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Abstract

A model of magnetically constricted hot intergalactic plasmas as a source of the
cosmic X-ray background radiation satisfies the known observational constraints. The
network magnetic fields that weave through clusters of galaxies are strongly constricted
by the violent relaxation of the clusters in the supercluster potential. These intercluster
fields tend to constrict the trapped plasma, driving them to high densifies and high
temperatures. These hot (7' > 10*K) and dense plasmas are magnetically insulated
from colder (T < 10¢K) surrounding gases, forming intermittent intercluster medium.
The dynamical processes of these fields involve rapid magnetic relaxation toward the
nearly force-free state by involving reconnection of field lines and rapid heating of
plasmas by being continuously fed energy from the violent gravitational relaxation. The
fundamental physical processes of magnetic constriction and subsequent plasma heating
by the violent motions of compact objects that trap the magnetic fields are elucidated.
Brighténing regions of such magnetically constricted plasmas have typical dimensions
of ordef the size of clusters or even less, thus they will be seen as a diffuse X-ray source.
This model explains the large amount of necessary thermal energy that results in cosmic

X-ray background radiation in a large supercluster spatial scale, the rapid heating, the



small amount of deviation of _the cosmic microwave background radiation due to the
Comptoriization, and how to keep colder gases from evaporating. Compatible with this
model is the primordial origin of magnetic fields. Earlier we demonstrated that the
primordial plasma could sustain a large amount of spontaneously generated magnetic
fields and thus isothermal density fluctuations with little temperature signatures. We
further consider the evolution of such generated magnetic fields by dynamo in the epoch
following this and preceding the above X-ray forming epoch. Using the ABC dynamo

model, we obtain the cellular morphology of magnetic fields in the expanding Universe.



I. Introduction

The origin of the cosmic X-ray background radiation still remains a puzzle. This can be
fitted by the bremsstrahlung from optically thin plasma with Tx ~ 40keV. There are two
possible candidates for this; a hot, diffuse intergalactic medium (IGM), or sum of unresolved,
discrete sources, such as quasars and Seyfert galaxies. In fact, the recent X-ray satellite
ASCA could discriminate against such candidates.

In this paper, we consider diffuse intergalactic media as a possible cause of the X—rlay
background. Especially we assume the presence of global cosmic magnetic fields and discuss
if such intergalactic magnétic fields could remove difficulties that existing non-magnetized
IGM models are confronted with. There have been many works so far done in the field of the
intergalactic medium, but little attention has been paid to the consequence of the violent
activity of the magnetic fields. '

Guilbert and Fabian (1986) concluded that the X-ray background can be explained if
IGM was heated up to Tx ~ 400keV at z = 3.6 due to some unknown mechanism (see
also Field and Perrenod 1977; Taylor and Wright 1989). There are, however, stringent
constraints for possible nature of IGM: According to the recent COBE data of the cosmic
microwa.ve background radiation (CMBR), the allowed value for the Compton y parameter is
at most 0.001 (Mather et al. 1990). The presence of hot radiation inevitably causes, however,
the distortion of CMBR via inverse-Compton scattering (e.g. Sunyaev and Zeldovich 1972;
Lahav et al. 1990). The lack of the Comptonization has a severe constraint on the non-
magnetic IGM model for X-ray background. A hot IGM also requires huge mass in the
universe, 2 > 0.2, whereas the baryon densities, estimated from the theory of primordia.l
nucleosynthesis, give 25 ~ 0.1 or less, in apparent contradiction with the results of the IGM

hypothesis.




To sum up, a huge amount of energy needed i;o heat up IGM and little distortion observed
in CMBR seems to be a paradox for the (uniform, non-magnetized) IGM model as an origin
of X-ray background radiation. There is a possibility for IGM in a two-phase medium;
namely an X-ray emitting, hot tenuous region is surrounded by low temperature, dense
region. However, to get huge X-ray emissivity we need a certain value of density for a hot
medium, and, to make pressure balance, the density of the cool medium should be even larger,
requiring large Qp. It is also unclear how to stop evaporation of cold gas. Basic physical
processes of flux tube constriction that may underlie the phenomenon are surveyed in Sec. II.
We discuss this X-ray mechanism in Secs. III and IV. Cbsmological fields existed primordially
from the fundamental physical reasons (Tajima et al. 1991). After such magnetic fields are
spontaneously created, they need to grow in spatial size and also to fight against the dilution

~due to coémic expansion. This may be realized by the dynamo action. We consider such a
possibility by adopting a simple model called the ABC (Arnold-Beltrami-Childress) dynamo
model in Secs. V and VI. We note that observational evidence is increasing for large-scale

magnetic fields, such as intercluster magnetic fields (Kim et al. 1991; Tribble 1991).

