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Abstract

In the lowest order of approximation quasi-two-dimensional dynamics of planetary
atmospheres and of plasmas in a magnetic field can be described by a common convec-
tive vortex equation, the Charney and Hasegawa-Mima (CHM) equation. In contrast
to the two-dimensional Navier-Stokes equation, the CHM equation admits “shielded
vortex solutions” in a homogeneous limit and linear waves (“Rossby waves” in the
planetary atmosphere and “drift waves” in plasmas) in the presence of inhomogeneity.
Because of these properties, the nonlinear dynamics described by the CHM equation
provide rich solutions which involve turbulent, coherent and wave behaviors.

Bringing in nonideal effects such as resistivity makes the plasma equation signif-
icantly different from the atmospheric equation with such new effects as instability
of the drift wave driven by the resistivity and density gradient. The model equation
deviates from the CHM equation and becomes coupled with Maxwell equations. This
article reviews the linear and nonlinear dynamics of the quasi-two-dimensional aspect
of plasmas and planetary atmosphere starting from the introduction of the ideal model
equation (CHM equation) and extending into the most recent progress in plasma tur-
bulence.
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1. Iptroduction

Spectral measurements in the Tokamak plasma by microwave and laser scattering in
the period 1976-1978 revealed for the first time a strong low freqliency plasma, turbulent
chara,ctéristic in that the frequency spectral width Aw of the plasma waves was greater than

“the mean frequency (w). The scattering experiments showed that the plasma turbulence
sﬁectral width Aw is comparable or larger than the mean frequency at the spectral peak (w),
i.e. Aw > (w), while the level of the plasma turbulence \/W/no < 1 [Mazzucato (1976,
1978), Surko and ‘Slusher (1976, 1978)] remains low. This result initiated the necessity of
theoretical interpretation beyond the level of the weak turbulence theory hitherto commonly
accepted as a standard approach for plasma turbulence [Sagdeev and Galeev (1968)]. As
an attempt to solve this problem Hasegawa and Mima (1977, 1978) came up with a model
equatidn which explains the pro'duction of strong turbulence signatures even at the low
fluctuation levels m /no =2 Viénne(z)/ (k) < 1, where ng(x) is the background plasma
densityAa.n‘d (k) ié the average wavenumber. Later it was shown [Hasegawa, Maclennan, and
Kodama (1979)] that in the inviscid limit, the Hasegawa-Mima equation has a’structure
identical to that of the nbnl_inear Rossby wave derived by Charney (1948) for atmospheric
motion of the planetary atmosphere. I:i the inviscid limit these equations have a feature .
simila,r'to the two-dimensional Navier Stokes equation in that they have two conserved
quantities, energy and enstrophy, creating the possibility of negative temperature for the
modal energy [Onsager (1949)]. In the presence of viscous ‘dissipation this feature induces
an inverse cascade of the spectrum [Kraichnan (1967)]. However, the inhomogeneity which
brings iﬁ the wave character of the CHM dynamics provides interesting modiﬁcatioﬁ to the
cascade ’process [HasegaWé, Maclefman, and Kodama (1979)] because of interplay with the

weak turbulence characteristics such as the conservation of wave quanta.




In addition to the turbulent nature, the inviscid CHM equation admits coherent (vortex)
solutions of various types [Larichev and Reznik (1976); Flierl et al. (1980); Zabusky and
McWilliams (1982)]; which are relatively robust against various perturbations.

Connection of the dnft wave instability [Rudakov and Sagdeev (1961)] and the Hasegawa-
Mima equation can be made by bfinging in nonadiabatic dynamics of electrons either through
the Landau damping [Horton (1976, 1986)] or through finite parallel resistivity [Wakatani and
Hasegawa (1984)]. The turbulence is then naturally generated without an artificial source,
and stationary spectra and self-organization appear [Hasegawa and Wakatani (1983), Horton
(1989)].

This review consists of the following chapters. Chapter II gives the derivation of the

drift wave equation known as the Hasegawa-Mima equation and the Rossby wave equation

known as the Charney equation: we call the common result the CHM equation. Chapter ‘

