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Abstract

The effect of a nonuniform resistive wall on the stability of plasma MHD modes
is examined. For the case of a tokamak plasma interacting with a wall possessing
toroidally nonuniform electrical resistance the kink mode dispersion relation is found
to reduce to a surprisingly simple form, provided that the scale of variation of the
resistance is sufficiently large. The influence of a wall with toroidal gaps on tokamalk
plasma, stability is investigated in some detail. Under some circumstances kink modes
are found to ‘explode’ through the gaps with ideal growth rates. A similar investigation

is made for a modular wall constructed of alternate thick and thin sections.
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I Introduction

The interaction of magnetohydrodynamical (MHD) plasma, instabilities with a resistive wall
in toroidal pinches has been extensively studied in the literature.'~22 It is generally accepted
that eddy currents induced in the wall can moderate the growth of an otherwise ideally
unstable kink mode, so that it evolves on some characteristic resistive time scale of the wall.
Such modes are usually referred to as ‘wall modes’. The interaction of a rotating tearing
mode island with self-induced wall eddy currents is thought to generate a nonlinear slowing
torque which effectively brakes the rotation once a critical island width is exceeded.'%?
This effect is important because a nonrotating (or ‘locked’) tearing mode is generally more
unstable than a rapidly rotating one, since the nonrotating mode is able to penetrate through
the wall.!!

This paper is concerned with the stability of MHD modes in tokamaks which possess
close fitting walls with nonuniform electrical resistance. In fact, most modern tokamaks
are of this type since their vacuum vessels are of modular construction, with thick low
resistance sections (containing the diagnostic ports) separated by thin high resistance bellows
sections.2=2% Tt is clearly of interest to establish whether wall modes grow on the relatively
slow resistive time scale of the thick sections, the much faster resistive time scale of the thin
sections, or some appropriate average of the two. For obvious engineering reasons magnetic
pick-up coils tend to be attached to the thick sections of the vacuum vessel. Distortions
induced in the structure of MHD modes by the nonuniform eddy currents flowing in the
vacuum vessel (e.g. ‘ballooning’ of modes through the thin sections of the vessel) need to be
taken into account during the interpretation of pick-up coil data, otherwise spurious results
may be obtained. Some tokamaks possess thick conducting walls with insulating toroidal

breaks.?%27 In such devices it may be possible for an ideally unstable kink mode to defeat the



moderating effect of wall eddy currents by ‘ballooning’ through the insulating breaks where
no eddy currents can flow.

In next-generation tokamaks, such as the International Tokamak Experimental Reactor
(ITER),® the interaction of MHD instabilities with the wall is likely to be of particular
significance because of the large dimensions envisaged for such devices. This follows since
the critical island width for the ‘locking’ of rotating tearing modes to the wall is a rapidly
decreasing function of machine dimensions, due to the comparatively feeble mode rotation
found in large devices.2? Thus, ‘locked modes’, which interact strongly with the wall, may
be a common occurrence in next-generation tokamaks.

The above discussion highlights the importance of gaining as complete an understanding
as possible of the interaction of MHD instabilities with realistic walls, including the effects of
modularity, insulating breaks, gaps, diagnostic ports, etc. In Sec. II of this paper a general
formalism is developed for analyzing the influence of a wall with nonuniform resistance on
the stability of kink modes. In Sec. III the kink mode dispersion relation for conventional
tokamaks possessing walls with toroidally varying resistance is found to reduce to a surpris-
ingly simple form, provided that the scale of variation of the resistance is sufficiently large.
Section IV investigates the effect of a wall with toroidal gaps on the stability of both kink
modes and tearing modes. In Sec. V a similar investigation is made for a wall of modular

construction. Finally, this paper is summarized in Sec. VL

IT General Analysis
A The wall flux

In the following, the standard cylindrical tokamak limit is adopted, and the usual right-
handed cylindrical polar coordinates r, 8, z are employed. The perturbed magnetic field
6B is written in terms of the perturbed poloidal flux %, so that 6B = V A (¢Z) = VY A Z.

