressively weaker due to range effects. The toroidal correction is found
to increase the locking torque exerted at ¢ = 2 (i.e. increase C#*) for ¢, < 3, but changes
discontinuously as the ¢ = 3 surface enters the plasma so that the torque is decreased by
toroidicity for g, > 3. The pressure and toroidal /pressure corrections strongly reinforce
the locking torque for ¢, < 3, but become negligible for ¢, > 3. The ellipticity correction
increases the locking torque for ¢, < 4, but changes discontinuously as the ¢ = 4 surface
enters the plasma so that the torque is decreased by ellipticity for q, > 4. Finally, the
triangularity correction increases the locking torque at small edge-q (i.e. g, S 2.7), decreases
the torque at moderate and large edge-q, and behaves discontinuously as the g = 5 surface
enters the plasma.

The presence of an z'dedl mode rational surface (i.e. a surface on which there is no driven
tearing or twisting amplitude, due to rotation effects) situated between the ¢ = 2 surface and
the plasma boundary has the effect of ‘shielding’ the 2/1 teai"ing mode from the applied RMP
field to some extent, so that there is a discontinuity in C?* each time such a surface enters
the plasma. It can be seen from Fig. 4 that at low-g, this shielding effect is rather weak,
since the discontinuous changes of C?* at ¢, = 3, 4, and 5 are nearly invisible. However,
at high-G, the shielding of the 2/1 tearing mode by an ideal ¢ = 3 surface becomes more
appreciable, yielding a significant drop in C?t at g, = 3.

Note that a locked rational surface has no shielding effect whatsoever. This can be demon-

strated by assuming that the ¢ = 3 surface is locked (at the tearing resonance) whenever it
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lies inside the plasma. According to the analysis of Sec. III.C.5, in this situation the locking

torque exerted at ¢ = 2 is parameterized by |I, C3+|?, where Ot = C?* for ¢, < 3 and

+
B

B % )

CH =¥ +

for g, > 3. Figure 5 shows C?* evaluated as a function of g, for go = 1.01, k = 4, e = 0.15,
E, = 0.15, and T, = 0.05, with 8, = 0.0 and 1.0. It can be seen by comparison with Fig. 4
that a locked ¢ = 3 surface does not shield the 2/1 tearing mode from the applied RMP

field, since there is no discontinuous reduction in C?* as the surface enters the plasma.

E Effect of an error field

Consider the interaction of an error field satisfying Eq. (53) with the 2/1 tearing mode.

The locking torque exerted at the ¢ = 2 surface is parameterized by |I, C{"*t|?, where
OOt — o CFM L OO O L OB OB p O O . (5T)

Note that the superscript ‘out’ refers to the outboard location of the coils generating the
error field. In the adopted ordering scheme C‘f‘#”, which governs the interaction of a
tearing mode and an external perturbation with different dominant poloidal mode numbers,

is expanded

Ot = \We 4 X®eg, + XD E, + NOT, + O(&) . (58)

If the dominant poloidal mode numbers differ by unity, then only A and A\® are nonzero.
If the mode numbers differ by two, or three, then only A\®, or A, are nonzero, respectively.
If they differ by more than three then CT#2* is negligible. |

Figure 6 shows the expansion coefficients of the CT"7 2% calculated from the T7 code as
functions of ¢, for m in the rarige —1 to 5, with ¢o = 1.01 and k = 4. The expansion coef-
ficients for CY* are found to be identically zero (and are, therefore, not plotted), indicating

that an m = 0 external perturbation does not interact with tearing modes. The quantity
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C1* is found to have no pressure correction. ‘This is due to the peculiar nature of the m =1
harmonic in tokamak plasmas. The expansion coefficients of C3* have large discontinuities
at g, = 3, showing that the presence of an ideal ¢ = 3 surface in the plasma shields the ¢ = 2
surface from the influence of a predominantly m = 3 external perturbation. The expansion
coefficients of Cf* and CP+ have similar large discontinuities at ¢, = 4 and 5, respectively.

Figure 7 shows C{™* as a function of ¢, for go = 1.01, k = 4, e = 0.15, E, = 0.15, and
T, = 0.05, with 8, = 0.0 and 0.2. Note the ‘staircase’ variation with edge-g, characterized
by relatively little change in C{"*" between integer g, values, with large discontinuities at
¢ = 3 and 4. The discontinuous reduction in C** at g, = 3 occurs because, as soon
as it enters the plasma, an ideal ¢ = 3 surface shields the ¢ = 2 surface from the m = 3
component of the error field. Likewise, the discontinuous reduction at ¢, = 4 occurs because
an ideal ¢ = 4 surface shields out the m = 4 component of the error field. Note that for a
broad spectrum error field the discontinuities are O(e), whereas the narrow spectrum RMP
field studied in Sec. IV.D only yields O(e?) discontinuities. This accounts for the markedly
different variations of C2* and C{™*+ with edge-¢ shown in Figs. 4 and 6, respectively. Note
that Fig. 7 would exhibit no discontinuities at g, =3 and 4 were the ¢ = 3 and 4 surféces
locked, since locked surfaces possess no shielding properties (see Sec. IV.D).