ITI describes some general properties of the CHM equatioﬁ for the inviscid limit such as its
statistical property based on speétral as well as its coherént property in the form of certain
vortex solutions. Chapter IV presents the spec¢tral nature of the turbulence in Rossby and
drift wave éystems. Chapter V treats the self-orga.nization process of the turbulent structure
in real space into vortéx structures and discusses the stability of the vortices, the effects
of inhomogeneities and the coupling between the small scale wave turbulence and the large

scale vortices.
II. Derivation of Model Equations

A. Hasegawa-Mima equation for drift wave

Consider an electrostatic wave at a frequency w much smaller than the ion cyclotron
frequency wy; in a magnetized (with magnetic field ByZ) and inhomogeneous [with density

no(z)] plasma. A linear wave is known to exist in such a plasma if the phase velocity in the




direction of the magnetic field, w/k., is between the electron and the ion thermal speed, vre
and vr;. At long wavelengths the dispersion relation of the wave is given by w = k- vy, where
vg is the diamagnetic drift velocity; the wave is called a drift wave [Rudakov and Sagdeev .
(1961)]. It is sometimes called a universal mode because it is always excited by Cerenkov
emission of electrons and is considered to play .a crucial rolé in the magnetic confinement of a
plasma. Extensive experimental studies of the turbulent fluctuations associated with various
forms of the drift wave instability have been performed in the TEXT tokamak as reviewed .
by Horton (1990). Other magnetic confinement gebmetries such as the heliotron/ torsafron
show similar fluctuations and the associated anomalous transport processes. One of the
most important types of drift wave instabilities is driven by the ion temperature gradient
[Horton, Choi, and Tang (1981)], and is the plasma physics analogy of the thermal baroclinic
instability arising from the preferential solar heating of the low latitude planetary é,tmosphere
that produces the latitudinal temperature gradient (Pedlosky, 1987).

Dropping the ion thermal balance equation elinﬁﬁates thé ion temperature gradiént in-
stability which is curfently under active invéstigation with large scale cdmputer simulation
(Horton, Wootton, and Wakatani, 1994).

- For the sake of comparison with the Rossby wave, it is convenient to assume that the
ion temperatufe is ﬁluch smaller than the electron temperature T; < T,. For the drift wave
descriptioﬁ it is convenient to assxime that the ion temperature is much smaller than the
electron temperature. For the drift wave description, it is convenient to introduce the small

expansion parameter &,

1 0 1 0

e R B

9 (tn2)] = o

By Wei

where Q = V x v is the vorticity of the ion fluid. The characteristic wave dispersion scale

length is

Ps= (;n—,) (wci) —. 2B’ (2.2)
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where T, is the electron temperature, m; is the ion mass, and v is the velocity field of ions.

The equations to describe the ion dynamics are the Lorentz equation of motion for the

cold ion fluid in an electrostatic field, E = —V¢

dv e
E—-—EVqé-l-V X Wei , | (2.3)

and the equation for the number density n(x,t) conservation of the ions can be written as

4 _
V= —— 2.4
V-v = nn ) (2.4)

where v is the ion fluid velocity, m; is the ion mass, e is the electric charge of the ion, ¢ is
- the electrostatic potential, and w;(z)Z is the vector ion cyclotron frequency.
The quasineutrality condition relates the ion density n to the electron density 7. which

can be shown to obey the Boltzmann distribution

n o~ ne = no(x) exp (-;,2) ) _ » (2.5)

within the framework of the small parameter, Eq. (2.1). From Egs. (2.4) and (2.5) we have
o d ed .

V.-v——-CE (Enno+—T:)_ . (2.6)

Since the drift wave is basically a vortex mode,\wé construct an equation for the vorticity

Q) (= V x v) by taking the curl of Eq. (2.3). If we note that

,%:%‘t_"_*_(v.v)v:%‘t:Jr%szl—i'xQ
and
Vx(vxQ)==-QV.-v+( Q- V)v=(v-V)Q==-QV, vy — (v- V)Q,
we have |

P A
%(Q+wci)+(9+wci)vl-v_1_=0. (2.7)




Here the subscript L indicates the components perpendicular to the direction of the magnetic
field, z. Now, we assume a pseudo-three-dimensional situation such that

ov,

P ZGIV_L-VJ_| . (2.8)

~ where ¢ is the small expansion parameter. This aséumption is consistent with the condition
of the existence of the drift wave. Physically, the assumption means that the ion inertia in
the direction of the ambient magnetic field ié negligible.

Equation (2.6) is then approximated by

_df, e :
VJ_‘V_L—""dt (Enno-i-Te) . : (2.9)
If we substitute Eq. (2.9) into Eq. (2.7) and use the small parameter expansion of Eq. (2.1),
we have
d Wei + _4a wci) Q  ep| S
T [ﬁn (noexp(eqﬁ/Te))] ~ = [fn (no + o T 0. (2.10)
Here if we use the ordering of Eq. (2.1) the vorticity €2 - Z is given by the E x B drift,
Q= (Vxvy) 2=2-Vx (L2XE) o Lgzy (2.11)
B, By
and
d 0 ‘V¢XZ-V. ‘ (2.19)

dt 0t By

| Equations (2.10), (2.11), and (2.12) form a closed set for the electrostatic potential ¢.
In a low pressure plasma (8 = 87p/B? < 1), the inhomogeneity in the magnetic field is
regarded as small compared with that of the plasma density. If we take we; to be approxi-

mately constant and use the following normalizations for time, space, and ¢,

3y
’ =x,v, 2.14
o Y (2.14)
% = ¢ ) ' M (2'15)




then Egs. (2.10), (2.11), and (2.12) reduce to

o (V-9 -[(V6x5) -V [V¥-ta ()] =0 (21

cl

which is the equation derived by Hasegawa and Mima [Hasegawa and Mima (1978)]. Here,

we suppressed the subscript L in the gradient operator V; that is V means

.0 0
V—x$+y%.

