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Abstract

On the basis of equal-time correlation theory (a non;perturbative approach) inviscid
power laws of 2D isotropic plasma turbulences with one Lagrangian inviscid constant of
motion are unambigupusly solved by determining the dynamical characteristics. Two
distinct typeé'of induced tfz;,nsport, according to the divergence of the inverse correla-
tion length in fhe inviscid limit, are revealed. This analysis also suggests a physically
reasonable closure. The self-consistent system (a set of integral equations) for plasma
filaments is investigated in detail, and is found to be a nonlinear differential eigenvalue
pfoblem for the diffusion coefficient D, with the Dyson-like (integral) equation playing
the role of a boundary condition. This new type of transport is non-Bohm-like, and
shows quasilinear behavior even in the strong turbulence regime. Physically, this be-
havior arises from a synchronization of the shrinking squared correlation length with
the decorrelation time, for which the “mixing-length” breaks down. The shrinkage
of correlation length is a characteristic pertaining to the new type of turbulence; its
relationship with the turbulence observed in supershot regime on TFTR is commented

on.
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It is generally believed that the Kolmogorov —5/3 inviscid power law for 3D incompress-
ible fluids is a manifestation of the scale invariance of the conserved energy ¢.! However, for
2D incompressible fluids the squared vorticity 2 is also a constant of motion. The arguments
based on the scale invariance of {2 lead to an alternative —3 inviscid power law, in contrast
to the one obtained by assuming ¢ as a scale invariant quantity.? The numerical simulations
for the Hasegawa-Mima (HM), and Hasegawa-Wakatani (HW) equations® 4 seem to support
the —3 power law, suggesting that the latter Lagrangian inviscid constant of motion, from
which infinite constants of motion can be generated, would play a special role in determining
the nature of turbulence spectrum in the inviscid range.

The Lagrangian inviscid constant of motion is a field ¥, obeying the equation of incom-
pressible 2D fluids

(%-I—szcp-V—EVZ)\If:O, (1)

where £V? represents a model dissipation at short wavelengths (“inviscid” throughout this
Letter refers solely to the vanishing limit of the short wavelength dissipation), ¢ is an ap-
propriate stream function, and z ‘is the unit vector perpendicular to the 2D-plane. For
example, the HM and the HW systems are respectively described by ¥ = In ng + ¢ — V3¢
and ¥ = In n — V2p. In either case yis the electrostatic potential, no(n) is the equilibrium
(total) plasma density. The continuity equation for convective cells also obeys Eq. (1). In
this Letter we explore a similar model, the plasma filaments model (PF), which, except -
for dissipations, is very much like the trapped ion model.’ The ion filaments in this model
satisfy the equivalent of Eq. (1) in the form dn;/dt = D, V*;, (¥ represents the trapped
ion density with constant quiescent density gradients), while the electron filaments obey
dne/dt = D.V?7i; — VeTie, where d/dt = 8/8t+ (Tc/eB)b x V-V, B is the magnetic field, T
is the temperature, e is the electron charge, and c is the speed of light. These equations are

closed by the quasineutrality condition: 7i; — 7ie = 2ng¢, where nyg is the equilibrium density,




¢ is the fluctuating electrostatic potential normalized to thermal energy, 7;. is the fluctu-
ating ion (electron) filament density, v is the collision frequency destroying the fluctuating
electron filaments, and D, is a phenomenological dissipation. The HW and PF are the two
major models analyzed in this Letter.

Under the Gaussian-Markovian approximation for the field ¢, the equal-time correlation

theory applied to Eq. (1) yields the following set of equations for isotropic turbulence®

r2P(r)Jy(kr)
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where II(k) = Re[dwG(w,k) (Jo(w,k)|?) is the spectral response function, G(w,k) =
—i/(w — ik - D - k) is the one-particle Green’s function, I,(k) = [¢(k)|? is the wavenumber
spectrum of fluctuating ¥, J; is the first order Bessel function of the first kind, D is the
turbulent diffusion coefficient, and Eq. (2.3) (Dyson-like integral equation) is an expression
of diffusive renormalization.

To close the set represented by Egs. (2), a relationship between II(k) and I (k) is needed.
We shall later propose such a closure for PF model. However, for all systems obeying Eqs. (2)
extremely interesting and far-reaching results can be obtained by an asymptotic analysis
characterized by large k and € — 0. Very generally the total intensity, Wy = 27 [§° dkkI, (k)

can be cast [by a direct integration of Eq. (2.1)] in the form

2 8¢
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Wy = —

where (k?) = (n/D) [5° dkk®r (k) and W stands for the finite part of W,. Notice that the
first term on the right-hand side of Eq. (3) can be (but is no more than) logarithmically

divergent for & — 0 if (k?) remains finite in the same limit. Equation (3) is the first of




our equations for general asymptotic analysis. By expanding the Fourier-Bessel transform

of Eq. (2.1) along with Eq. (2.2) up to 7%, and equating equal powers, we obtain
D =2n¢ /0 ~ dkk3I,(K) (4.1)

D (¥?) (1 +or /0 ” dlckaL/,(k)) _ ot /0 " dkEST, (k) (4.2)

of which Eq. (4.1), a conservation law expressing the saturation condition, can be derived
directly from the basic Eq. (1). However, Eq. (4.2) is an intrinsic result of the correlation
theory.

