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Abstract

When a super-Alfvénic electron beam propagates along an ambient magnetic field,
the left-hand circularly polarized Alfvén wave is Cherenkov-emitted (two stream insta-
bility). This instability results in a spontaneous conversion of the background plasma
helicity to the wave helicity. The background helicity induces a frequency (energy) shift
in the eigenmodes, which changes the critical velocity for Cherenkov emission, and it

becomes possible for a sub-Alfvénic electron beam to excite a nonsingular Alfvén mode.

PACS Numbers: 52.35.Bj, 41.60.Bq, 52.35.Qz, 42.25.Ja




Damping of a circularly polarized Alfvén wave generates a current in the background
plasma.» 2 This phenomenon can be interpreted as helicity transfer from the Alfvén wave
to the background plasma. The helicity absorption is equivalent to a change in the twist of
the ambient magnetic field, and hence to the production of a mean current.

In this Letter we consider the inverse process, i.e. a decay of the mean-field helicity
producing circularly polarized Alfvén waves. A fast electron stream carrying a net current®
will be the free energy source for this spontaneous process to occur. It is well known that
super-Alfvénic beam electrons (beam velocity v, > Alfvén velocity v4) may Cherenkov-
emit Alfvén waves, which are left-hand circularly polarized.* By considering the balance
between the wave and the background helicity, we show that this ‘two-stream instability’
is a spontaneous process producing wave helicity. The excited waves have wavenumber
anisotropy reflecting the polarity of the background helicity.5 An interesting effect of the
helicity appears in determining the critical velocity of the beam. The background helicity
yields a frequency (energy) shift in the eigenmodes, and, when a nonsingular eigenmode
occurs, it can be exited by a sub-Alfvénic electron beam.

Let us start with reviewing the local dispersion relation of the two-stream system. We
consider a cold electron beam of velocity v, propagating parallel to the ambient uniform
magnetic field By, and carrying a éurrent jb = —enpVy, where e is the elementary charge and
ny is the density of the beam electrons. The background electrons and ions (singly charged
and density = ng) are cold with zero mean velocity. The transverse wave propagating
parallel to Bg is described by the vector potential A 1, and the wave vector kb, where
b = By/B, and L is perpendicular to By. The left-hand circularly polarized wave (L-wave)
is characterized by the polarization relation Ay X Ki = ZIK L|?b. We consider a long wave

length (|kj| < wee/vs) and low frequency (Jw| < weg), where wge (wWe) is the electron (ion)




cyclotron frequency. The dispersion relation for the L-wave reads [§ = np/n0, @ = Swei /v]]

w2
<a> ~ ki —a (w — k"vb) =0, (1)
with the solution*
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When v, > v, instability (complex w) occurs in the range of kj &~ Svpwei/2v5. This in-
stability of the L-wave is induced by the coupling with a negative energy whistler wave
(right-hand circularly polarized wave) which propagates backward on the beam electrons.
Therefore, a positive energy L-wave is Cherenkov-emitted on the background ions. The
L-wave propagates in the direction of the electron beam, i.e. k and v, have the same sense.

Let us now compare the wave helicity and the background helicity. The wave helicity

density is given by [B = ikyb x Al
hp = (AL -B)=—klAL?, 3)

where (-) represents the time average. The background helicity is generated by a mean
current Jo, which consists of the beam current j, and the bulk plasma current jo. To keep the
discussion simple, we neglect jo here, but shall keep it later when we include nonuniformity
of By in our analysis. Since Jo = V x Bo/uo is approximately parallel to By in a low-beta

plasma, we may write

V x By = ABg 4)

where ) is a real scalar function. Approximating A be a constant in the neighborhood of
the beam, we may write the vector potential Ag = Bg/A in the Coulomb gauge, which is
consistent to the expreséion of A, in the transverse wave. The background helicity is given
by

ho=Ag By = A|Ag|%. (5)
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Since ky(~ Svpwei/2v5) and A(= uojs - Bo/Bs = —po eny v/ Bo) have different signs, it turns
out that the helicity density Ay, of the produced L-wave has the same sense of the background
(beam) helicity density ho.°

In the local dispersion relation (1) the energy balance among the beam, the Alfvén wave,
and the backward whistler wave is displayed, while the effect of the background helicity (i.e.
the nonuniformity of Bg) is omitted. We now extend our analysis to a nonuniform plasma
so that interesting effect associated with the background helicity can be delineated.

For low frequency (|w| < we;) incompressible dynamics of a low-beta plasma, it is ade-
quate to keep only the parallel component of the vector potential, and write the electric field

E = —(5, Aj)b — V¢. The defining equations are

By = iwhy — Vyp=0, (6)

the charge neutrality condition
Vg +VL-jL=0, | (7

and the parallel Ampére’s law
J1=—k'Vi4y, 8)

where jj and ji represents, respectively, the parallel and perpendicular components of the
current density, V| =b -V, and V, =V — V.. The perpendicular current j. is dominated

by the ion polarization current
j . 1wV L¢
T v

together with the perpendicular electron current j, which is induced by the whistler wave

9)

propagating on the beam electrons. We may use the local conductivity tensor and neglect

the Faraday rotation effect, and obtain j,, induced by the L-polarized transverse electric field

(_V.L¢))

j = % (w—kyu)Vig. (10)
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Combining (6)—(10) yields the eigenmode equation