We note here that in a homogeneous case this expression, Eq. (2.16), closely resembles that
for the stream function 9 of the two-dimensional Euler equation for an incompressible fluid,

which, in a homogeneous fluid, can be written
9 o2 N 2, |
E(V P)—[(Vy x2)-V]V9Y=0. (2.17)

That is, Eq. (2.17) is the rotational part of the Euler equation pdv/dt = —Vp for constant
mass density p and v = 2 x V). Equation (2.16) reduces when Vi¢/p — oo and ng/we =
constant.‘ _

There exist two fundamental differences between these two equations (2.16) and (2.17).
First, the 2D incompressible Euler’s equation (2.17) does not have a characteristic spatial .
scale, while the spatial scale of the Hasegawa-Mima equation is given b); ps in Eq. (2.2) (which
is the unit length in Eq. (2.16)). The absence of a scale length in the Euler equation yields
scale invariant turbuleﬁt spectra, fvheréas the CHM equation has a break in the wavenumber
spectrum as shown in Sec. IV.C. Second, the fluid motion of the Hasegawa-Mima equation
is not divergence-free. There exists a sink or a source in the x,\y plane which is due to the
implicit c\onnection of the fluid in the z direction. The connection with the z flow in the
direction parallel to the magnetic field is taken into account by Eq. (2.5) which requires
k. ve > w as expressed in Eq. (2.1).

In the presence of an inhomogeneity, the Hasegawa-Mima equation admits a linear wave
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whose dispersion relation is given by
w=wg = —[(k x 2) - Vénne] /(L + k) ,

= (_1—-%*172) - (2.18)

where k is the wave vector in the direction perpendicular to Z. This frequency wy is the
- well-known drift wave frequency and followé for solutions @y €¥*~*t 4+ c.c. of Eq. (2.16)
when Vo x - VV2p = & V¢ x VV2; ~ k! ¢? terms is negligible compared with ws ¢y
At long wavelengths k% < 1, the wave packet propagates with weak dispersion at the speed
va and the frequency wi = k - V4 = ws where vy = & X V £nno[cT./eB]. The typical size of

the time and space parameters in a tokamak plasma are
Wei A ~ 105~ 10%sec™ ,

w* ~10° ~ 107 sec™?

ps ~107%m .

The size of the nonlinearities e¢/T, and Q/w,; as measured by laser scattering [Surko and

Slusher (1976)], and [Slusher and Surko (1978)] and microwave scattering [Mazzucato (1976)]

from a tokamak plasma are

'e¢ -2 107!,

T 0 10

Q 2 ep ~ 10-3 —2

P =k“p (—T—) 102 ~ 10
More recent measurements on larger tokamaks confirm these values showing that the small
levels of e¢/T. occur in the interior and the large values in the edge of the confined plasfna.
The system parameters and the drift wave fluctuation properties dzatermined from electro-
magnetic scattering experiment by Mazzucato (1982) in the Princeton Large Torus (PLT)
and by Brower et al. (1985) in the Texas Experimental (TEXT) are given in Table 2.1

9




Table 2.1: Plasma Drift Wave Parameters

PLT® TEXT®
magnetic field 3T 2T
electron temperature 1keV 500 e\}
density n. and 2 x 1018 ¢cm™3 3 x 10¥ cm—2
gradient length L, 20 cm 10 cm
drift velocity vy 2 x 10%cm/s 1 x 10%cm/s
k scattering experiment| 5 —20cm™! 1.5 —15cm™!
w scattering experiment 50 — 500 kHz 100 — 1000kHz
fie /e 5% 10-% t0 0.02]  0.01 to 0.1

°E. Mazzucato, Phys. Rev. Lett. 48, 1828 (1982).
5D.L. Brower, W.A. Peebles, and N.C. Luhmann, Phys. Rev. Lett. 54, 689 (1985).

B. Charney equation for the Rossby wave

There exists a wave in the atmospheric pfessure system which is almost identical in
its properties to the drift wave. The wave is called a “Rossby wave,” and it propagates
longitudinally with a speed proportional to the gradiént of the Coriolis force.