The perturbed flux in the wall is written ¥ (6, ¢) = ¥ (rw, 8, ¢), where ry, is the wall minor
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radius, ¢ = 2/Ro, and Ry is the simulated major radius. The wall is assumed to lie in the
‘thin-shell’ limit, where the skin depth is much larger than the actual wall thickness, so that

the flux is approximately constant across the wall.°

B The wall eddy currents

The radially integrated eddy currents induced in the wall are written in terms of a stream
function, so that 61, = V A (J4T) = VJy, AT, where Jy, = Ji, (6, ¢). Here, it is assumed that
the eddy currents have negligible radial components, so that the current pattern in the wall
is essentially two dimensional. This is a reasonable assumption in the ‘thin shell’ limit.

Ohm’s law (integrated across the wall) takes the form I, = owbw 6E, where SE is the
perturbed electric field, ow (6, ¢) the wall conductivity, and (0, ¢) the wall thickness. It
follows from the radial component of Faraday’s law that

v 0
rw 06

1
Owlw

V2J, +V ( ) VT = (1)

0wl

where v = d1n Wy /dt is the growth rate.

C The ‘jump’ conditions at the wall

The ‘jump’ in radial derivative of the wall flux induced by the eddy currents is written??

Twt
ATy (0, ¢) = [r WJ : (2)

Tw—
It follows from the z-component of Ampere’s law that

0Jy

A\I/w:[,l,oge—' .

Let

Uy (0, ¢) =Y U™ expli (mf — ng)]

m,n

w(0, ) = EA\I/m/"exp[ (mé — ng)] ,




Ju(0, ¢) =D Jy/™expli (mf — ngp)] , (4)

then Egs. (3) and (1) transform to
AT — g T (5)
and
wo-p e Y s o

respectively. Here, €, = ry/Rp is the inverse aspect ratio of the wall, and
Tw(0, ¢) = poTwowbw (7
is the poloidally and toroidally varying wall time constant.

D The stability of wall modes

Consider the stability of wall modes, which behave ideally (i.e. with no reconnection) at all
rational surfaces within the plasma. The perturbed poloidal flux can be written
P(r,6,6) = 3 V™™(r) expli (mf —ng)] (8)
m,n
where U™/ (r) satisfies the m/n cylindrical tearing mode equation?? and the physical bound-
ary conditions at 7 = 0 and 7 — oo. In addition, ¥™/*(r) is zero at the m/n rational surface,
provided it lies within the plasma. There is a real wall stability index associated with each

harmonic of the perturbed poloidal flux:

Ay
Enfn = [y 9
e S A )
Asymptotic matching across the wall yields
N A (10)

for each harmonic.




IIT Analysis for a Toroidally Nonuniform Wall
A Introduction

Consider a wall whose resistance only varies in the toroidal direction, so that 7 = 7% (¢). It
follows from Eq. (6) that

min _ n(n + k) exp(-ikg) dg | /et :

Suppose that the coupled toroidal harmonics lie in the range [n| < Tmax, Where nma < m/ey.

This is equivalent to a limit on the scale of variation of the wall resistance:
dl
Ro/( nT‘”) > 21 (12)
min .m

In fact, 27 ry/m is the poloidal spacing between eddy current cells, so (12) implies that the

scale of variation of the wall resistance is much greater than the poloidal spacing of current

eddies. If this is the case then Egs. (10) and (11) yield

sogh g~ 5 f SEED 8 s, s
which can be inverted to give
ERlrupln = 3 fom (@) e(-ike) 32 TP (19
Finally, let
/= 7 Gyn) explinn) o (19

so that Eq. (14) yields

m/n m/n ot 3 . d .
Brfr i = [ () Tuln) expling) 50 (16)

It is easily demonstrated that for large-n (i.e. 1 < |n| < m/ey) the T™"(r) (see
Sec. I1.D) become vacuum-like (i.e. they are essentially unaffected by the equilibrium plasma
current) and E™/™ ~ —2m. Note that the standard tokamak orderings (and the cylindrical
tearing mode equation) break down at very high-n (i.e. |n| ~ m/ew), so E™ # —2m in this

limit. However, the constraint (12) ensures that such high-n modes can be neglected.
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B The wall mode dispersion relation