II. Basic Physical Processes of Flux Tube Constric-
tion E

Before we enter the wave realistic model of a network of magnetic fields anchored in
violently moving clusters, we isolate two specific physical processes of flux tube dynamics in
this section. The clusters may be moving violently relative to each other, both in terms of the
mutual distance and in terms of the mutual orientation. The former will stretch or shorten
the tubes, while the latter will twist and kink the tubes. In general, the web of networked
magnetic fields undergo the combination of these motions (and wave complicated ones).
During such actions the complex geometry of networked fields is often forced to undergo

reconnection. This involves the resistive process, accompanied by heating and acceleration

4




of the plasma trapped in the magnetic field. As a result the topology of magnetic fields
changes. In the present section we pick up the twisting motion of the flux tube and its
resultant kink instability as a first example and examine the interaction of two flux tubes

and their reconnection as a second.

A. Twist and kink of flux tubes

When a flux tube is mechanically twisted at two ends that rotate in the opposite senses,
the field lines in the tube get wound up and as a result the field-aligned current (j x B = 0) is
induced. Aslong as j x B &~ 0 (or j x B = Vp), the plasma stays in equilibrium. However, if
the current buildup is above a certain threshold, the entire flux tube now becomes unstable
and exhibits a kink instability. In Fig. 1 we show an example (Zaidman and Tajima, 1989) of
such a twisted flux tube undergoing the kink instability. Also in this simulation the twisting
azimuthal velocity is sheared, i.e. v4(r), so that the fwisting magnetic fields are now sheared
as well, By(r). |

The sheared magnetic field structure may be best illustrated by the analysis of the mag-
netic fields in terms of the local rotational transform u(r,z) (Shafranov, 1970) and its asso-

ciated so-called safety factor g(r,z) = 2/t = 7! locally defined as

(r,2) = mrr

where R = L,/2m. Since the twist is a function of z, the “rotational transform” and the
safety factor are functions of z and are thus local (z) quantities. When g¢ is, for example,
3 at z = zp, the magnetic field is spiraling in the azimuthal diréction with a pitch of 3L,.
This would amount to a winding in the poloidal direction of the particular field line once
while winding three times in the toroidal direction (in fhe periodicity of z) if this local ¢ =3
was held for all z. Such a local q is depicted in Fig. 1(a). From Shafranov’s theory a strong
kink instability is expected when g becomes less than unity. The result is in Fig. 1(b) for



the magnetic line. As the twisting continues, the magnetic field lines become more wrapped
- showing a wider area with ¢ < 1 [Fig. 1(c)]. Figure 1(d) shows an distortion with azimuthal
mode number m = 1 as exemplified by a crescent-shaped island and by a dipole structure.
Instead of causing the twisted field lines by twisting, one can study the isolated effects of
the kink instability by starting a force-free equilibrium.with field-aligned current (j x B = 0)
being sufficiently strong to begin with. Shown in Fig. 2 are two cases of such initializations,
one with the current profile j,(r) oc [1 + (kr)?]~!, and the other with the Bessel functional
current profile (Matsumoto and Tajima, 1994). In these particular cases the flux tube was
emersed under the influence of a uniform gravity in the negative z-direction. We observe
~ that the flux tube becomes unstable against the kink mode and the resultant field lines form
a supercoil structure. Some portion of the supercoil rises due both to the kink and the
gravitational buoyancy.

Shown in Fig. 3 is a case where we put in two point-like gravitational attractors as the
arrows indicate and these gravitational objects have Keplerian disks with a bulge with their
axis along the z-direction (Valinia and Tajima, 1994). The angular rotations of two disks
are opposite and the magnetic field lines that penetrafe through the disks are twisted as a
result, as in the case of Fig. 1. As the twist gets stronger, the kink instability sets in as well
as the evidence of the axial jet flows. This configuration and evolution may be thought of
as a simpliﬁed version with only two clusters interacting one flux tube between them for the

more complex N clusters interacting with a web of intercluster magnetic fields.

B. Reconnection of field lines and flux tubes

When shear flux surfaces are moved by the kink instability and one flux surface is squeezed
against the other, magnetic field lines are pinched and reconnected around the X-point.
This in fact happens in the kink mode associated with the action in the previous subsection.

When the magnetic surface is totally reconnected and torn apart, a portion of plasma can be



expelled out into the exterior as seen in Fig. 1. In order to isolate the reconnection process
of flux tubes or magnetic field lines, we illustrate the interaction of two flux tubes that are
originally in force-free equilibrium similar to the one in Fig. 2(a). See Fig. 4(a). If two flux
tubes carry currents that are parallel, while the axial magnetic fields are antiparallel, the
magnetic helicity /z A - BdV of two tubes are antiparallel. Since two parallel currents are
attractive and susceptible to the coalescence instability (Bhattacharjee et al. 1983), these two
loops approach, as seen in Fig. 4(b). Similarly one can look at the case where the magnetic
helicity of two loops are parallel. Although the classical tearing instability theory (White
1983) predicts no difference in reconnecting rates in these two cases, Figs. 4(a)—(f) along with
Figs. 4(g)-(h) show that the antiparallel helicity case is much faster (and explosive) than
the parallel helicity case. This effect has been predicted by Tajima (1981) and also seen in
simulations (Leboeuf et al. ’1982). Details have been analyzed by Tajima and Sakai (1989).
The strong jet flows along the flux tubes after the reconnection are clearly seen in Fig. 4(d)
for the ahtipa;a.llel helicity reconnection. This antiparallel helicity reconnection can be many
orders of magnitude faster than the tearing rate on the Sweet-Parker (1957-58) rate, and can
be in the ball park of the Alfvén time scale, as seen in Fig. 4. An experimental verification of
such a phenomenon has recently been found (Ono et al. 1993). Such a possibility of fést rate
of reconnection is very significant, as astrophysical plasmas (particularly those of cosmology)
are vast and the Lundquist number (the magnetic Reynolds number) tends to be huge and
any intermediate time scale between the resistive and Alfvén time scales often tends to be

too long for the age of the Universe or for its evolution.