Let us consider the atmospheric motion oﬁ the surface of a rotating planet. The two-
~dimensional velocity v of the atmospheric flow in the horizontal plane obeys the equation of
motion [Morikawa (1960)],
' dv

- =—9VH +fvx2 o | (2.19)

10




~ where V is the gradient in the horizontal plane, f is the Coriolis parameter, z represents

the north-south direction, H is the surface displacement of the atrﬁosphere in the vertical
(Z) diréction, and g is the constant of gravity. Equation (2.19) describes the horizontal
acceleration of the constant mass density fluid by the gradient of the hydrostatic pressure
p = pgH and the Coriolis force 29 x v from being in a rotatlng frame of reference with
angular velocity 2. The quantity H also represents the surface dens1ty of the atmosphere;

hence, it obeys the continuity equation, )

i -
Vov=—ZtnH (2.20)

where V is again the two-dimensional operator in the z-y plane and H is the total depth of
thé atmosphere , |

H=Hy+h (2.21)
and Hy is the average depth. We see immediatély the élose resemblance of Egs. (2.19) and
(2.20) to Eqgs. (2.3) and (2.4). In 'fact, they are identical if h <« Hp, and when f is feplaced
by wei, and h by ¢. The’only difference is that the spatial variation of f is generally larger
than that of Hp. o

' If we introduce a small parameter called the Rossby number,

19 9 Hy
€= — Vin—| , 2.22
wma~m= 222
and introduce the following scaling
(Ht=t, . : (2.23)
&y =2,y (2.24)
Pq
h
T =h (2.25)
where the spatial scale p, (Rossby radius) is given by
H 1/2

11




and (f) is the average of f, Egs. (2.19) to (2.21) can be reduced to the form of Eq. (2.16)
[Charney (1948)] ' |

?% (V2h —h)—[(Vh x %) V] <V2h —fn Ef‘l) =0. . (2.27)
The linearized solution gives the dispersion relation for
o [(k x Z) - Vén f]
KT+ R
. k *VR
=1Tp " . (2:28)

Equation (2.28) defines the Rossby velocity ve = x V/nf in units of ¢, = p, (f) = (gHo)'/?
which is the isothermal sound speed ¢, in the atmosphere. Stewart (1943) and Morikawa
(1960) have studied thé nonlinear dynamics of Rossby waves in terms on interacting vortices .
(geostrophic vortices) using Egs. (2.18) and (2.19) in a uniform fluid. Typical parameters in

the earth’s atmospheric system in the mid-latitude are 7 -
Ho~8x10°m, p,~2x10°m,

(f) 1.6 x 1074sec™t, R 1071,

7
Unlike the case of a magnetized plasma, where the finite ion gyroradius p; effects at scales
k! ~ p; = (T}/T.)Y?p, disallow the use of a simplified fluid expression for kp, > 1 (if
ﬂ ~ T,), in the case of geostrophic turbulence kps can becomé very large. At sufficiently
large kps the dynamics of Eq. (2.27) reduces to that bf the Euler equation given in Eq. (2.17).

Other than this point, we can see the close similarity between the drift wave and the
Rossby wave. The comparisons between the plasma wave and the geophysical wave are

summarized in Table 2.2.
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Table 2.2: Analogy Between Drift Wave and Ros‘sby Wave

Drift Wave - Rossby Wave
H-M equation: Charney equation:
(1-v?) ¢+ d@—[qs,vw]_o (1_v2)—+ng" [k, V2] =0

Electrostatic potential ¢(z,y,t)

_(Ln Y 5s
P v,1) = (p-?) (ps Ps Tn t) /T

Variable part of fluid depthv h(a: Y, 1)
)i/
h(z,y,t) = h|—,— —t H
(,9,1) (Pg ps’ Ps’ Lr

Lorentz force: m;wesvy X 2

Coriolis force: pfvy X2

E x B drift flow: v, = (%) Zx VO Geostrophic flow: v, = (%) % x V6h:
: eB - |
Cyclotron frequency: wq = pio Coriolis parameter: f
Drift céefﬁcient* L7'= _o nn Rossby coefficient: Lg! = 2fn L
o oz ° 4 "R T ) H
Larmor radius: p; = S Rossby radius: p, - c_;
» )

Te 1/2
Ton acoustic speed: ¢; = (—-—)
m;

where T is electron temperature

(gH) 2
where H is depth of fluid layer.