In experiments, the locking torque exerted at ¢ = 2 by a fixed error field is conveniently
parameterized by the line-averaged density below which a static 2 /1 island is induced in the
plasma. The larger the density, the larger the torque, and vice versa.* For narrow spectrum
RMP fields the minimum density is observed to decrease smoothly with increasing edge-g,*
implying a smoothly decreasing locking torque similar to that shown in Fig. 4. On the
other hand, for the broad spectrum JET error field (see Table II) the minimum density
hardly changes between integer ¢, values, but decreases discontinuously as the ¢ = 3 and
- q = 4 surfaces enter the plasma.!® This behavior is consistent with the staircase variation

of the locking torque shown in Fig. 7, assuming that both the ¢ = 3 and ¢ = 4 surfaces

27




are unlocked. Note that discontinﬁous behavior is only observed in limiter plasmas. For
separatrix plasmas, which lie beyond the scope of this paper, there is no observed stepwise
variation of minimum density as the ratio of plasma current to toroidal field is changed.!?
The effect of ideal rational surfaces on the locking torque exerted at ¢ = 2 is largely
dependent on the relative phases of the different poloidal harmonics of the error field. For
an error field source located on the outboard mid-plane the phases are such that the torque
increases as the ¢ = 3 and g = 4 surfaces leave the plasma. Consider an error field produced
by a source localized on the inboard mid-plane (§ = 0). For such a field the locking torque

exerted at ¢ = 2 is parameterized by |I, Ci**|?, where

CiMt = C7M 4 O+ O+ CBY + OF + CFF 4+ O (59)
i 1 _

Figure 8 shows C"* as a function of g, for g = 1.01, k = 4, e = 0.15, E, = 0.15, and .

T, = 0.05, with 8, = 0.0 and 0.2. It can be seen that in this case the phases are such that
the locking torque decreases discontinuously as the ¢ = 3 surface leaves the plasma, while
increasing at ¢, = 4 and 5. Thus, in this situation the behavior at g, = 3 is opposite to that
for the outboard error field source. Even more complicated behavior is obtained if the error
field source is located significantly above or below the mid-plane. (

Figure 9 shows C{"*t as a function of ¢, for go = 1.1, k = 4, ¢ = 0.15, E, = 0.15, and
T, = 0.05, with 8, = 0.0 and 0.2. The increased central-g value brings the plasma very close
to the 3/1 ideal external kink stability boundary at g, ~ 3. It can be seen that the torque
exerted at ¢ = 2 increases very markedly as ¢, — 3 from below. This effect is due to the
m = 3 component of the error field, as is demonstrated by its sudden disappearance as soon
as the ¢ = 3 surface, which effectively shields out the m = 3 error field, enters the plasma.
Figure 9 suggests that the locking torque exerted on the plasma by a fixed error field is likely

to become very large close to an ideal external kink stability boundary. This effect may offer

an explanation of recent DIII-D results which imply a substantial increase in the error field
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locking torque exerted at ¢ = 2 as the Troyon B-limit is approached.®

V. Calculation of the C~ Vector

The interaction of twisting modes with an external perturbation is governed by the

C~ Vector [see Egs. (1)], which is written
c- =) I.,6™ (60)

[see Eq. (A.44)]. If there are N rational surfaces in the plasma then the C™ are 1 x N
vectors with real components C7*~ (for j = 1 to N). The component C;*~ drives twisting
amplitude on surface j [see Egs. (12)], and also gives rise to a nonlinear electromagnetic
locking torque acting at this surface [see Eq. (13)].

It is demonstrated in Sec. A.V that C]"~ is the expansion coefficient (in the vacuum
region r > a) of the free boundary basis twisting mode associated with surface j in the mth
well behaved (as R - o00) toroidal ring function. As is described in Sec. A.IV of Ref. 12
the basis twisting modes can be built up out of solutions of the cylindrical tearing mode
equation. Let zp,ﬁjil (r) be a solﬁtion of this equation (for poloidal mode number m; £+ 1) in
the interval 0 < r < r; which satisfies the physical boundary conditions at r = 0, is zero at
the m; £ 1/n rational surface if it lies in the region 0 < r < r;, and is unity just inside the
my;/n rational surface at r;.. Likewise, let w,ﬁjﬂ (r) be a solution of the cylindrical tearing
mode equation in the interval r > r; which satisfies free boundary conditions for r > a, is
zero at the my; & 1/n rational surface if it lies in the region r; < r < a, and is unity just

outside the m;/n rational surface at 7;4. It is useful to define the quantities

dpl

L . ( m;%xl

Amjzhl = |7 dr J,,,j__ )
[ i a1

Aﬁj:i:l =T d‘; - . (61)
- =T+
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According to Ref. 12, the jth basis twisting mode is built up out of O(e) of the m; + 1

poloidal harmonics,

T Qj
")bmjil(/r') 9 s (m.? 1)