I1I. Magnetically Co'nstricted IGM Plasmas

We assume that global ‘primordial’ magnetic fields weave through clusters of galaxies.
These magnetic fields are rapidly stretched, twisted, and braided by the violent relaxation of

clusters of galaxies (Lynden-Bell 1969) in the supercluster gravitational potential. It is thus
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natural that a substantial amount of the gravitational energy can be supplied to the magnetic
energy at this stage. These interclustér fields tend to constrict the trapped gas, driving it
to high densities and high temperatures. According to recent calculations of amplification
of magnetic fields by the ABC dynamo (e.g. Galloway and Frisch 1986), the essence of the
process of plasma motion of the violent relaxation is captured by the ABC dynamo, leading
to chaotic flow, which in turn drive chaotic magnetic field lines and thus amplify them.
The generated magnetic fields may exhibit chaotic and intermittent properties and attain
filamentary and/or cellular structures, as will be discussed in Secs. V and VI.

As rapid relaxation (e.g. Taylor 1986) proceeds, we may apply a nearly force-free condition

for such a magnetically constricted plasma;
Jx B+ VP = const . (1)

Here P denotes the thermal pressure of the plasma. The kinetic temperature of a constricted
plasma is hot enough to emit X-rays. Such X-ray ‘brightening’ is quite reminiscent of the
phenomenon in the solar prominence, known as disparition brusques, in which disruption 6f
filaments emitting X-rays driven by active motion of photospheric plasmas (see, e.g. Pneu-
man and Orrall 1986). Also related may be the X-ray brightening from the galactic ridge
(Koyama et al. 1986) in the galactic disk, where the magnetic constriction may take place in
a similar fashion. If we assumed a two-phase medium under pressure balance (see Guilbert
and Fabian 1986), the space outside X-ray emitting hot plasmas should have been surrounded
by a substantial amount of colder plasmas, requiring a huge mass in the colder component,
or non-negligible distortion in CMBR by the hotter component.

It should be noted, however, that the (nearly) force-free condition does not necessary

entail that the pressure balance holds in our model; i.e.

(g;:) + P # const . (2)



We now introduce a distribution function, f(z,y,z), which is the probability to find a
dense plasma at a certain point, (z,y, 2). If we assume the completely random distribution of
plasma inhomogeneities, f(z,y,2) = f(z)f(y)f(2). The average of the probability function

over a unit volume may be written as

(f(z,9,2)) dV = (f(2)) (f(®)) (f(2))dV = faV . (3)

Here brackets denote a volume average of physical quantities. This averaged probability
function, f, is the volume-filling factor, and is expected to be much smaller than unity in
our case, as we shall see below. In the following, we consider the situations where f <1

keeping the total X-ray luminosity constant,
[exave = [cgtave, (4)

where the superscript, uni, represents the value under the uniform assumption, and dV? is
the volume occupied by hot plasmas. Since Lx o n2v/T and dV? = fdV"™, we have for the
same temperature T', the density of X-ray emitting plasma is much higher than the uniform

value:

n= f—1/2nuni . | (5)

The Compton y parameter, which is proportional to nT dz, where dz is a length along the

direction of the sight, is then reduced to
y= fi/2qum (6)
by a factor f~%/2(>> 1) from the value obtained under the uniform assumption, because
dzf = (f(z)f(y) f(z)dz) = f dz . (7)
Likewise, the total baryon density, g, is
Qp= [ndv=prop, (8)
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and becomes by a factor f~/2? smaller. It is suggested from COBE results that “the limits
on y would limit the X-ray background to only 1/36 of the observed value” (Mather et al.
1990), indicating that f < 10~2 in the present framework.

We know from the absence of absorption lines in QSO spectra that cold gas cannot be
neutral (Gunn and Peterson 1965). The present model naturally satisfies this Gunn-Peterson
test, because the present model need no cold dense gas for confinement of hot plasmas. It
is, on the other hand, entirely possible that pockets of cold gas regions exist, as the thermal
conduction is substantially reduced by the presence of magnetic fields, but still enough to

ionize hydrogens in the cold gas.