Gravity wave speed: ¢g =

Drift velocity: vg = cs ps 88 Inny

Rossby velocity: vg — Ce g -;— In ( / )

Dispersion relation:
ky Ud

YT TR

Dlsperlson relation:
k VR

1+k2pg

13




III. Inviscid Properties of Charney and Hasegawa-Mima Equa-
tions '

A. Conservation laws and spectral distribution

To consider the turbulence which can be described by the Charney and Hasegawa-Mima
equation (CHM) it is convenient to review some of the properties of this equation. First, it
can easily be shown [Hasegawa and Mima (1978)] that these equations contain two funda-

mental conserved quantities; the total energy W,

%_VZ’E%-;-/[(V@M&] v =0, (3.1)
and the (potential) enstrophy U,
| %—Ct’ = %% / [(Ve)? + (v*¢)?] dV =0, | (3:2)

where / dV is the volume integral. Using these conserved quantities, a stationary spectrum
{|¢x|?) for the conservative (dissipationless) system has been obtained [Hasegawa, Imamura,

Mima and Taniuti (1978)]

{el?) = L+ £ M+ 6K | (3.3)
Hence, the energy spectrum becomes
1
— 2y 1421\ — ,
We=(+K)(14) = -5 (3.4)

and is the same as for the case of the two-dimensional Euler equation [Onsager (1949)]. If

af < 0, the spectrum indicates a negative temperature state and condensation at a small k

value (= |a/f)-

B. Single vortex solutions

Assuming a certain .rigidity of the vortices, Stewart (1943) and Morikawa (1960) study

interactions among vortex solutions of Eq. (2.16) without the inhomogeneous term. The

14




formulation is similar to the two-dimensionél vortex solutions. The solution can be written

b= 3 us Kollr = 1,(0) (35)
‘and |
dl‘j _ ~
—at———Vqﬁxz, : (36)

where K is the. modiﬁed Bessel function of the second kind, and wj is the circulation.

_ In contrast, the two-dimensional Euler’s vortex solution is ¢ = Y wjén|r —r;|. If |r —
r;| < 1, these two solutions are the same, but Stewart’s vortex di;s off exponentially at
|r — r;| > 1, hence, it can be considered as a shielded vortek. This means that the vortex
of Eq. (2.16) has a finite size given by p, or pg. This exponential shielding haé a significant
effect on the convection.

- The interacting N vortices of the homogeneous Hasega\w.a-Mima equation can be de-
scribed by the Hamiltonian, |

| N N '
H=3 3 wwKo(ri—r;l); 3.7)
i>j :
here, the canonical variables are the z and y coordinates of the centers of the vortices, z;,

;. The Hamiltonian equations of motion for these centers r;(t) = (i, ;) are

% =w; = i —w; Fr (3.8)
It can easily be verified that the following conservation relations exist:
(i) invariance of H:
%ﬁi —0, (3.9)
(ii) stationary mass center: ,
%Ewm:o, , . (8.10)

15




(iii) conservation of the moment of inertia:
d: 2
El; Zwiri xv;=0. (311)
i

We note here that these solutions of interacting vortices break down when the vortex den-
sity is increased and the inelastic collision starts to dominate. As the density is further
increased, the field becomes turbulent. The chaotic flow fields and the associated transport
are investigated by Kono and Horton (1991).

Even in the presence of the inhomogeneity term in Eq. (2.16) vortex solutions can be

found by means of the Galilean transformation,

y=n+st, S=v¢+xz (3.12)
where .
K =% x Vin (“’—") . - (3.13)
: T ‘ . .
The transformation (3.12) gives
6 0 0 :
-a—t-za—lﬁ% . (3.14)
Thus Eq. (2.16) is reduced to a symmetric struéture:
5 :
= (V) = (Vi x 2) - V(V?4) =0, (315)

where V is in the z-n plane. This equation also conserves energy (% / [¢2 + (V¢)2] dV)

and enstrophy (% / [(V2¢)2 + (V¢)2] dV), .
Equation (3.15) admits the single vortex solution of the type (3.5). Now we review the

dipolar vortex pair solutions of Egs. (2.16) and (2.27).

C. Vortex pair solution

In addition to the point vortex sohition, the Hasegawa-Mima equation admits a stationary

vortex pair solution in a moving coordinate n = y — ut. The dipolar vortex solution of

16




Eq. (2.16), called modon (Larichev and Reznik, 1976), is given by

2
vtk [a S1(r) r()‘—2+l)] sin@ , r<a

X2 T (a) \p
¢(r,0) = . Kl( ) (3.16)
U+ kK or) .
7 aKi(pa) sinf, r>a,

where ¢(z, y, t) = ¢(rsind, ut + r cos §). Here J; is a first-order Bessel function of the first

kind, K; is a first-order modified Bessel function of the second kind, u is the translation

speed in the y direction, '
r= [1:2 + (y —'ut)z] 2 :

p is the parameter related to u and x through

(3.17)

and a is the radius of a vortex pair within which there exists a constant vorticity. The

continuity of 8¢/dr at r = a gives the eigenvalue for A

= 1 1 (1 Kjpa)
S o (e

where y,, is the monotonically increasing sequence of zeros of Ji(r),

Ji(m) =0.