Suppose that

Eg%”yé—2m forn; <n<ng,

E™™ = _2m otherwise , (17)

which according to the above discussion is a reasonable assumption for tokamaks, but not

for reversed field pinches (RFPs) where kink modes typically have n ~ m/¢y.1¢ Let

- 2 (- 2sin . .
7o) = 3° (Tt + o 2 exp(cii) | (19
k=n1
so that
m/n 2 [ 5 . dn }
v =Y [ Fumexpling) 51 +an (19)
lc=n1 -0 ™
Here, use has been made of the identity
© 2sinn . Ny dn 0
L = el =) 5l = b, (20)

and the a, are arbitrary complex constants satisfying o, = 0 for all n not in the range

n1 — ng. It follows from Eq. (16) that for all toroidal mode numbers not in this range

2, [ - 2sin ) ) d ‘
[ | ) Fect awrn B exp(-ibn)| explnn) g =0. (21
k=ny ¥~
The most general solution is
- 2sinn Br + YTw ,
Ful) = o 222 DAT. o (22)

n o 2m+y7(n)
where the (3, are arbitrary complex constants satisfying 8, = 0 for n all not in the range
ny — ng. Equations (18) and (22) give

| 72

— 2sinn  2m — [ .
U, (n) = Q exp(—ikn) . 23
= 3 e =M s (i (23)
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For each toroidal mode number in the range n; to ne Eq. (16) yields

a, BT = Z Qg X (24)

k—nl

/°° 2sinn (B™ 4+ 2m — Bu)yrw(n) + BT Be

) dn
—00 i 2m + ,Y,Tw(,r]) eXp[l (TL - k)"?] % )

which can be rearranged to give

o0 2sm17 2m + Em/® , dn
— had )
> a7 2 AL A copfi(n - Byl 5 = (25)

k:—n1

where &, = a, X (2m — (,).

Now, 2m + y7w(n) is a periodic function of n with period 27. It follows that

1 exp 1k¢) @ . 2

2m+77'w Z% 2m + 1w (@) 2 exp(—ikn) , (26)
so using Eq. (20)

I 2sing _exp(ing) dn _ [ _expling) do (27)

St 3 =) T tm@ o

Thus, the wall mode dispersion relation can be written

N 2m+Em/“
DL B ey 3
% m -+ YT w(¢)

for all n. Note that &, = 0 if ETY™ = —2m, as was initially assumed in Eq. (18).

expli (n — k)¢ ;Z—f = Qn (28)

The wall mode dispersion relation takes the form of a matrix equation:
A- =0, (29)

where « is the complex vector of the &, values, and

2m + Em/e
2m + ’YTW(¢)

Here, A is a complex N x N matrix, where N is the number of toroidal harmonics for which

- d
Aoy = b expli (o= D)g] 5 (30)
E™/™ £ —9m. Tt is easily demonstrated that

mfn _ -~ exp[i (n — k)¢] i_qb
o Xk:ak 2m + 1o (¢) 2m’ 3y
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~and
. exp[i (mf — ng)]
= S ®) 3

Finally, a comparison of Egs. (13), (14), (31), and (32) yields

(1 %) i — ;ak ﬁ%@) expli (1 — k)] % , (33)
and
() me 0 =3a #,m expli (mf —ng)] (34)

where use has been made of Eq. (5).

C Discussion

After some analysis, the wall mode dispersion relation is found to take the surprisingly sim-
ple form (29), in which only those coupled toroidal harmonics whose stability indices differ
appreciably [i.e. by O(1)] from the vacuum value —2m are explicitly included. The remaining
toroidal harmonics are, in fact, implicitly included in the calculation without any approxima-
tion. This great simplification is possible because in tokamaks with toroidally nonuniform
walls satisfying the constraint (12) most of the coupled toroidal harmonics possess the same
stability index, —2m. No corresponding simplification occurs for RFPs, or for tokamaks
with poloidally nonuniform walls, because in both cases the coupled harmonics generally

have widely different stability indices.