IV. Heating of IGM Plasmas by Magnetic Fields

By the presence of magnetic fields, an efficient heating over a very large volume by a large
amount is possible. This is because, in our model, no time is needed to form the network

- structure. For magnetical constriction to be possible, magnetic field strength is required to

be at least
:1]-3; >nkT , 9) |
B > 2.5 x 1075 (Gauss) (ﬁ)m (ﬁ@)m (10)
Note that this field strength is local (to the hot plasmé, region) one, and is
B~ fz'? B, (11)

where fp is the volume-filling factor for magnetic fields which is not necessarily the same as
f for a plasma. For fg of order 1072, the value obtained in Eq. (9) is consistent with the
values of mean field strength of order 10~° G derived by the measurements of the rotation

measure (Fujimoto et al. 1971).
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The heating provided by magnetic energy is

1  B?
Lx ~ / (JByaV =~ [ Z-dv (12)
%—?sz(va)+nV2B. (13)

The heating time in Eq. (12) is related to magnetic reconnection

£
Trec ~ R:':]. ) (14)
TIsH

where £ is the characteristic spatial scale of the plasma, ¢ is determined by the dynamics
of reconnection and relaxation. As we discussed in Sec. II, the parameter € is generally
0 < € < 3/5; € = 0 corresponds to the case of explos_ive reconnection (e.g. Petschek 1965;
Tajima and Sakai 1989), whereas ¢ = 1/2 is the case of Sweet-Parker-type (Parker 1957;

Sweet 1958). The magnetic Reynolds number is

R, =~ (”—A) , (15)

ve \ £

where v4 is Alfvén velocity,

(16)
Ve is the collision frequency (7T in eV),
Ve =3 x 10~ n(In A)T-%2 | (17)

and the Spitzer-Hérm conductivity is

InA.
For relevant values and ¢ = 0, for example, we find
1 B \? L 8
~ 55 _*~ . 1
Lx~3x10 Trec (10—6G) (10"’5 cm) (19)
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where L is the supercluster size. From the observed energy requirement (Guilbert and Fabian

1986) Lx ~ 10°2/7501, Where Yeool is the radiative cooling rate. We therefore get

T‘“:m“*( B )2(1 L )8. (20)

Teool 10-8 G 025 cm

Equations (14) together with (20) determine the length scale on which reconnection takes

place:

vi—¢ \10-¢ G

This reduces, for example for € = 0, to £ &« n~Y/® B, and takes the value of £ ~ 10~ cm

' 2 1/3—¢
L= [1014 IS8 ( B ) v}(‘] . (21)

for 1 > ¢ > 0 with the cooling time of 10 s with B(local) ~ 1z G. This is not unreasonable
. if B is highly intermittent and turbulent as widely suspected of chaotic field lines.

We introduced a new picture for the IGM that removes the difficulties of the existing
models facing the observed X-ray emissivities, the distortion in CMBR, and the total baryon
number. It is demonstrated that the cosmic X-ray background is accounted for by hot
plasmas constricted by weaving magnetic fields, driven by the violent relaxation of clusters |
of galaxies. This mechanism naturally explains th/e epoch of the cosmic X-ray background,
as it is related to the epoch of violent gravitational relaxation; otherwise the X-ray spectrum
would be much wider. The effects of such magnetic fields are that, with the known X-
ray emissivity, (i) the Compton influence on the CMBR (Corﬁpton y parameter) and the
total bafyon density (Qp) are both reduced by a factor f~1/2(>> 1); (ii) there exists enough
magnetic energies to account for X-ray emission and the necessary heating rate determines

- the spatial scales of the fine structure of the chaotic magnetic fields.

V. The ABC Dynamo

We now return to the problem of how the primordial large-scale magnetic fields and their
structure may have been formed, which have contributed to the kind of fields needed for the

cosmic X-ray background radiation considered in previous sections. Recently there has been
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a renewed effort to explain the existence of the large-scale structures in the universe. New
observations indicate structures on the largest scales (Saunders et al. 1991, Broadhurst, et al.
1990; de Lapparent, et al. 1989), as well as an ever-decreasing limit on the non-uniformity of
the cosmic microwave background at the time that matter and radiation decoupled (Mather
et al. 1990; Smoot et al. 1992). It is well known that for given matter fluctuations compatible
with this low level of electromagnetic fluctuations, there has been too little time since the
recombination to allow for the formation of observed galactic and other structures. The cur-
rent “cold dark matter” theory tries to answer this difficulty. It may be possible to introduce
additional elements to consider that (i) the radiation epoch in the primordial universe was
crucial in preparing for the formation of large structures via magnetic interactions, and (ii)
the magnetic structures involved were isothermal in nature and so did not leave an impring
on the high-frequency blackbody spectrum.

" During the period from 1072 to 10'2 second after the big bang, the universe consisted
primarily of an expanding electron-(positron)-proton plasma, and the electromagnetic inter-
action was the dominant force. Thus this period may be called the “radiation epoch” or
“plasma epoch.” If fluctuations led to the growth of seed magnetic fields during this time,
then the resulting fields may have had a significant effect on the distribution of matter. There
have been several works on the magnetic field evolution in the early universe (Harrison, 1970,
Sato et al. 1971;‘Bajerlein, 1978).