The stream function ¢ for a modon 1s shown in Fig. 1. The dipole vortex is called the
“modon” from the original oceanographic studies. A modon is somewhat similar to the soli-

ton of the Korteweg-de Vries equation in that a modon with a larger radius propagates faster

F1

and has a 1arge potential difference. Furthermore, stability of modons against some types of

collisions has been demonstrated. However, modons, as well as single vortex solutions, are
not eigenstates of the vortex equations; that is, they are not integrable. These issues are

~ discussed in Sec. V.
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The dipole vortices or modons propagate in regions complimentary to those of the waves. -

This complimentarity is shown in terms of the speed u from Eq. (3.17) compared with the
wave pha_se velocities as shown in Fig. 2 from Meiss and Horton (1983) for the case of finite
kj ¢s from the ion acoustic waves. The values of the energy W and enstrophy U integrals are
given in Meiss-Horton (1983) as a function of u/v4 and a / Ds-

. The properties of the dipole vortices have been studied in rotating water tanks by Antipov
et al. (1982), Antonova et al. (1983) as reviewed by Nezlin (1986). Further studies of the
elastic dipole collisions and the exjsteﬁce of tripolar vortices were carried out by Van Heijst

(1989) and his collaborators.

D. Mode coupling properties

Here, we consider the turbulence property of the Charney and Hasegawa-Mima equation.

It is convenient to consider the dynamic change of the spatial Fourier spectrum. If we write

P(x,t) =1 > [Pk (t) exp(ik - x) +cc] , N (3.18)
k
Eq. (2.15) bé_comes :
| d . .
. % + wk ¢k = Z Atl,kll¢ltl¢ltll y (319)
k+4+k/+k/”=0

where the asterisk indicates the cbmpl’ex conjugate,

14k2
is the drift or Rossby wave frequency, and the matrix element Aﬁ,,k,, is given by
1 ‘
k —1 ! m.a(L"2 _ w2
Ak’,k” =3 1+ 2 (k x k ) Z(k k ) . (3.21)

Let us consider three pla.ne waves with wavenumbers ki, ks, and k3 such that ky+ko+ks =
0. Let us suppose that those waves have amplitudes larger than other waves in the summation

of Eq. (3.19) and study the energy flow among these three waves. Equation (3.19) for the
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three interacting waves may be written

-

¢1 +iwy g =Az4 b3 b3

d
] +iws do = A3 3 7

~

dt
9 vings= A8t 6
where
¢i(t) = ¢, (t)
- and

wi=wg,, j=123.

(3.22)
(3.23)

(3.24)
(3.25)

(3.26)

The direction of energy flow or decay may be found by studying the stability of a situation

in which one of the modes 1,2,3 is more highly populated than others. For this purpose we

first assume, without loss of generality, that k; = |k;| such that

ky <ky<ks.

(327)

We first consider a case in which the k; mode is highly populated so that |¢a] > |61, |@al-

We can then linearize Egs. (3.22)—(3.24) to give

¢ = Ap exp(—iwst) , Ay = const ,

and
s _ 13, 4343 oxplidn).
d:l43 A3 A;‘ A¥ exp(iAwt) ,
with

¢; = Aj(t) exp(—iwjt) , j=1,3
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(3.29)

(3.30)




and

Aw=w; +wy +ws, (3.31)

is the frequency mismatch.

From Egs. (3.29) and (3.30), we have

Phy A

di2 a Az AdalA2fPA1=0. (3.32)

Hence, the instability (exponential growth of Al and As) occurs when
Aw? — 405 g A} | Ao? <0 (3.33)
“and the growth rate v of the daughter waves is given by
1 1/2 .
= (A;,a AL lAaf? - 5 Aw2) . (3.34)

Inequality (3.33) shows that the stability is decided by the sign of the product A} 3 A,.
~ Now, in view of the assumed relation (3.27), both of the quantities k2 — k2 and k% — k2

are negative (or zero)) in Eq. (3.21), and (ka X k3) - Z and (k3 X k) - Z have the same sign
(if not zero). Hence Aj 3 A2, > 0, and this situation can be unstable.

On the other hand, since Ag,l A}, and AZ, Ag’i are always negative (or zero), if modes 1 or
3 are highly populated, the system is stable. Hence we conclude that the necessary condition
for a spectrum cascade is to excite a shorter and a longer Wavelength mode simultaneously.
We note here that since this is not a resonant decay, by tHe time the decay process is
completed, many other mddes have also been excited.