IV The Effect of a Wall with Toroidal Gaps

A The stability of wall modes

1 The single-mode approximation

Consider a tokamak possessing a wall with toroidal gaps. The metal sections of the wall are

assumed to have uniform resistance. The constraint (12) is satisfied provided the toroidal



angular extent of the individual metal and gap sections of the wall are all much greater than
€w /M.

Suppose that only a single harmonic has a wall stability index which differs significantly
from the vacuum value —2m. This is not an unusual situation, especially if a low mode
number rational surface lies just outside the edge of the plasma current channel. Table 1
shows values of E™/™ (for m = 3 poloidal harmonics) calculated for a Wesson-like equilibrium
current profile 7,(r) o« (1 —r?/a?)?, with v = 1.46, q(0) = 1.2, g(a) = 2.95, and ry/a = 1.0.
Here, q(r) is the conventional tokamak safety factor profile.?2 Table 1 indicates that only the
3/1 harmonic has a wall stability index which differs appreciably from the vacuum value —6.
In this situation, the wall mode dispersion relation (29) takes the particularly simple form

2m + E™™ dg .

It (@ 2n )

where E™/™ £ —2m is the ‘special’ stability index.

n| E37
4] -5.831
-3| -5.790
2| -5.723
-1] -5.595
0| -5.244
1|4+2.167
2| -7.077
3( -6.479
4] -6.309
5| -6.228
6| -6.181

Table I: Values of the resistive wall mode stability index for m = 3 modes calculated for
various different toroidal mode numbers n. The equilibrium current profile is j,(r) oc (1 —
r?/a?)¥, with v = 1.46, q(0) = 1.2, q(a) = 2.95, and 7y /a = 1.0.

Suppose that the wall is made of metal with an intrinsic time constant 7, but that one or

more toroidal sections of total fractional angular extent f are missing (so f = 0 corresponds
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to no gaps, and f = 1 to no metal). According to Eq. (35), the wall mode dispersion relation

is written
Enf»

S 36
L 1- f(1+Ew"/2m) (36)
and using Eq. (32),
\Ilwgap V7w
—=14+——". 37
\pwmtl + 2m ( )

Here, Wy, qap is the perturbed poloidal flux in the gaps, and Wy is the flux in the metal.
Equations (36) and (37) imply that as E™/™ approaches the vacuum limit —2m, the flux
at the wall radius is mostly concentrated in the metal sections (i.e. ¥y gap — 0), and the wall
mode decays on the characteristic time constant of the metal (i.e. v ~ E™"/7,). As the
mode approaches marginal stability (i.e. ET/™ — 0), the fluxes in the gap and metal sections
of the wall gradually even out, and the flux becomes uniform (i.e. |[¥ygap/Twme| = 1) at
the marginal stability point E™/™ = 0. For weakly unstable/stable modes (i.e. |[E™/"| < 1),
the typical growth/decay time scale is the average time constant of the metal and gap
sections of the wall [i.e. v~ E™/"/ § 7,(¢) dop/2m = ET/™/7o,(1 — f)]. As the mode becomes
significantly unstable [i.e. ETY™ ~ O(1)], the flux at the wall radius starts to concentrate
in the gap sections of the wall (i.e. |¥ygap/¥wmn| > 1), and the characteristic growth time

decreases. Eventually, at a critical wall mode stability index,
m/n 1
(Eww )crit = 2m ? - 1 ) (38)

the flux is entirely concentrated in the gap sections of the wall (i.e. [Tymu| = 0), and
the mode becomes ideal in nature (i.e. the resistive growth rate tends to infinity). For
E™™ > (ETY™) e, the wall eddy currents are insufficient to moderate the growth rate, and
the mode ‘explodes’ through the gaps on a typical ideal external kink time scale (i.e. the
growth rate is moderated by plasma inertia).