Investigations such as Harrison’s have assumed primordial turbulence with nonzero vor-
ticity. However, the aséumption of the presence of turbulent flows seems to find less sup-
porters these days because the presence of flow and the observed homogeneity in the 3K
microwave background are believed to be incompatible (Rees, 1987). On the other hand,
it is unclear whether the incompressible (or vortical) flow motion of low- or zero-frequency
would leave an observable imprint on the cosmic background. The coupling of photons with

adiabatic perturbations such as sound motions and that with nonadiabatic vortical motions
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are quite different. One of the major differences is that the latter need not incur density
perturbations, and as such it is more difficult for nonadiabatic vortical motions to couple to
photons (Tajima and Taniuti, 1990). It is in fact quite natural to take the incompressible
mode for the very large-scale slow motion that we are interested in. Furthermore, it has
recently been shown (Tajima et al. 1992a) that in the early epoch of the radiation era it is
possible that the nearly zero-frequency magnetic fluctuations associated with a plasma in
an (even perfect) thermal equilibrium can be substantial based on the rigorous theory of
the fluctuation-dissipation theorem (Sitenko, 1967). The nearly static magnetic fluctuations
can couple with the plasma, thus creating density and velocity fluctuations, while the high
frequency photons couple more weakly with the plasma. The presence of such magnetic,
density and velocity fluctuations, albeit with small-scale seed fields, could influence the sub-
sequent evolution of spatially larger scales of ﬂuctuatipns. Furthermore fluctuations with
size A > ct (the horizon) are certainly not in thermal equilibrium and thus could give rise to
non-equilibrium noise. These magnetic fluctuations decayed only slowly in time after» they
entered the horizon, with the diffusive relaxation time scale t4ir ~ wZ/\2 Jvc?, where v is the
collision frequency. If £ is longer than the interval between the entrance time into the
horizon and the exit time (i.e., the recombination time), such magnetic fluctuations were
unable to reach thermal equilibrium; see Fig. 5. (The velocity fluctuations decay faster due
to viscosity than magnetic fluctuations.) This provides 1arge—scale seed fields. It is tempting
to consider (Fujimoto, 1990) such seed fields that were amplified as a candidate for creating
recently discovered large-scale structures.

In this paper we investigate, through a very simple ‘model, the characteristic morphology
and strength of the magnetic fields that may result from dynamo action in an expanding
highly conducting medium. This will provide some qualitative understanding of the interplay
between the exponentiation of the field that can result from an incompressible chaotic flow,

and the effects of the expansion of the medium. Here we are concerned with large-scale
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magnetic fields. The relation of microscopic fields (as discussed in Tajima et al. 1992a) to
such macroscopic fields is important (Tajima et al. 1992b).

In addition to the epoch prior to recombination the epoch after recombination may also
be relevant. After the recombination most constituent matter becomes charge neutral and
the main interactive force becomes gravitational rather than electromagnetic. It is known,
however, that there exists very hot tenuous plasma in the intergalactic (or intersupercluster)
space (Giovannini et al. 1990). Such hot plasma may be of recent creation as we discussed
in Sec. IIL; on the other hand, it may well be of primordial nature (i.e., around the time of
recombination). For example, the post-recombination violent relaxation of gravitationally
unstable neutral matter can twist and stretch pre-existing magnetic fields that have been
- created prior to recombination. Matter may be heated by this stretching and twisting, thus
creating and sustaining hot tenuous plasmas on the surface of denser matter and beyond.
In addition, even without such, the ionization rate immediately after the recombination did
not go below 1076, Such plasmas provide an alternative medium for the dynamo action of
cosmological magnetic fields as well as galactic magnetic fields. Such magnetic fields may
provide the necessary energy for X-ray emissions known as the cosmic X-ray background (e.g.
Guilbert and Fabian, 1986). The dynamo action after the recombination was investigated
by many others, including Ruzmaikin and Sokoloff (1977), Zweibel (1988), and Anderson
and Kulsrud (1991).

There do appear to exist cosmic magnetic fields of order 1076 G (see Norman, 1990 and |
references therein). These recent works tend to support the view that the galactic dynamo
has not had time to generate the observed fields. Such findings seem to suggest that they
evolved either during the plasma epoch or soon after recombination as described above.

In what follows we are interested in the cosmological dynamo as opposed to the galactic
dynamo. We are interested in general morphologies and other global characteristics of dy-

namo action in highly conducting plasmas with expanding background. In the cosmological
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dynamo, we are concerned about large—scaie magnetic fields whose size may be relevant to
- galaxy formation. In this scale the magnetic Reynolds number is extremely large. If the
dynamo action takes place, it has to be effective in this.nearly dissipationless situation. On
this large spatial scale the fast sound time scale can be coarse-grained. Thus we are dealing
only with the vortical component of velocities.