AR — Do e

AL L+ (my £ 1)(1+55)
e ) IR G
m;1 myEl

with only O(e?) of the other poloidal harmonics (including the central m; harmonic). Here,

+

a; is the O(e) pressure gradient parameter at rational surface j [see Eq. (4)], and s; =

(rq'/q)r; is the local magnetic shear. It follows from Sec. A.V that

CT™ = emya1 0 - (63)
where
AL+ (m; £ 1)(1 + s;)
- T “myl J J) R 4
Cdezl s; AR 1 — AL 1 1/}m,':!:1 (a’) ) (6 )

+ since 'gbﬁ;jil(a) = 0 by definition [see Egs. (A.27), (A.32), (A.46), and (A.48)]. Note that
the Cj™~ are O(e®) for mi # m; £ 1. Thus, the jth basis twisting mode (resonant with
poloidal mode number m;) is most strongly affected by external perturbations whose domi-
nant poloidal mode numbers are m; & 1.

Consider the interaction of a static RMP field satisfying Eq. (52) with the 2/1 twisting
mode. The locking torque exerted at the ¢ = 2 surface is parameterized by |, C7~|? [see
Eq. (13)]. It is clear from the above that C?~ ~ O(e?), so this torque is O(e?). The locking
torque exerted at g = 2 due' to interaction with the 2/1 tearing mode is parameterized by
|1, C21)? and is O(1) (see Sec. IV.D). We conclude that in this case the locking torque due
to interaction with the 2/1 twisting mode is negligible compared to that associated with the
2/1 tearing mode.

Consider the interaction of an error field satistying Eq. (563) with the 2/1 twisting mode.

The locking torque exerted at the ¢ = 2 surface is parameterized by |I; C7"*~|?, where
C™~ = —Cl~ = C +0() . (65)
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The quantities C}~ and C{~ can be evaluated using a cylindrical tearing mode code via
Egs. (63) and (64). It is found that C}~ is zero (i.e. the 2/1 twisting mode is not affected
by a predominantly 1/1 external perturbation). This result is due to the peculiar nature of
the m = 1 harmonic in tokamak plasmas and is not general. For instance, the 3/1 twisting
mode is affected by a predominantly 2/1 external perturbation. It is also found that C}~
drops discontinuously to zero as the ¢ = 3 surface enters the plasma, because an ideal ¢ = 3
surface completely shields the 2/1 twisting mode from the influence of a predominantly 3/1

external perturbation. So, in the adopted ordering scheme
C™ = \ef3, , (66)

where ) is zero for g, > 3. Values of A for ¢, in the range 2.5 to 3.0, and go = 1.01, are given
in Table III. It is clear that the locking torque due to interaction with the 2/1 twisting mode
is zero for ¢, > 3, and is O(ef3,)? for g, < 3. This should be compared with the locking
torque due to interaction with the 2/1 tearing mode which is O(1), with O(¢) discontinuities
at integer edge-g (see Sec. IV.E). Thus, if €8, < 1 the locking torque associated with the

externally driven 2/1 tearing mode again dominates that due to the twisting mode.

VI. Summary

We have examined the influence of a general static external magnetic perturbation on
the stability of resistive modes in a tokamak plasma. There are three main parts to this
investigation.

Firstly, the vacuum external perturbation must be expanded as a series of well behaved
(as r — 0) toroidal ring functions (see Sec. IV.C). A perturbation with a given toroidal mode
number is fully specified by the complex coefficients of this expansion, which are denoted
by the I, where m is the number of poloidal nodes. Typical coefficients for a deliberately
applied RMP field and an accidentally occurring error field are given in Tables I and II,
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respectively. The RMP field considered is designed to have a narrow spectrum with one
particular resonant I, dominant, whereas error-fields tend to have broad spectra.

Secondly, the dispersion relation for resistive modes in the presence of a general external
perturbation must be derived (see appendix). The unperturbed dispersion relation takes
the form of two coupled homogeneous N x N matrix equations, where N is the number
of rational surfaces in the plasma (resonant with a given toroidal mode number). In the
presence of an external perturbation these equations acquire right-hand sides, denoted by
the 1 x N vectors C*. The Ct Vector characterizes the response of tearing parity modes
to the external perturbation, whereas the C~ Vector characterizes the response of twisting
parity modes. The C* Vectors are decomposed C* = ¥, I,,C™*. It! is demonstrated in
the appendix that the components of the C™* vectors are obtainable from the asymptotic
behavior (as R — 00) of the free boundary basis tearing and twisting modes (in the absence
of the external perturbation). This result follows from a consideration of toroidal angular
momentum conservation, but is only valid in the absence of a conducting shell.