Equation (37) implies that the poloidal flux at the wall radius changes discontinuously at

the metal/gap boundaries, corresponding to the situation shown schematically in Fig. 1. It
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can be seen that the eddy current vortices in the metal sections of the wall have ‘square’ ends,
giving rise to infinite poloidal return currents flowing along the metal/gap boundaries [see
Eq. (34)]. Such behaviour is clearly unphysical, and is a consequence of the approximation
made in Sec. IIL.A. If the neglected term [i.e. the term in square brackets in Eq. (11)] is
reinstated, the poloidal return currents are spread over a region of toroidal extent 27 ry /m.
This gives rise to round-ended eddy current vortices of the form shown schematically in
Fig. 2. The constraint (12) ensures that the return current regions have negligible effect on

mode stability.

2 The coupling of toroidal harmonics

Suppose that two toroidal harmonics (n; and 7., say) have wall stability indices which differ

significantly from the vacuum value —2m. The analysis of Sec. IIL.B yields:

Uy gap (0, §) x @y expli (mb — nyP)] + @5 expli (M — n2¢p)] (39a)
w gap ﬁv_ .
‘ T =145 (39h)
Gy _ vrw(1 + BT [2m)cs,

O [l — f(1+ Ewd™ /2m)] — Eod™

_ e[l = f(1 + BT /2m)] — ET™
7oL + Em™ /2m)cya

?

where
Clg = /gaps exp[i (n1 — ng) P % . (40)

According to Eq. (39c), the mode growth rate is given by

Y7w X 2a= Egi™ (L — f(1+ Eqf™ [2m)] + Eq™[L — f(1 + Eqi™ /2m)] (41)

(Bl — Blr)P (L= 1) + dlenPERM B (L + Bl f2m) (1 + Bl 2m) |
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with

a=[1— f(1+Eg™/2m)][1 - f(1+ Eq™ /2m)]

~Jerel*(1 + Em{™ /2m)(1 + EZ{™ /2m) . (42)

In most respects, the behavior of the coupled modes is analogous to that of the corresponding
uncoupled modes (see Sec. IV.A.1). For instance, as B (where j is 1 or 2) approaches
the vacuum value —2m, the associated root of Eq. (41) approaches vy = —2m, and the
magnetic flux becomes entirely concentrated in the metal sections of the wall. Furthermore,
as Eww' approaches zero, the corresponding root of (41) approaches the marginal value
v7w = 0, and the magnetic flux becomes evenly distributed in the wall. However, mode
coupling does affect the onset of ideal growth through the gaps, which now occurs when
a=0.

Mode coupling is most effective when the two stability indices are equal; i.e. .when

Emm — Em/™2 — E™/™ For this special case, Eq. (41) reduces to

Emn
77-W = m/n ) (4:3)
1= (f & |ei2)(1 + Eww"/2m)
so the critical stability index for the ‘explosion’ of the mode through the gaps is
(EPL™)ore = 2m (; _ 1) . (44)
[+ el

It is clear, by comparison with Eq. (38), that mode coupling tends to reduce the critical
stability index needed for ideal growth. Note that f + |cio| < 1, 50 (BT™)ens is never

negative.
B The interaction with rotating tearing modes

Suppose that a single toroidal harmonic (mode number 7, say) has a rational surface lying

inside the plasma at minor radius rs. In this situation, the stability of the m/n mode is
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governed by the following coupled equations:22:2%:30

AT/ _ pringm/n _ pr/mgm/n — (45a)

ATR/™ — Eplrumic — BRrurin =0, (45b)

where ¥7" is the m/n reconnected flux at the rational surface, AY™" is the ‘jump’
in the radial derivative of the m/n flux across the rational surface, ET/™ is the fixed
boundary m/n tearing stability index (calculated assuming zero flux in the wall), and
E™/™ 4 (Em/™)?/(—E™™) is the corresponding free boundary stability index (calculated
assuming zero eddy currents in the wall). As before, U™/ is the m/n flux in the wall,
AT™™ is the ‘jump’ in the radial derivative of the m/n flux across the wall, and E™/™ is
the m/n wall stability index (calculated assuming zero reconnection at the rational surface).