As a simple model, we adapt one used by Finn and Ott (1988) as a example of a steady
fast dynamo. A fast dynamo refers to a dynamo in which magnetic field amplification can
take place even in the limit where resistivity v — 0. They used the “ABC map,” which is
the discrete-time version of the 3D, incompressible, periodic “ABC flow” (named for Arnold,

Beltrami, and Childress). The ABC flow, given by the velocity field
vy = A sin(z) + C cos(y)
vy = B sin(z) + A cos(z) (22)
v, = C sin(y) + B cos(x) (mod 27} ,

is a simple steady-state solution of the Euler equation describing incompressible flows:

ov B p+v?
—a—t+wxv-—V( 5 ), (23)

where the vorticity w = V x v and V- v = 0. It is possible to generalize (22) to include
arbitrary spatial scales other than 27 by regarding A,B,C as specific Fourier coefficients
associated with such spatial scales.

Arnold suggested, and subsequent workers have confirmed, that this flow exhibits chaotic
streamlines. When the flow is chaotic, adjacent fluid elements separate exponentially (the so-
called Lyapunov exponentiation). In the limit R,, — oo the magnetic field lines are “frozen
in” to the fluid elements. The stretching of fluid elements leads to exponential collapse of

the area through which magnetic flux penetrates and therefore to exponential enhancement
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of magnetic field intensity in the fluid. Since streamlines lie on surfaces where p + v%/2 =
constant (from Eq. (23), space-filling chaotic streamlines can exist only in the neighborhoods

where

2
V(“é”):wxv:o. (24)

This defines the “Beltrami property”:
w=Vxv=Av, (25)

where A is a function of the streamline. In special cases A can be constant in the entire
space. This arises, for example, when the flow is globally chaotic. A similar case for magnetic
turbulence was postulated by Taylor (1978) for a toroidal confinement machine. The ABC
flow satisfied the Beltrami property for the simplest case A = 1.

The structure of the ABC flow has been studied in detail by Dombre et al. (1986),
who demonstrated the existence of an intricé,te mixture of regular and chaotic streamlines.
Dynamo action for the ABC flow was studied by Galloway and Frisch (1986), who numerically

integrated the induction equation

OB B 1,

for finite values of the magnetic Reynolds number R,, = w\/v. (Here v is the character-
istic velocity, A is the characteristic length scale, and +y is the resistivity.) They observed
exponential growth of initial magnetic fields for certain ranges of R,,. The field growth was
found to be concentrated in the regions of chaotic stréa.mlines, as expected from the above
discussion.
The mapping, which gives the position of fluid elements at discrete times, can be obtained

by a ﬁnité—differencing or strobing of the flow, yielding
Tn41 = Tn + A sin(z,) + C cos(yn) ,
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Ynt1 = Yn + B sin(zn41) + A cos(zy) , (27)
Znt1 = 2n + C sin(Yn41) + B cos(xn;_l) (mod 2rr) .

Here the subscripts refer to the time, and the timestep has been absorbed into the coefficients
A,B,C. The map is a good approximation to the flow for A,B,C< 1. It has the property
that the coordinate transformation between points in time is symplectic; it therefore exactly
preserves the incompressible nature of the flow. The structure of the streamlines and the
dependence on the coefficients has been studied by Feingold et al. (1988). Here we will
indicate briefly the topology of the mapping for values of A,B,C that will be of interest to
us.

A useful tool for understanding the topology’of a three-dimensional flow is the Poincére
surface-of-section. This consists of plotting intersections of trajectories with some two-
dimensional surface in space. In the case of the mapping, since an exact intersection with
the plane will rarely occur, we must instead plot intersections with a thin slice of the space.

In Figs. 6(a)—(c) we show the section 0 < z < 0.01 for the cases
{A=0.001, B=C =1.0}
{A=B=0C=0.30}
{A=B=0C=0.03}

réspectively. For each plot we started initial conditions at several different locations, and
iterated 50,000 times. In the first case the periodicity cube contains mainly tubes of regular
motion oriented in the z-direction, separated by thin strips of chaotic motion. In the other
two cases we see a complex mixture of regular surfaces and chaotic regions, with the behavior
being confined to smaller portions of the space for the. smaller value of A B,C. (For both of

these cases the structure is identical in the other two dimensions.) Figure 6(d) is a projection
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of x and y values for the same parameters as in Fig. 6(c); here we plot all points rather than

those falling in a slice of the space. We will refer back to these figures in Sec. VI of the

paper.

Finn and Ott used the ABC map to study dynamo action in the limit R,, — oo. In this

limit the induction equation becomes

dB _ OB B
— =5 tV:'VB=B.Vv. (28)

The fluid equation has the characteristics %— = v, and an infinitesimal displacement 6x
satisfies the equation
d(6x)

T=6X'VV y , (29)

which is the same equation obeyed by B. Thus we can follow the evolution of this frozen-in
field by iterating the map which gives the motion of the fluid elements. In the studies by Finn
and Ott the resulting stretching and folding of the field lines was shown (for A,B,C= 1.5) to
result in exponential growth of magnetic flux, as well as increasingly fine-scaled structure.
Their basic algorithm, which we will use, was as follows. First a set of points (for example
a plane) was chosen on which they wanted to follow the evolution of the initial field. To
observe the evolution of the field after n time steps, they first iterated the map backward n
steps in time to find the set of fluid elements that would end up at the locations of interest.