Lastly, the resistive dispersion relation must be solved to give the tearing and twisting
amplitudes driven in the plasma by the external pérturbation (see Sec. III). The electromag-
netic locking torque exerted at rational surface j is proportional to |C;|* and |C;|?, where
Cj": are the jth components of the C* Vectors. Considering the simplest case where there is
only a single rational surface in the plasma and |Cj |? > |C;|?, we find that as soon as |C}|
exceeds the critical value needed to half the natural frequency for tearing modes at surface 7,
this frequency suddenly drops to a value very close to zero, and there is a dramatic increase
in the driven tearing amplitude. This process is termed ‘locking.” Prior to locking there is
very little driven tearing amplitude at surface j.

The problem becomes more complicated if |C; |2 R |C}?, so that the torque due to driven
twisting amplitude at surface 7 is comparable to that due to driven tearing amplitude, but

this is unlikely to occur in low-8 plasmas (see Sec. V). When there is more than one rational
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surface in the plasma, locking torques are exerted simultaneously at all surfaces, and a change
in rotation induced at a given surface can influence the other surfaces via the action of bulk
plasma viscosity. We have derived a set of coupled nonlinear equations which describe the
response of each rational surface to a general external perturbation (see Sec. III.D). These
equations have been solved for an example case with two rational surfaces in the plasma
(see Sec. II1.C). In general, we find that the critical electromagnetic torque required to lock
surface j is reduced if torques are exerted at any other surfaces. Furthermore, locking occurs
when the natural frequency of tearing modes at surface 5 has been reduced to a critical value
which is now somewhat less than half of its unperturbed value.

The T7 toroidal tearing mode code!® has been extended to evaluate the C™*t vectors
(see Sec. IV). This allows us to construct the C* Vector, given the complex amplitudes,
I, which characterize the external perturbation. We have considered two idealized external :
perturbations. The first has I, = I with Ipzm = 0 (where I is a constant) and represents
a typical narrow spectrum RMP field produced by external saddle coils. The second has
I = (—1)™I and represents an error field produced by a localized source on the outboard
mid-plane.

Consider thé locking torque exerted at a typical low mode number rational surface such as
g = 2. We find that ideal rational surfaces located between this surface and the plasma edge
tend to ‘shield’ it from the locally resonant component of the applied external perturbation.
For instance, an ideal 3/1 surface shields out the m = 3 component. This effect leads to
a discontinuous variation of the locking torque with edge-q. There is a sudden change in
the torque as the ¢ = 3 surface enters the plasma and shields the m = 3 component of
the applied perturbation. There is a similar sudden change as the ¢ = 4 surface énters the
plasma. For a narrow spectrum RMP field the discontinuous changes in the locking torque at
rational edge-q are O(e?) (where € is the inverse aspect ratio) and are not a dominant feature

of the variation with edge-g. However, for a broad spectrum error field the discontinuous
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ch}anges are O(e) and tend to be the. dominant feature of the edge-g variation. For an error
field source located on the outboard mid-plane there is a ‘staircase’ variation, with relatively
little change between integer edge-g values, but strong reductions at ¢ = 3 and 4 (as g, is
increased). Such behavior has been observed experimentally.!® An error field source located
on the inboard mid-plane, or significantly off the mid-plane, generally gives rise to more
complicated variation of the locking torque with edge-q (see Fig. 8). We find that locked
rational surfaces have no shielding effect, so that there is no sudden change in the torque as
a locked surface is brought into the plasma. We also find that the locking torque exerted
by a fixed error field becomes very large close to an ideal external kink stability boundary.
We speculate that this effect may account for the observed significant reduction in the error
field strength needed to induce locking at g = 2 close to the Troyon S-limit in DIII-D.5
The components of the C™~ vebtor can be evaluated using solutions of the cylindrical
tearing mode equation (see Sec. V). We find that in low-8 plasmas, where €fp < 1, the
locking torques due to externally driven twisting modes are generally negligible compared
to the torques associated with driven tearing modes. However, this is unlikely to remain the

case in high-g plasmas, where €8,  O(1). -
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A Physics of the Outer Region
A The marginally stable ideal MHD equations

The coordinate system (r, 6, ¢), where ¢ is the toroidal angle, 6 is an angle-like variable
in the poloidal plane, and r is a flux surface label with dimensions of length, is chosen so

that the magnetic field lines appear straight. The Jacobian for these coordinates is given

by23
rR?

j=(VrAVE- Vg =, | (A1)

where R is the major radius, and Rp is the average major radius of the outermost plasma

flux surface. For an axisymmetric equilibrium the magnetic field B can be written