The nonlinear relationships between k-moments of II(k) and Iy (k) represented by Eq. (4.2),

and by other higher order equations suggest dsymptotic forms

Lk - 28 g - EER (5)
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where dy(dn) denotes the inviscid asymptotic spectral power law for I,(k), [[I(k)], and
9(€%k)(a > 0) is a factor that provides high k convergence for the k moment integrals,
ie., [o°dyy"g(y) < oo[n > —1]. Equation (3), in conjunction with the definition of Wy,
then suggests that dy > 2, with dy, = 2 only if (k?) is finite. Substituting Eq. (5) into
Eq. (4), it is straightforward to show that D must be finite in the £ — 0 limit, and the
following relations

di=4+1/a,dy=4—-1/a if (k?) is divergent ;

dy=2,and o =1/2 if (k%) is finite ©
follow. For both of these situations, one still needs one more relation to solve for the indices.
It can not come from the correlation theory, because equations from higher k£ moments do not
provide any additional independent relations. It is the very place where the characteristic
dynamics of the model enters in a crucial manner.

In the HW model, [¢|? — |k?p|? for large k. This, coupled with the fact that the

renormalized propagator” goes as k=2 for large k, leads to the dynamical relation dpg =

4



dy +6 > 8. With this constraint on dy, (k?), must be finite (¢ — 0), and a complete solution
for the indices is dn = 8,dy = 2 (consistent with —3 inviscid power law of Ref. 2), and
a = 1/2. Obviously, in this case, Wy is logarithmically divergent. This analysis immediately
reveals certain inadequacies of the existing literature. For example, a simple minded closure
such as D ~ W assumed in Ref. 6 can be true only if Wy, is finite [D is finite for all cases].
Another example is related with the question of saturation of Wy in & — 0 limit. The
dissipative term necessary to balance the diffusion for a steady state remains finite even in
the zero dissipative limit. This is in contrast to the stated conclusion of Ref. 4. It is evident
that a sufficiently large cut-off kmax(> £7%) is crucial for the saturation to be attained.

For the PF, in contrast, dn — dy = 2, because the ion response is essentially adiabatic in
the asymptotic regime. The consistent solution for the indices turns out to be dg = 5, dy = 3,
and a = 1, implying that (k?) is divergent, while Wy, is finite. It is also interesting to note
that the above results for the inviscid power law seem to be insensitive to the special choice
of dissipative term at short wavelengths, as long as the médel dissipation is so constructed as
to form a well-posed problem. For example, if we replace —¢£V?2 by €V#, only « is modified
(1/8 for PF, and 1/4 for HW), leaving both dy; and dy unchanged.

A fully self-consistent solution of the correlatign theory requires a closure scheme, i.e., a
relation between II(k) and I, (k). We now motivate such a scheme for the PF model. The key
point is to identify that in this model the inverse decorrelation time in the weak turbulence
limit is v.. Making use of the standard arguments invoked in the diffusive renormalization
theories, and adopting the normalizations: t — t/ve, 1 — r/ko with ky = v./Vi, Vi =
Tc/eBLy,, (L, is the density gradient length scale), D — DoD with Dy = V2/ve, and

Iy — 41, /L2k$, we construct the spectral response function

II(k) ~ ff—(&z : (7)

so designed that the inverse decorrelation time reduces to v (= 1 in the dimensionless



Eq. (7)) in the weak turbulence limit, while it becomes Dk?in the strong turbulence limit.
With Eq. (7) the set of Eqgs. (2) is closed, and simple manipulations lead to a nonlinear

differential equation for the “psuedo-correlation function” P(r),

d1ld 1 1 rP(r)
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where 19 = D,/Do. From Eq. (2.2) P(0) = 1, and for small » Eq. (8) gives P(r) =
1 —72(1/8np — 1)/8D + --- . The small r behavior of P coupled with the physical require-
ment that P(r) — 0 as r — oo defines an eigenvalue problem for D, i.e., D is determined as
the eigenvalue associated with the well-behaved solutions of the nonlinear Eq. (8). Equation
(8) is a consequence of only Egs. (2.1) and (2.2) implying that the Dyson-like integral equa-
tion (2.3), merely provides the additional boundary condition necessary for the nonlinear
eigenvalue system. On comparing terms from two equivalent small r expressions of P(r),
i.e., from Eq. (2.2) and Eq. (8), we obtain an important formula for the inverse decorrelation
time