W2

Vi [Vi(V”qb)] +Vi- [(a —a(w—k ’l)b)) VJ_¢] =0. (11)

Let us write ¢(r,6,¢) = X Pmn(r) exp i(—ml + ny — wt), where r is the radial coor-

dinate, @ and ¢ are the poloidal and toroidal angles, respectively. We assume a large aspect

ratio (major radius R > r), and neglect the toroidal coupling of different Fourier modes.
Then, (11) is approximated by

d

rdr

(7" 5 Bmn) = K210 o = ) (12
where
Flw, k) = (w/va)? — kﬁ —a(w— kjw) ,

k3 = (m/r)® + (n/R)?, and g(ky) ~ (d®ky/dr?)k;. The Alfvén resonance coefficient f(w, k)
is compared with the local dispersion relation (1). Here &y is a function of r.

Let r =7y be inside the plasma, and kj(ro) = ko. We approximate
ki(r) = ko + Bz ,
where x = r — rg. Then,
flw, ky(r)) =A% - 5%y,
A% = (w/va)? — aw + o®vi/4

y=x+ B (ko — avp/2) .

Here we assume that y = 0 occurs in the plasma. Since y* ~ ~%(kj — av»/2)?, and since
|ky| is lower bounded because of the toroidal periodicity, this assumption implies that |aw,|
is sufficiently large [See the local dispersion relation (2)]. For small z, (12) is approximated
by

d

d |
2 [(N ~ ) b = KO = 4 s = G0 (19
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where go = g(ko).
Using the method of,” we convert (13) into a Schrédinger-type equation. The Fourier

transform of (13) [y 7, qﬁm,n(y)  mn(n)] yields the equation obeyed by Gm.n ()

A%, 2\ 7 go ~
( + k_l_) ¢mn _2 (" + k1) Pmn = ﬁ P - (14)
Defining £ = n/kJ_; e=k? A2/162, 9o = 90/13 and zbmn (1 + 52)1/2¢m 7 (14) becomes
dz
(—d_§2 + V(&)) Ymn = € Pmn (15)
where € is the eigenvalue and the effective potential is given by
1 90
V(¢ = . 16

We obtain the frequency of the Alfvén wave by A% = ¢3%/k?, which now reads

w )

Up 2 2Pv4 ?
Wei 2 1i\‘1_<v,4) +6(6wc¢k_|_> a7

This result for nonuniform By can be compared with the local dispersion relation (2).

From (15) and (16) we easily understand the spectral structure of the Alfvén waves. The
spectrum e is real, and the continuous spectrum spans ¢ > 0. Solutions may also exist for ¢ <
0, if the potential V' (£) has a sufficiently deep negative dip, which is given by the second term
of (16) if gy < 0 [Fig. 1]. To obtain a point spectrum, we need g, < —1/4.7 The eigenfunction
corresponding to a negative point spectrum represents a nonsingular eigenmode, which is
free from heavy continuum damping.

A significance of the mode with e < 0 is that it can be excited by a sub-Alfvénic (v, < v4)
beam [Eq. (17)]. A part of the free energy to excite such a wave comes from the twist of By
given by the bulk component of the current. By using a simple model, we now show that the
background helicity yields negative g,. Consider a slab plasma with Cartesian components

of the magnetic field given by
By = By (0,sin A(z + 20) ,cos A(x + zo))
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where 2o is a constant and A is proportional to the background helicity [See (4) and (5)].
Consider a wave such that ¢, ,exp i(—my + nz — wt), where y and z parallel the poloidal

and toroidal coordinates, respectively. We obtain

(n cos Axo — m sin Azp)?
(nsin Azg + mcos Azg)?

o = —

In Fig. 2 we pot g, as a function of A. A large helicity, which is proportional to A, yields a
large negative g,.

We have shown that the mean-field helicity associated with the electron beam decays
into the helicity associated with the Jeft-hand circularly polarized Alfvén wave. In addition,
we have shown that the background helicity due to the bulk plasma current also contributes
to the wave excitation, the threshold Velocity of the beam electrons at which the Cherenkov
emission occurs is reduced below the Alfvén speed, and it becomes possible for a sub-Alfvénic
electron beam to excite a nonsingular eigenmode.

We note that the Alfvén wave instability resembles the kink-imode instability of the elec-
tron beam.* The magnetohydrodynamic (MHD) kink modes also modify the background
helicity, while they do not produce wave helicity. The ideal MHD is described by an Hermi-
tian operator, and hence a complex frequency describing a wave instability does not occur.
The dissipative MHD system allows damped waves, and the natural direction of helicity
transport is from the waves to the mean field. In the present model, the free energy of the

streaming electrons induces the wave helicity.
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Figure Captions

1. The effective potential V(£) with g, = 0,—0.5, -1, and —1.5. With a deep enough po-
tential dip, a localized (nonsingular) eigenmode occurs, which has a negative eigenvalue

€.

2. The potential parameter g, as a function of A. Here n/m = 0.1 and zo = 7/10.



FIGURES

FIG. 1. The effective potential V(§) with gop = 0,—0.5,—1,and — 1.5. With a deep enough .

potential dip, a localized (nonsingular) eigenmode occurs, which has a negative eigenvalue e.

FIG. 2. The potential parameter gp as a function of A\. Here n/m = 0.1 and zo = = /10.