B = BoRo[f(r)Vé A VT + g(r)V¢] (A.2)
where By is the vacuum magnetic field strength at R = Ry. The safety factor, the slope of
the field lines in the 6-¢ plane, is then given by

atr) = 7575 (A3)

The perturbed magnetic field 6B is completely specified by two sets of flux surface func-

tions, Ym(r) and Z,,(r), where

6B-Vr=i

%‘3 ¢n;n(7") exp[i(mf — ne)] , (A.4a)

(r) + AmPm(r)]

Rolm—ng)  S®lmé—ne)l, (A.4b)
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[ opory’ JR® 1 m Rog | 1 m
o= [t (T )~ 7 im0 ()] / 5

35



<...)—=—%?{(...)49, ‘ (A.5)

Here, ’ denotes differentiation with respect to r, and p(r) is the plasma pressure.
Throughout the bulk of the plasma the perturbed field is governed by the marginally
stable equations of ideal magnetohydrodynamics (MHD), which take the form:

dm Lrz.,. Lmtkz Mtk
'¢ _ m +2 ( m +k 1 m '()b +k)

"o~ (m-ng pr] (m+k —ng) ’
d Zim _ PrT"ﬁm (Ng+kZm+k + PnT;H-k'Gbm-i-k)
(m —nq)r - [(m - nq)} =) I;} iy . (A6)

The coefficients LTF, MMtk Ntk and Pm+* are evaluated for a general low-3, large aspect
ratio tokamak equilibrium in Ref. 13. The ordering adopted is such that the Shafranov shift

and departure from circularity of plasma flux surfaces are both O(e¢) with respect to the

average minor radius of the outermost plasma flux surface, a, where ¢ = a/Ry < 1 is

the inverse aspect ratio. This implies that L™ ~ O(1) + O(e?) and L* ~ O(e), with a
similar ordering for the other coefficients. Coupling of harmonics of the perturbed field whose
poloidal mode numbers differ by unity is effected by the Shafranov shift of flux surfaces, which
is driven by toroidicity and the plasma pressure. Coupling of harmonics whose mode numbers
differ by two or three is effected by flux surface ellipticity or triangularity, respectively. The
ordering adopted for the Shafranov shift and flux surface shaping implies that g = 1+ O(¢?)
and pop/BE ~ O(c?). |

B The outer solution in the vicinity of a rational surface

The marginally stable ideal MHD equations (A.6) become singular on flux surfaces where
the safety factor q takes the rational value m/n. Such surfaces are termed rational surfaces

resonant with poloidal mode number m. The most general expression for the resonant
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harmonic of the perturbed poloidal flux in the vicinity of a rational surface, radius 7,,, is

o [A+ + (-”-271) AT sgn(x)] ][+ ]

. v\~ Iy
+ 5 Bt + (—2—> B~ sgn(z)| |z} + Cz+--- (A.7)
where x = r — rp,, and
2pory/
v [— 252 (1- qz)] ~ (A.8)

represents the effect of average field line curvature.?® Here, s = (rq’/q)y,, is the local magnetic
shear, and A*, B*, and C are arbitrary constants.

The two ratios

A (w) = —— (A.9)

are completely determined by the solution of the even and odd parity Fourier transformed
layer equations in the inner region, and are in general functions of the mode rotation fre-

quenéy w [where all layer quantities are assumed to vary like exp(—iwt)].

C Basis tearing and twisting modes

Suppose there are N rational surfaces in the plasma (radii 1 < 72-++ < ry), resonant
with poloidal mode numbers m;, ms - - - my (for a fixed toroidal mode number n). It is useful

to define the quantities'?

(1 —2u;)] 1/2
Uy = A= 2y) 7 l (A%);, | (A.10a)
(1 —2v;)]"?
AT = (—m—f) (B*); , (A.10D)

where v; is the Mercier index for surface j [see Eq. (A.8)], \I';F is termed the ‘tearing ampli-

tude’ at surface j, and ¥; is the associated ‘twisting amplitude.” The tearing amplitude is

f
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sometimes referred to as the ‘reconnected flux.’ It follows from (A.9) that

ATE
J .

where Af(w) is the tearing parity layer dispersion relation at surface j, and Aj (w) is the
associated twisting parity dispersion relation. The toroidal electromagnetic torque acting in

the vicinity of surface j takes the form!?

§Ty(r;) = ™ x [Im (AT 2 + Im (A7) %5 1] - (A.12)

The system has 2N degrees of freedom (i.e. two degrees for each rational surface in the
plasma), so a general mode can be built up from a linear superposition of 2NV independent
basis modes. It is convenient to define IV basis tearing modes, denoted 9] (for j =1 to N).
These are solutions of Egs. (A.6) which satisfy the physical boundary conditions at » = 0

and r = a and are subject to the additional constraints:!2

Ul =6y,
| T =0,
AT} = B,
AV = Hy, . (A.13)

Thus, the jth basis tearing mode has unit tearing amplitude and zero twisting amplitude at
surface j, with zero tearing or twisting amplitude at any other surface. It is also convenient
to define IV basis twisting modes, denoted ;. These are solutions of Eqs. (A.6) which

satisfy the physical boundary conditions and are subject to the constraints:'2



A\I’Z = ij y
AV =E; . (A.14)

Thus, the jth basis twisting mode has unit twisting amplitude and zero tearing amplitude
at surface 7, with zero tearing or twisting amplitude at any other surface. Note that the
quantities Ek*J and Hi; must be real because the ideal MHD equations (A.6) contain no

complex coefficients.