The magnetic field at time n was then taken to be given by the following linearized mapping:
B(x(n)) = J(Xn-1) - J(Xn-2) - I(x1) - I(x0) - B(0) , (30)

where J(x) is the Jacobian matrix for the map. We are interested Aprimarily in the case where
A ,B,C are sufficiently less than unity so that the mapping (27) is a good finite difference
representation of the differential equations (22).

Our work has used an adaptation of this model which includes effects due to expansion of

the medium. One of these effects is the decay of the velocity field. If the period we investigate
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is in the radiation epoch, then from standard big bang theory (e.g. Misner et al. 1970) we take
the expansion of the universe to be given by a = ao(t/to)'/? where a is the characteristic
length scale, and the subscripts refer to the present time. The velocity fluctuations are
expected to decay in time. For example, we may take the characteristic velocity to go like
v  1/a if we assume that the peculiar velocity in the ¢-direction is vy = (2 x r)gs = constant
(does not decay due to the cosmic expansion). Then v o< t~*/2. A viscous damping is also
possible. For times after the recombination we would take a = ao(t/to)?®. In our mapping

representation, this is represented as a “time” dependence of the coefficients:

Ao :
A= W ; etc. (31)

Here n is the number of iterations (i.e., the time measured in characteristic “dynamo times”),
and a is the ratio of the characteristic expansion time to the dynamo time. ng is the initial
time of dynamo action. (In the work presented here we used o = 1,m0 = 1.)

This time dependence of the coefficients means that the structure of the velocity field
will change in time. For A,B,C> 1, nearly all streamlines are chaotic, and we can have flux
growth throughout the space. On the other hand, when A,B,C« 1, then most of the space
contains regular motion, and we would expect the strong flux growth to be confined to small
regions. So we expect that as time goes on, our velocity field will become more regular and
structured, and the regions of strong magnetic field growth will become concentrated into
structures of relatively small volume. _

The other effect included is the decay of magnetic field strength due to the expansion of
the medium. When dynamo action is absent, this follows from flux conservation, since we
would then have

flux = ® = Ba? = constant, therefore

1 1
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In our model this is incorporated by dividing the magnetic field at time n by the factor
a(no + n). |

A useful parameter for quantifying the field growth is the plasma beta: 3 = 87P/B?% =
8rnT'/B2. For isentropic expansion, we have Ta = constant, thus T o< 1/a. Using n o< 1/a®
and B ll /a2, we have § = constant. This is the case for simple cosmic expansion with

constant magnetic flux. However, if dynamo action leads to flux growth, then g will decrease.

VI. Numerical Results of the ABC Dynamo

Using the model described above, we have carried out a series of numerical experiments to
study the growth of magnetic fields in an expanding medium. In most of the runs presented
here we kept A=B=C at all times. As A,B,C decrease with time, the topology of the
streamlines will go through phases as indicated in Figs. 6(b)—(c). As the ABC flow is not a
general flow this imposed a particular structure on the velocity field as a function of time.
Within the limits of this imposed structure, we wanted to determine whether local magnetic
fields could be maintained against the effects of expansion, to see what structures would
occur, a.nd to see how the field behavior depended on the parameters of the model.

We examined the evolution of the magnetic field energy both on a plane (z = 0) in space
and in the whole periodicity cube (27 % 27 x 27). We work with a grid of ninety-nine points
in each direction, and in all runs so far assume an initially uniform magnetic field in the
z-direction of strength By = 1 in arbitrary units.

In Fig. 7 we plot the field energy B2 on the z = 0 plane at various times, for Ag =
By = Cp = 0.3 and o = 1. (A logarithmic scale is used.) As shown by Finn and Ott,
the magnetic field develops increasingly fine-scaled structure as time goes on, with strong,
" oppositely-directed fields on nearby grid points. We have done a coarse-graining to eliminate
some of this fine structure for illustration purpose. The plots of Fig. 6 are on a grid of 33 x 33

points covering the 27 x 27 square. The magnetic field at each of these points was obtained
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by summing over nine points from the original 99 x 99 grid.

In Fig. 7(a) we see that the field decays on most of the plane, but is maintaining itself
or growing in certain regions.

A three-dimensional view of this structure is given in Fig. 8. Here we plot surfaces in
the periodicity cube within which the magnetic energy is greater than 3% and 25% of its
original value, at time n = 50. The high-field regions are concentrated in domains where
streamlines are strongly chaotic. In regions of non-chaotic flow the magnetic field strength
falls to much smaller values.

As stated before, one measure of field growth is the decrease in the plasma beta. In
Figs. 9 and 10 we have plotted both field energy and B vs. time for the central point of
the 33 x 33 grid. Figure 9 corresponds to the parameters Ay = 0.001, By = Cp = 1.0; in
this case the central grid point lies in a region of regular flow (see Fig. 6), and field growth
would not be expected. Indeed we see that B remains constant. Figure 10 corresponds to
Ay = By = Cy = 0.3; in this case the central point lies in a region of chaotic flow [see
Figs. 6(b)—(c)] where the field is growing (as seen in Fig. 7). Here we see large fluctuations
in both field energy and in 3, but over long times the energy maintains itself and [ decreases.