The stability of nonresonant modes (i.e. n' # n) is again governed by
AY™ _ prntgmin — (46)

According to standard Rutherford island theory,®! the nonlinear evolution of the m/n

tearing mode satisfies

d (W _ ! — pm/n m/n lpgvl/n
- dt(rs) —rAl = E™/° 4 BT Re<w/n , (47)

where W is the island width, 7z = 0.8227 por?/n) (7s) is the resistive diffusion time scale, and
7) is the parallel plasma resistivity. The nonlinear toroidal electromagnetic torque acting at

the rational surface due to eddy currents flowing in the wall is given by Refs. 22, 29, and 30

2
5T (re) = Z”ZORO « B/m T (Tt (48)

Consider the simplest possible case, where the wall stability indices of the nonresonant
modes do not differ appreciably from the vacuum value —2m. This situation is analogous to

that studied in Sec. IV.A.1 provided E™/" — E™/n 4 E™/mgm™/n /g™n and v — —iw. Here,
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w is the angular rotation frequency of the m/n magnetic island. It is assumed that the m/n

wall mode is intrinsically stable, so that E™/™ < 0. If follows from Eq. (36) that

gmin (1 — iwry f/2m) EM/™
mi o —jwry[l — f(1+ ET™/2m)] — B

Equations (31) and (32) yield

Ty | = (1 — iwTy/2m) Um/™
VERT A —iwr/2m)f + (1 f)

,‘I’wmtl' = s \Il:’vz/n )
(I—-iwm/2m)f+ (1 - f)

while Eqgs. (47) and (48) imply that
(wrw)?[1 — F(L+ Ef™/2m] f /2m — B

rsly = R/ + (BR/™)?

2
5Ty (rs) = 2”’; Bo s jgmimp(mmimy?
0

wrw(l = f)
(wrw)?[1 = fF(1 + B /2m)]? + (Bmi™)?

In the high frequency limit, wry > 1, Egs. (49)-(51) reduce to:

wm/n BT f/om
I T (1 — F(L+ B 2m)]

,\I’wgapl ~ EsTv/n/ 2m
o T L= f(L+ Bt /2m)]

|\Ilwmtl| ~ 2m
|Vweap| — wTw

)

(B/™)? f/2m

reAL =~ EM/™ 4 ,
[1— f(1 + E™™/2m)]
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(wrw)*[1 = (L + Bl /2m)]? + (Bg™)?*

(49)

(50a)

(50b)

(51b)



L 2nm*Ro | WPIME(ERIm( ~ f)
) = T oL~ £+ B 2m)P

(52e¢)

Equation (52a) indicates that a wall with gaps is unable to completely shield the perturbed
flux due to a rapidly rotating tearing mode island from the region outside the wall. According
to Eqgs. (52b) and (52¢) the rotating flux is able to penetrate through the wall by ‘squeezing’
through the gaps. Of course, in the limit where the gaps become very narrow (i.e. f — 0)
the amount of flux which gets through the wall becomes negligible. Equation (52d) shows
that the tearing mode stability index asymptotes to the fixed boundary value as the gaps
become very narrow (i.e. f — 0), and asymptotes to the free boundary value as the gaps
become very wide (i.e. f — 1). Finally, Eq. (52¢) shows that the torque exerted on the
rotating tearing mode island by eddy currents induced in the wall asymptotes to zero as the
gaps become very wide (i.e. f — 1).