A general mode is written
N
¥ = (TiYf + Tiey) (A.15)
k=1
yielding the resistive mode dispersion relation!?
{At(w)-Et} ot -HT =0,
{A~(w)-E} o -HIT+=0. (A.16)

In the above, E* is the N x N real symmetric matrix of the Ezf values, H is the N x N
real matrix of the H;; values and HT is its transpose, A% (w) is the N x N complex dia.gorial
matrix of the A (w) values, and ¥ is the 1x N complex vector of the U3 values. It follows
from Egs. (A.12) and (A.16) that
N
Ty =) 6Ty(r;) =0, (A.17)
=1

so there is zero net toroidal electromagnetic torque acting on an isolated plasma.

D The vacuum region

In the vacuum region external to the plasma the perturbed magnetic field is written
6B =iVV | (A.18)
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where the scalar magnetic potential V' can be expanded
V(r,0,4) = Vu(r) expli(mf — ng)] . (A.19)
m

It follows from Eqs. (A.4) that for r > a

Zn(r) = (m — ng)Vim(r) , (A.20)
and
= —]ﬁ r|? exp(i de+k
)= 3 (T 10rPexaiks) ) r S (1
-~ Z < irVr - V9o exp(1k0)> (m + k) Vengi (1) . (A.21)

In vacuum the scalar magnetic potential satisfies Laplace’s equation
ViV =0. . (A22)

It is easily demonstrated that if V¢ and V® are two general solutions of Eq. (A.22) with the

same toroidal mode number then

& o) - vevee)] =0, - (a)

where the functions ¢¢(r) are related to the ﬁnctions Va(r) via Eq. (A.21).

It is convenient to define the general solution vector v, and the related vector V, where
the'components Y (r) of 9 are the harmonics of the perturbed poloidal flux, so that ¥(r,
8, &) = Son¥r(r) expli(k@ — ng)]. Likewise, the components Vi(r) of V are the harmonics
of the scalar potential, so that V(r, 8, @) = > Vi(r) expli(kf — nd)]. The components of ¥
and 'V are interrelated via Eq. (A.21). Let

[v°, ¥'l(r) = Xk:[zbz(r)Vé’(r) — V)], (A.24)
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where 1® and 1° are two general solution vectors. It follows from Eq. (A.23) that [4*,°%)(r)
is independent of 7 in the vacuum region.
In the absence of plasma the vacuum region extends to the magnetic axis (r = 0). In the

region close to the axis

av,
™m g = ) A..2
T (A.25)
and Laplace’s equation reduces to
1d{ dVn, m2

with solutions Vp,(r) o< 7™ for m # 0 and V4(r) o Inr, r°. Let the vacuum basis solution

P™ have components which satisfy (A.25) and (A.26), and reduce to

¢m(T) = <£)_Iml ) 'd}l;ém(r) =0 (A27)

in the limit r — 0. For the special case m = 0, the components of the basis solution P°

A

reduce to

Po(r) =1, Yizo(r) = 0 (A.28)

at the magnetic axis. Likewise, let the vacuum basis solution Q™ have components which

satisfy (A.25) and (A.26), and reduce to

Il
wm(r)=<£)+" ; Yizm(r) =0 - (A.29)

in the limit 7 — 0. For the special case m = 0, the harmonics of the scalar potential derived

from the elements of Q° [via Eq. (A.25)] reduce to
Wo(r) =1, Vigo(r) =0 (A.30)

at the magnetic axis. Note that only the Q™ basis solutions are well behaved in the limit

r— 0.
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It follows from Egs. (A.23), (A.24), and (A.27) to (A.30), that

[P™,P(r)=0, (A.31a)
[Q™,Ql](r) =0, (A.31b)
P™,QY(r)=6"hn (A.31c)

throughout the vacuum region, where

1 for m=0
hm = A.32
2 for |m|>0. (A-52)
Im|

The scalar magnetic potential associated with the vacuum basis solution P™ takes the

form?!®

_ (- 24+ DR -2+ D)
V(Ma m ¢) — (_1)2n+1(|m| _ 1)!(—6)_[""'

(A.33)

X Vcosh,u —cosn Pr_ 3 (coshpy) expli(mn — ne)] ,

and the potential associated with the basis solution Q™ is written

N 2143 (Jm] — 1)1
V9 = o el + ¥ D= -39

X y/coshu —cosn Q. _ 1 (coshp) expli(mn — ng)] .