=D (¥) =g 1. ©)

This equation is precisely a direct consequence of our constructive spectral response func-
tion Eq. (7) and the conservation law Eq. (4.1). It suggests that the turbulent diffusion is
possible, only if 77y is less than 1/8; a condition consistent with the linear instability thresh-
old (sufficient for k£ ~ 0, necessary for all k) for an isotropic spectrum k? ~ 2k2. It is
also interesting to note that the same condition is necessary for the evanescence of P(r) at
large r; it is for g < 1/8 that the large r behavior is described by the decaying first order
modified Bessel function of the second kind (K;-function). Equation (9) also indicates the
importance of introducing the D,V? term into the system. Lack of this short wavelength
dissipation results in zero decorrelation time. In fact, for 7o = 0, dP/dr|,—o does not exist,
and the eigenvalue problem [P(0) = 1,dP/dr|,=0 = 0, P(00) = 0] associated with Eq. (8) is

no longer well-posed.



With a finite 7o the eigenvalue problem for P(r) can be easily solved by using a shooting
code. For a given P(r) the density spectrum Iy(k) follows from Eq. (2.1), and one can
then evaluate (k?), the total turbulence intensity Wy and other quantities of interests; the
problem is fully solved. Numerical results for D, Wy, and I,(k) are shown in Figs. 1 and 2
respectively for various values of 79. The diffusion coefficient seems to be proportional to the
intensity, D{no] ~ 1.2Wy[no], implying that the simple minded closure pertains throughout
the entire (from weak to strong) turbulence regime for the PF model.

The strong turbulence regime, characterized by Dk? > v, also corresponds to 7o < 1/16.
In this regime the dimensionless D is a slowly varying function of 7o [Fig. 1]. Therefore, the
physical D scales as Dy and the magnetic field scaling of the diffusion coefficient approaches
1/B?, exactly the B-scaling of the classical transport theory in contrast to the common
belief® that the B-scaling for strong turbulence is likely to be Bohm-like, i.e., D should be
proportional to 1/B. This belief follows from a naive scaling that can be deduced from the
diffusive renormalization (Dyson-like) equation, provided the turbulent inverse deccorelation
time proportional to D is dominant. Very often, this technique is referred to as estimate of
transport by “mixing-length”.® ® The non-Bohm like diffusion found in the PF model sug-
gests that this estimate may not be universally valid for strong E x B turbulence. Interesting
enough, this technique seems to be appropriate for an estimate of higher order k-moments,
e.g., (k%) in the strong turbulence is found to be consistent with Eqs. (4.1) and (9).

We now resolve a seeming contradiction between our PF result and a simple estimate
of diffusion coefficient from the formula for Brownian motion. In this picture D is often
estimated by using the stepsize measured by the correlation length, and the frequency of
random walk approximated by the characteristic frequency that breaks the coherent motion
of waves (the inverse decorrelation time). Consequently, one expects that a spectrum with
a peak at low k (long-wavelength condensation) may result in catastrophic diffusion. Our

solutions for PF clearly show that the density spectra do have peaks at low k& whearas the



energy spectra w(k) = |Ex|? = k%I,(k) have peaks at finite k£ [cf. Fig. 2]. However, in
either case the averaged k2, which can be approximated by (k?) is not small at all. It can
be seen clearly from Fig. 2 that as the turbulence gets stronger, the spectrum (still peaking
at low k) is characterized by a larger (k?), or a shorter correlation length! Therefore, a
density spectrum peaking at low k& does not necessarily imply a longer correlation length
and a catastrophic diffusion.

Using Brownian motion concepts one can derive a quasilinear estimate for the diffusion:
D, =~ (1/k?)y, where (---), is the average over k. For the PF model, this formula yields
Dy =1/8—mnp, if k2 in -y, is assumed to be k?/2 (isotropy). Surprisingly, this formula agrees
fairly well with the numerical result from the correlation theory, even in the strong turbulence
regime (no < 1/16) [cf. Fig.1], where the inverse of decorrelation time is dominated by
Dk?. It appears that as far as the transport is concerned, PF exhibits three (consistent)
quasilinear features: (a) classical B-scaling; (b) D ~ 1.2Wy; and (¢) D ~ D,. In terms
of Brownian motion this interesting behavior can be interpreted as a synchronization of the
squared correlation length (stepsize) A% with the decorrelation time 7.. When 7. behaves
as 7o/ in strong turbulence regime, A% ~ ny/k2, so that the resultant diffusion coefficient
remains independent of 79 and near its quasilinear value. Thus, one should not take the above
“quasilinear features” to imply that the strong turbulence never asserts itself for PF. In fact,
neglecting the Dk? term in Eq. (2.3) with Eq. (7) leads to poor results except very close to
the onset of turbulence [cf. Eq. (4.1)]. While the opposite (large DK?) approximation leads
to Bohm scaling and results quite different from D(ng| ~ 1.2Wy[no]. Therefore, the diffusive
renormalization (Dyson-like) equation proves to be quite inadequate for transport estimates
within the current context; this is in contrast to the scenarios presented in Refs. 8 and 9.