The above results suggest that the interaction of a rapidly rotating tearing mode island
with a wall possessing thin toroidal gaps is very similar to the corresponding interaction
with a uniform wall, except that in the former case a srhall amount of rotating magnetic
flux gets through the wall, and the slowing down torque exerted on the island is slightly
reduced. A thin toroidal limiter (radius 71, say) can be modelled as a wall with a very large
gap (i.e. f just less than unity). According to the above analysis, such a limiter is ineffective
at shielding magnetic flux from the region r > 7, and only exerts a comparatively weak
slowing down torque on any rotating islands inside the plasma. It should be noted, however,
that the constraint (12) limits the applicability of the above statements to gaps and limiters

which are significantly wider than 27 ry,/m in the toroidal direction.
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V The Effect of a Modular Wall
A The stability of wall modes

Consider a wall made up of alternate thick and thin sections of time constants 7, and
Tws, TeSpectively (7w, > Tw,). For this simple case, the single mode dispersion relation (35)

reduces to
’YzTW17'W2 +v [Qm {firw, + f2'7'W2} - E:anén {f2'7'W1 + flTWz}] —2m E;%n =0, (53)

where fi is the total angular extent of the thick sections, and fo = 1 — f; is the total extent
of the thin sections. According to Eq. (32), the ratio of the flux in the thin sections of the

wall to that in the thick sections is

: v,

2m + YT,
= 54
T (54)

T 2m A YT,

In the limit 7w, < Tw,, Eq..(53) possesses the following asymptotic solutions:

Em/n
i = L A— (552)
1—f2(1+Eww /2m)
\ijz ’Y’rwl 4
7, |~ 1+ vl (55b)
for EM™ < 2m (1/f2 —1), and
VTwg = f2Ewmvx/rn ) (563')
Vo Twy
~— 56b
T (56Db)

for E™™ > 2m (1/f, — 1). It can be seen, by comparison with the results of Sec. IV.A.1,
that for a stable or moderately unstable mode the thin sections of the wall act rather like
gaps. However, for a very unstable mode the finite conductivity of the thin sections limits

the accumulation of magnetic flux there, which has the effect of limiting the mode growth
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rate. In fact, the mode is unable to evolve on a faster time scale than the time constant of

the thin sections of the wall.

B The interaction with rotating tearing modes

Suppose that a single toroidal harmonic (mode number 7, say) has a rational surface lying
inside the plasma, and that the stability indices of the nonresonant harmonics do not differ
appreciably from the vacuum value —2m. In the high frequency limit, wry, > 1 and

WTw, > 1, a similar analysis to that of Sec. IV.B yields:

m/n :
\Pfl/n ~ = (ﬁ + L) B, (57a)
s W \ Twsy T,
\ij Em/n
A RpE (57b)
: Wy
v,, . Emn
2o (57c)
;n/n WTwsy
reAl = E™/™ (57d)
a2 \I,m/n 2 Em/n 2
Ho w Ty Tw

The above results indicate that a modular wall is able to shield the flux due to a rapidly
rotating tearing island from the region beyond the wall. Equations (57b) and (57c¢) show
that the residual flux tends to concentrate in the thin sections of the wall. According to
Eq. (57d), the tearing mode stability index asymptotes to the fixed boundary value. Finally,
Eq. (57c) shows that the slowing torque exerted on a rotating island is the same as that

exerted by a uniform wall with the same average resistance as the modular wall.
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VI Summary and Discussion

In Sec. I a general method is developed for investigating the influence of a nonuniform
resistive wall on the stability of MHD modes. The analysis is performed in the cylindrical
tokamak limit, assuming that the wall lies in the ‘thin-shell’ regime. The dispersion relation
for wall modes (i.e. modes which do not reconnect magnetic flux inside the plasma) reduces
to a matrix eigenvalue problem [see Egs. (6) and (10)]. The eigenvalue determines the mode
growth rate, and the eigenvectors determine the Fourier harmonics of either the magnetic
flux in the wall or the stream function of the wall eddy current. In general, the dispersion
relation requires numerical solution. However, an analytic solution is obtainable for the
special case of a toroidally nonuniform wall where the variation scale length of the resistance
is much larger than the poloidal spacing of the eddy current vortices (see Sec. III).
Consider the stability of a set of coupled wall modes with common poloidal mode number
m. The MHD free energy associated with each mode is parameterized by a wall stability
index E™/™ (where n is the toroidal mode number — see Sec. ILD). In a general tokamak
plasma, the stability indices of most modes lie close to the vacuum value, —2m. Suppose that
only one mode (toroidal mode number 7, say) has a stability index which differs appreciably
from the vacuum value. In this situation, the wall mode dispersion relation for a toroidally

nonuniform wall satisfying the constraint (12) reduces to the particularly simple form