Here, (i, n, ¢) are standard toroidal coordinates,

R=R, ____S_l_r_lﬁ’l‘__ , (A.35a)
coshy — cosn

Z=Ry,— 21 (A.35b)
coshy — cos 7
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while P? and Q? are associated Legendre functions, and k! = 1 for k& < 0. Note that only
the P™ basis solutions are well behaved as R — oo.

The most general solution of the ideal MHD equations in the vacuum region (r > a) is

written

P => (amP™+b,Q™) , (A.36)

where a,, and by, are arbitrary complex constants. A particular vacuum solution 1) can be

resolved into components of the basis solutions P™ and Q™ via [see Egs. (A.31)]

am = h;zl["p) Qm]('r > a‘) )

b = =R, P™(r > a) . | (A.37)

Finally, it can be demonstrated that the total toroidal electromagnetic torque acting on the

plasma satisfies!?

2nm? Ry
Ho

Ty > a)= [ § § RV 63 A 6B jdrdodg = x Y hmIm (ahbm) ,  (A39)
where 6J is the perturbed current.

E The effect of an external helical magnetic field

Consider the effect of a nonrotating externally imposed helical magnetic field on the
resistive dispersion relation for a free boundary plasma.

The most general solution in the absence of plasma is written
m
where the I,,, are arbitrary complex constants, and 7. is the innermost radius of the external

conductors used to generate the applied field. The scalar magnetic potential of the imposed
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field in the absence of plasma, V¢, is easily calculated from the currents flowing in these

conductors. The corresponding values of the I, are given by [see Eq. (A.34)]

_ (=DmA(m] 4+ + 3) (=)™
T 2 (Im| - 1)!Qx,_y (coshu)

Ve, n, ¢) exp[—i(mn — ng)] dn dé
7{7{ v/coshy — cosn 2 2 (A.40)

where the integration is carried out on a toroidal surface, 4 = constant [see Egs. (A.35)],
lying inside the external conductors.
The most general solution in the presence of plasma is written
. |
B(r < reen) = Y [UF YF(r) + 05 ¥5 (r)] + 32 InX™(r) (A.41)
i=1 m

The solution X™ has the following properties:

vE=0, (A.42a)
ATE = o (A.42b)
for k=1 to N, and
X™(reon > 7 > a) = > hi o PH(r) + Q™(r) . (A.43)
N -

Here, the C"* and o are arbitrary real constants. Thus, X™ specifies the ideal response of
the plasma to the external field associated with the vacuum basis solution Q™.
It follows from (A.13), (A.14), (A.41), and (A.42) that the general externally driven

resistive dispersion relation takes the form

{At(w)-Et} ot —HE¥ =C" =3 I,C™,
{A~w)-E}o--Hlgr=Cc- =Y 1,0, (A.44)
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where the C™* are the 1 x N real vectors of the C"* values.

Using Egs. (A.12) and (A.44), the total toroidal electromagnetic torque acting on the
plasma is given by

N 2
To(r > a) = 3 6Ty(rs) = 2”’; o
e 0

ijlm [In{Cr (T + 7 (T7)}] . (A45)

m j=1
Since the basis tearing and twisting solutions, 1/J;r and 7, are well behaved for r > a, their

most general expansion in the vacuum region is [see Eq. (A.36)]

Yi(r>a)= Za s P™(r) ' (A.46)

where the ay, ; are real constants. Equations (A.38), (A.41), (A.43), and (A.46) yield a
second expression for the total toroidal electromagnetic torque acfing on the plasma:
2nm2 Ry

Ty(r> a)‘= o X | (A.47)

N
SIm | Y bl {ak, 5 (8F) + a5 (95)"} + 2 o Il
m j=1 l
The identity of Eqgs. (A.45) and (A.47) for arbitrary \II;E and I,,, yields o!, = o™ and

Cy* =bmag,; =47 ,Q™,

m,j —

CP™ =hmag, ; = [¥7 ,Q™]. (A.48)

F  Summary

- A general external helical magnetic perturbation can be resolved into components of the
well behaved (as » — 0) vacuum basis solutions Q™ [see Eq. (A.39)], so that it is completely
specified by a set of complex amplitudes I,. The I,, are calculated from the scalar magnetic

potential of the vacuum external perturbation using Eq. (A.40).
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The response of the plasma to an idealized perturbation made up of unit amount of
the vacuum basis solution Q™ is determined by the vectors C™* [see Eqs. (A.44)]. The
components of these vectors can be obtained by resolving the free boundary basis tearing
and twisting modes in the vacuum region (r > a) into components of the well behaved (as
R — 00) basis vacuum solutions P™, according to Eqs. (A.48). Thus, the response of the
plasma to a general perturbation is determined by the vectors C* [see Eq. (A.44)], whose
components are obtained from the coefficients of the expansion of the external perturbation
in the Q™ (with no plasma), and the coefficients of the expansion of the basis plasma modes

in the P™ (for r > a, with no external perturbation).
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[ Lm| $m(°)
0.11 180
2.52 180
0.11 180
1.00 0
0.3¢ 180
0.19 180
026 0