Figures 11-12 show corresponding output for Ag = By = Cp = 1.0. In this case we
initially have chaotic streamlines throughout the whole space; as time progresses we obtain
structures as we have seen earlier. (Of course for large A,B,C the mapping will not be a good
representation of the original flow, but is still an example of a highly chaotic incompressible
flow.) The effect of increasing the coefficients (and therefore filling more of the space with
chaotic streamlines) appears to be a simple increase in the frequency of fluctuations of the
magnetic energy about a roughly constant mean value. (This held true for a variety of cases
that we examined.) The field strength does not exhibit exponentiation as it would in a
non-expanding medium, but in each case it seems to maintain itself against the effects of the

expansion and the decay in the velocity field.
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We have presented a considerably simplified model of dynamo action in the primordial
universe. In this work we retained only a few characteristics of the physical situation,
including the large-scale character, the highly conducting nature, the slow time scale in
terms of incompressibility of the model, and cosmic expansion. Under a certain set of fairly
general conditions we computationally observe cellular pattern formation of magnetic fields
(as seen in Fig. 8). Such magnetic fields may have left an imprint on the primordial universe.

This dynamo model may be applicable both before and after the recombination time
with proper interpretation. In the epoch prior to recombination (¢ ~ 102 sec) the universe is
basically a highly conducting plasma. As has been shoWn, this plasma even in perfect thermal
equilibrium contains substantial (nearly) zero-frequency magnetic fields, which can act as
seed fields for dynamo action. Likewise, it contains velocity fluctuations of low frequency
(either of thermal noise origin or from the horizon crossing) which can act as amplifiers of
the fields. The question of whether the fields can detach from the thermal equilibrium state
and hydrodynamically evolve through Egs. (28) and (29) is a profound one and we leave -
this for future investigation (Cable and Tajima 1994). In the epoch after recombination the
universe may generate a tenuous plasma through violent relaxation, with shredded primordial
magnetic fields acting as a heating agent. The velocity fields generated by relaxation may
yield the dynamo action. Then once again the ABC model may be applied.

In either case our interest is in the global morphology: the observed cellular structure
formation, which could have left an imprint on the plasma density in the early universe.
Certainly these models are quite simplistic for a realistic model of cosmology; in the future

one needs to determine cosmological implications in more detail.

I appreciate contributions by Drs. S. Mineshige and Matsumoto, and Mr. C. Kueney and
Ms. A. Valinia’s computational help. This work was supported by NSF ATM-91-13576 and
the U.S. Dept. of Energy contract #DE-FG05-80ET-53088.
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Figure Captions

1.

The g profiles (a) and (c) and twisted magnetic field lines (b) and (d) with shear. (a)
and (b) in early time and (c) and (d) after kink sets in.

The kink mode evolution of twisted (current-carrying) magnetic flux tube which was

originally in force-free equilibria.

. The flux tube evolution that is being twisted by differentially counter-rotating two

disks with compact gravitational centers. The density (a), the field lines (b), and the

jet flows out of the disk centers (c).

Coalescence of two flux tubes with antiparallel [(a)—(f)] or parallel [(g)-(h)] magnetic
helicity. ’

Small-scale and large-scale perturbations during the radiation epoch (1072 < ¢ <
1013.sec) are shown as a function of time. The small-scale fluctuations could be am-
plified in amplitude and size. The entering nonequilibrium large scales are indicated
by two lines, one corresponding to the present galaxy size and the other to the largest

obseved structures.

Plots of z and y values of fluid elements forf various initial conditions for the mapping
of Egs. (6); (a) A=0.001,B=C=1.0,0< 2<0.01,n=150,000; (b) A=B=C=
0.30, 0 < 2z < 0.01, n. = 50,000; () A= B=C=0.03,0< z < 0.01, n = 50,000; (d)
A= B=C=0.03, all z,n~ 2,000.

. Magnetic field energy as a function of z and y on the z = 0 plane in an expanding

medium with Ay = By = Cp = 0.3; the magnetic field at each point of this 33 x 33
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10.

11.

12.

grid is the sum over nine points of the original 99 x 99 grid; (a) n = 0; (b) n = 50; (¢)
n = 100.

Surfaces in the periodicity cube (0 < z,¥, z < 27) for which the magnetic field energy
is greater than (a) 3% and (b) 25% of its original value for Ay = By = Cp = 0.3, = 50.

(a) Magnetic energy vs. time at the center of the z = 0 plane for Ay = 0.001, By, =

Co = 1.0; (b) plasma beta vs. time for the same case.

(a) Magnetic energy vs. time at the center of the z = 0 plane for Ay = By = Cy = 0.3;

p
(b) plasma beta vs. time for the same case.

Magnetic field energy as a function of z and y on the z = 0 plane for Ag = By = Cp =
1.0; (a) n = 50; (b) n = 100.

(a) Magnetic energy vs. time at the center of the 2 = 0 plane for Ao = By = Cp = 1.0;

(b) plasma beta vs. time for the same case.
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