It is worth pointing out at this stage that the results derived from the correlation theory
in this Letter are quite different from those obtained by imposing non-dynamical Ansatzs

on turbulence models like PF.1° In Ref. 10, a canonical ensemble is assumed for density



fluctuations, resulting in a constant density spectrum in the inviscid range (equivalent to
dy = 0). Apparently, the argument of Ref. 10 that a divergent density spectrum presumes
energy cascading to short wavelengths is, in fact, contrary to our observation deduced from
the correlation theory as illustrated by Eq. (3). In actuality, for diffusive plasmas the total
intensity of fluctuating density is not an inviscid constant of motion, although the total
density is a Lagrangian inviscid constant of motion. The canonical ensemble Ansatz of
Ref. 10 is thus technically unfounded.

The major characteristic of PF-like turbulences is the shrinkage of the correlation lengths
for short wavelength dissipation. This characteristic, independent of details and merely per-
taining to the dynamical nature embodied in di — dy < 4, implies a breakdown of “mixing-
length” estimates for the turbulence level. The physical total intensity in strong turbulence
regime is proportional to 1/kZ ~ A2%/n, rather than to A? (the squared correlation length)
alone. Breakdown of “mixing length” has been recently reported on experiments in the
supershot regime on the TFTR tokamak.!! The above analysis then‘suggests that the corre-
sponding turbulence in the supershot regime on TFTR may be of a PF-like genre, and that
the imprbved confinement in the supershot regime may be interpreted as achieving the type
of turbulence whose transport is characterized by shrinking correlation lengths.

In conclusion, the introduction of an appropriate short wavelength dissipation is found to
be crucial for formulating a well-posed problem within the framework of equal-time correla-
tion theory to investigate the dynamical nature of 2D plasma turbulence with one Lagrangian
inviscid constant of motion. For a two-field problem the inviscid power law and the degrees
of divergence of various k-moments are characterized by three power indices, dm,dy, and
a. By the correlation theory for Lagrangian inviscid constant of motion only two indepen-
dent relations can be obtained. Therefore, the full determination of the indices relies on the
dynamical nature of the system, which could yield, for instance the value dp — dy. This

general scheme provides a powerful approach to solve the inviscid power law (dy), and has



been applied to HW and PF to illustrate the relationship between the inviscid power law
and the characteristics of transport. For HW (dy = 2) Wy, is logarithmically divergent, and
independent of a, while (k?) is finite. For PF (dy = 3 > 2), on the other hand, Wy is finite
(clump theory!? fails), while (k?) is algebrically divergent with the degree depending upon «,
and the dissipation model. In both cases the diffusion coefficient D is shown to be finite in
the inviscid limit. In a sense the 2D turbulences, on the basis of the divergence involved, can
be catagorized into HW-like and PF-like. In particular for PF, we constructed a physically
reasonable spectral response function on basis of the above asymptotic analysis to solve self-
consistently for the spectrum and the transport. The solution exhibits several “quasilinear
features,” which seems to stem from a synchronization of the squared correlation length with
the decorrelation time in strong turbulence regime. The shrinkage of the correlation length
is a direct consequence of the divergent nature of (k?), and not an artifact of the particular
choice [Eq. (7)] of the spectral response function. For turbulences with this synchronization
(PF-like) “mixing-length” breaks down, so that the diffusive renormalization (Dyson-like)
equation fails to provide a simple tool for the estimate of transport; the quasilinear formu-
las, on the other hand, yield much better estimates. This theory combined with the recent
experimantal observation!! suggests an interpretation for the improved confinement in the

supershot regime on the TFTR tokamak.
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Figure Captions

1. The diffusion coefficient, D, (hollow circles) and the total turbulence intensity Wi
(dark circles) versus 7o from the numerical solutions of Eq. (8). The solid curve is the

quasilinear formula Dy = 1/8 — no.

2. The spectra I (k) (solid curves: al,bl,cl) and wave energy spectra w(k) = k?Iy(k)
(dashed curves: a2, b2, c2). The curves a,b and c correspond to 79 = 0.1,0.01 and 0.001

respectively.
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