3

O QO N = O =

Table I Relative amplitudes and phases of the I, for a typical n = 1 ComPASsS-D RMP
field generated by external saddle coils, with 1 kA in the saddle bars, Ry = 0.56 m and
a = 0.20 m. The absolute amplitude of I is 8.6 x 10~% Tm.
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M| Im|  $m(°)
-1/0.39 —178.3
0/1.43 +5.0
1{1.29 —179.1
2/1.00 0.0
3
4
5

0.65 +178.4
035 —4.4
0.14 +169.0

Table II Relative amplitudes and phases of the I, for the n = 1 error field generated
by the JET poloidal field coil set for a typical limiter discharge with ¢, ~ 3.2. Here, the
plasma current and toroidal field are in the same direction, there are 39 turns in the P4 coils,
Ry =2.96m, and a = 1.0m. The absolute amplitude of I, is 2.6 x 10™4T'm.
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G |A
2.5 16.73
2.6 |7.14
2.7 |7.46
2.8 |7.75
2.9 [8.27
2.99(9.61

Table III: Values of A [defined in Eq. (66)] as a function of ¢,, for go = 1.01.
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Figure Captions

1. Bifurcation curves for locking of an external perturbation to the tearing and twisting
resonances at a general rational surface. y* [defined in Eq. (19d)] is the normalized
locking torque due to the tearing resonance, and y~ [also defined in Eq. (19d)] is the
normalized .Iocking torque due to the twisting resonance. The solid curves correspond
to locking to the tearing resonance, whereas the dashed curves correspond to locking to
the twisting resonance. Curves are shown for various different values of the unperturbed

normalized frequency f; [defined in Eq. (19b)).

2. (a)-(e) Locking thresholds (for the tearing resonances) in a plasma containing two
rational surfaces. The variables o? and ,Bé are proportional to the locking torques
exerted at surfaces 1 and 2, respectively. These torques are normalized with respect to
the threshold torques for each surface taken in isolation. Curves are plotted for various

. values of the parameter ), which depends on the relative positions of the two rational
surfaces. The parameter x measures the ratio of the unperturbed natural frequencies
at the two surfaces. Figure 2(a) shows data for k = 1/4; Fig. 2(b) shows data for
k = 1/2; Fig. 2(c) shows data for k = 1; Fig. 2(d) shows data for x = 2; Fig. 2(e)

shows data for k = 4.

3. The expansion coefficients of C?* evaluated as a function of edge-q, for g = 1.01
and k = 4. The various graphs show the cylindrical limit [A® in Eq. (55)], the
toroidal correction [\ in Eq. (55)], the pressure correction [\ in Eq. (55)], the
toroidal/pressure correction [A® in Eq. (55)], the ellipticity correction [A® in Eq. (55)],

and the triangularity correction [A(®) in Eq. (55)].

4. The parameter C?* evaluated as a function of edge-q, for go = 1.01 and k = 4, with
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¢ =0.15, E, = 0.15, and T,, = 0.05. Data is shown for 8, = 0.0 (O), and £, = 1.0 (O).

. The parameter C2+ evaluated as a function of edge-g, for go = 1.01 and k = 4, with

¢ =0.15, E, = 0.15, and T,, = 0.05. Data is shown for 8, = 0.0 (O), and G, = 1.0 ().

. Expansion coefficients of the C]" 72+ evaluated as a function of edgé—q, for gop = 1.01

and k = 4. The various graphs show the toroidal correction [A(Y) in Eq. (58)], the
pressure correction [A(® in Eq. (58)], the ellipticity correction [A®) in Eq. (58)], and
the triangularity correction [\* in Eq. (58)]. Data is shown for C;'t (), CIt (A),
Ci* (v), Ci* (O), and CF* (O).

. The parameter C?"** evaluated as a function of edge-q, for go = 1.01 and k = 4, with

e =0.15, E, = 0.15, and T, = 0.05. Data is shown for 3, = 0.0 (O), and 8, = 0.2 (O).

. The parameter Ci** evaluated as a function of edge-q, for go = 1.01 and k = 4, with

€= 0.15, E, = 0.15, and T, = 0.05. Data is shown for 8, = 0.0 (0), and 8, = 0.2 (O).

. The parameter C{"*t evaluated as a function of edge-g, for go = 1.1 and k = 4, with

e =0.15, E, = 0.15, and T, = 0.05. Data is shown for £, = 0.0 (0), and 8, = 0.2 (Q).

54