2m + Ewm“/,” d¢

— WP = 58
2m + y7w (@) 2m ’ (58)

and the perturbed poloidal flux at the wall radius is given by
T, (0, 4) o« SR = )] (59)

2m + 1w (¢)

[see Eqgs. (29)-(32)]. Here, vy is the growth rate, 7 (¢) is the toroidally varying wall time

constant, and E™/™ is the ‘special’ stability index. If there are N modes with ‘special’
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stability indices, then the wall mode dispersion relation takes the form of an N x N matrix
equation [see Eq. (29)].

Toroidal gaps are incorporated into tokamak vacuum vessels in order to suppress eddy
currents and thereby reduce the penetration time scale for the vertical magnetic field. How-
ever, helical eddy currents are not suppressed because, unlike the nonhelical (i.e. m/n =0/0)
current, they are able to turn around before reaching the gaps (see Fig. 2). Of course, large
gaps attenuate helical eddy currents to some extent because they reduce the effective area
of the wall.

The influence of toroidal gaps on wall mode stability is investigated in Sec. IV.A. For the
case where only one mode has a stability index which differs appreciably from the vacuum
value, it is found that if the mode is stable the perturbed poloidal flux tends to concentrate
in the metal sections of the wall, if the mode is marginally stable the flux becomes evenly
distributed between the metal and gap sections, and if the mode is unstable the flux tends
to concentrate in the toroidal gaps. In fact, if the stability index exceeds a critical value [see
Eq. (38)] the flux becomes entirely concentrated in the gap regions, and the mode can then
‘explode’ through the gaps with an ideal growth rate. If more than one mode possesses a
stability index which differs from the vacuum value, then the critical sﬁability index needed
for the ideal growth of a given mode is reduced (see Sec. IV.A.2). Finally, a wall possessing
toroidal gaps is unable to completely shield the flux of a rapidly rotating tearing island
from the region beyond the wall because the flux is able to ‘squeeze’ through the gaps (see
Sec. IV.B).

The analytical results obtained in this paper are only valid under an extremely restricted
set of circumstances (i.e. for toroidally nonuniform walls where the width of any gap or
metal sections is much greater than 27 ry/m; ry is the wall minor radius). Nevertheless,
an important insight has been gained into the physics of the interaction of MHD modes

with a nonuniform wall. It is found that nonuniform wall eddy currents enable unstable
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modes to transfer some of their free energy to stable modes of different helicities, so as to
build up a mode structure which minimizes the induced eddy currents. For a wall possessing
vacuum gaps, a sufficiently unstable mode can modify its structure so as to induce no eddy
currents at all in the wall. At this point the wall clearly loses any moderating influence on
the mode growth rate. It follows that the structure of an unstable mode interacting with
a nonuniform wall cannot be assumed a priori, but must instead be solved for in a self
consistent manner along with the growth rate. This conclusion has obvious implications for
the design of tokamaks with incomplete stabilizing shells. There are also ramifications for
the design of MHD feedback systems, since an incomplete resistive wall is equivalent to a low
gain feedback system with finite coils. It seems clear that a sufficiently unstable mode can
completely defeat a feedback system by ‘squeezing’ between the coils. This is not a ‘phase
instability’, but rather a ‘spectrum instability’ in which the mode changes its structure under
the influence of the applied feedback signals. This effect cannot easily be counteracted, since
it is a function of the number and extent of the feedback coils rather than the strength or
phasing of the feedback signals.

In conclusion, the investigation of the influence of a wall with toroidal structure on
tokamak stability has yielded a number of useful and interesting results. The techniques
developed in this paper can be extended to deal with the intrinsically more difficult problems

of the influence of a wall with poloidal structure on tokamak stability and MHD feedback.
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Figure Captions
1. Wall eddy current vortices with ‘square’ ends.

2. Realistic wall eddy current vortices.
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