Let us discuss the conservation of quanta in the décay process. If we introduce a number

of quanta of the three waves, defined by -

Np= L+ RIS/ - R, KR, - @39)
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from Egs. (3.22) to (3.24), we find

N3 — N; = const

and

N, + N; = const , N + N3 = const . (3.36)

These relations show that a loss of one quanfum in N, appears as a gain of one quantum in
N, and N3, respectively. The quantity N déﬁned in Eq. (3.35) thus serves the role as the
number of quanfa in the decay process. Since the characteristic frequency of a vortex is zero,
. the standard deﬁﬁition‘of a number of quanta, ny = Wiy /hwy, only applies in the three-wave
resonance limit given in Sec. IV.B. .The number of qﬁa.nta N, defined here has the strange -
property that it depends on the wavenumbers of the other interacting waves.

In a region of small wavenumbers (k* < 1), the first term in the growth rate expression,
Eq. (3.34), becomes small, and decay process occurs only when Aw =~ 0, i.e., when the
frequency mismatch is small. In this case the resonant three—wave mteractlon dominates the
decay process. The number of quanta defined in Eq. (3.35) reduces to the conventional form

because

kg — ki = kay/wg — Ky /wr = wp M (3.37)

where

M = (Bupwqwr) ™ [wWplkny — kay) + wqlkpy = kiry) + wr(kgy — Kipy)] (3.38)

~ and k, is the component of the k vector in the direction of & x Vénno. Equation (3.37) with
Eq. (3.35) gives N, « n, = Wp/hiw,. Hence, iﬁ the long wavelength region,l decay occurs
frbm the highest frequency mode to two lower frequency modes.

Now, the energy W, of the k mode is give1:1 by Wi = |6x|2(1+k&2). Hence, from Egs. (3.35)

and (3.36), we see that the partition of energy to modes 1 and 3, from the loss of a unit of
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energy AW, = —1 from mode 2 is given by

k3 — k2 | k3 — k3

wom MhepTg (3.39)

AW, =

In summary, the cascade occurs from the wave with wavenumber ks such that k; < k2 <
ks to waves with wavenumber k; and ks. If the frequency mismatch, Aw = w; + wq + ws, is
' zero, the cascade occurs from the wave with the highest frequency we(= —wi — ws) to waves

with lower frequencies w; and ws.

E. The inverse cascade

- The mathematical description of a fully developed turbulent state is difficult, if not
" impossible. However, the turbulent spectrum in the inertial range may be obtained by using
an argument based on the Kolmogorov law. (Recall that the inertial range is a range in
wavenumber space where there is neither a source nor a sink (dissipation) and where the
. wavenumber spectrum is assumed to cascade smoothly in a statistically stationary state.)

The Kolmogorov hypothesis is based on an isotropic, homogeneous turbulence in which
there is a local transfer of turbulent energy between neighboring k scales.

If we write the Fourier amplitude of the velocity field as vk, the rate at which the spec-
trum cascades is given by kv (the second term in Eq. (2.17)). The omnidirectional energy
spectrum W (k) is defined such that /0 ” W (k)dk gives the total energy, where k = (k - k)¥/2.
Hence W (k)k has the dimension of v§. Kolmogorov (1941) argues that, in a quasisteady
state, there should be a stationary flow of énergy in k space frqm the source to the sink. This
Iﬁeans that the energy density flow pkuy vZ should be constant and given by the dissipation

rate of the energy density at the sink:

pkvi=¢. (3.40)
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Writing vy, = [kW (k)]'/2, W (k) is given by

W (k) =C (5) " k58 . - (3.41)

p ‘
where C is a universal dimensionless constant. In three- (or one-) dimensional turbuleﬁc;e,
only the energy is conserved in the inertial range, and the venergy spectrum cascades towards
large wavénumbers where it is dissipated because of the viscosity. Equation (3.41) is the
famous Kolmogorov spectrum [Kolmogorov (1941)].

Ndw, in two-dimensional turbulence there is an additional conserved quantity, the en-
strophy. Hence two types of inertial ranges are expected, one for .energy and the other for
enstrophy. Since' the enstrophy density is given By pk2 v2, the inertial range of enstrophy
requires that Sy

pkvi k* v = €' = const . (3.42)

" - Thus, writing v = [kW (k)]"/2, the energy spectrum in this range is given by

W(k) = C' (%’) ey | (3.43)

Equation (3.43) shows an energy spectrum of k3, in contrast to the KoImogorov spectrum -

of k~5/3, which is obtained from the inertial range of energy. Kraichnan (1967) showed that

if W (k) ~ k=2 [more precisely, W (k) ~ k~3(¢énk)~*/%] there is no energy cascade, while if -

W (k) ~ k=53, there is no enstrophy cascade. Hence a source at k = k, will set up two

inertial ranges, k > k; and k < k;. Since the enstrophy, because of its largei' k dependence,

is dissipated at large wavenumbers at a rate faster than the energy, the k > k, region is

expected to be the inertial range for enstrophy, which implies that the k < k, region would

be the inertial range for energy. Thus the energy spectrum has two parts:

WkE)~k3, k>k,. (3.44)

Wk)~Ek5%, k<k,. | (3.45)
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Kraichnan argues that since there is no energy cascade for k > ks, the energy should cascade
toward the smaller wavenumbers for & < ks. In other words an inverse cascade is expected.
On the other hand, the enstrophy cascades toward the large-wavenumber regime at k > k.
However, in the absence of energy diésipation in the small wavenumber regime, it is difficult
to see how an inertial range for energy could be established if k < k,. Hence let us investigate
the question of the inverse cascade without making any aSsumption about the inertial raﬁge
spectrum. First, we consider the following thought experiment. Imagine a source at say, |
k = ks, with energy W,. Through mode-mode coupling this would decay to two modes with
wavenumbers k; and ka.

Let us suppose, for simplicity, that the cascade to two wavenumbers occurs at each step
such thét the decay rate is maximized. This condition can be found by ma.xirhizing the
product A, AR, , and i is given by kf = kf + ki, =(2- l)k:2 (so k2 = v/2Kk2).. We
denote this ratio of wavenumbers squared by p(= k%/ k2 v2-1), and see how.the cascade
proceeds to form the energy spectrum. _

We have seen that the k2 first decays to wavenumbers at k? = pk? and k2 = (1 + p)k2,
with a corresponding energy partition, given by Egs. (3.39), into W; = pW, and (1-p)W,. In
* the next step of the cascade, the mode at k; decays to a mode at pk? = p? k2 and (1+p)k? =
p(1 + p)k2, while the mode at k7 decays to pkz = p(1 + p)kZ and (1 + p)ki = (1 +p)? k2.
The corresponding energy partitions are p* W, 2p(1 — p)W, and (1 — p)*W, for squared ‘

wavemimbers at »° k2, p(1 + p)k? and (1 + p)k2, respectively. Continuing to the nth step,
| we see that the energy distribution is given by a binomial distribution for a parameter r /n

which is related to the value of k% in the following manner:
W (k=" (L+p) K2) = (Z) (=)W, . (3.46)

Equation (3.46) gives the energy spectrum which results from a series of cascades at a fixed
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ratio of k#/kZ at each step, where k% + k2 = k3. Energy conservation is given by

“(n\ .-
. (T)p" "l-p=1.
r=0 :
We now show that the energy spectrum condenses at k — 0 as n — oo. First we note
that the peak of a binomial distribution occurs at r/n — 1 — p as n — oo. Hence let

us evaluate the wavenumber k% = kg which corresponds to the peak of the distribution as

n — oo. From Eq. (3.46)
B = lim o™ (L+p)'K] = Jim [p (1 +p)7" K
Letting r/n — 1 — p as n — o0,
k,‘;’ = Jﬁ’& [pP(l + p)“?]” k-0, (3.47)

since p?(1 + p)'? < 1 for 0 < p < 1. This means that the peak of the energy distribution
moves to k — 0 as n — oo. Hence an invefse cascade and condensation of the spectrum at
k = 0 can be expected from this model. It is interesting to note that the inverse cascade
obtained this way is a consequence of the conservation of energy and enstrophy throughout
‘the decay processes, and not of the (selective) dissipation of enstrophy; it originates from
the particular property of the matrix element A’,ﬁ;’, &, in Eq. (3.19) following from Eq. (2.16),

and is not the consequence of dissipation.
IV. Dynamics of Drift Wave-Rossby Wave Turbulence

As discussed in the Introduction the presence of the dispersive waves in the CHM equation
(2.16) gives rise to regimes of wave turbulence that may be analyzed within the context of
the weak turbulence and the renormalized turbulence (RNT) wave kinetic equations. In
regimes where the statistics of the wave field ¢ are sufficiently random to allow the quasi-

gaussian (or quasinormal) truncation of the multifield correlation functions to be'valid, the
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wave kinetic equation provides an analytical method of describing the distribution of the

turbulent fluctuation energy spectrum W (k) = (1 + k2 p2)|¢k|? in wavenumber space.

A. Weak turbulence Kolmogorov-like spectral laws

The wave kinetic equation provides a method of deriving Kolmogorov-type spectra by
methods developed by Zakharov (1984) and his collaborators. The analysis shows clearly
how the Kolmogofov spectra depend on the scale invariance of both the dispersion law wy
and the wave interaction dynamics A,’g;ks. Thus for drift wave-Rossby wave turbulence the
spectral distribution. changes slope between the long wave region k;p < 1 and the short
wave region kyp > 1 where the scaling properties change. In addition, the dispersion law

wk = kyva/(1 + k3 p?) is clearly anisotropic, and thus the spectral distributions are of the

form
1

Ikw|y” |ky|y“’

with separate scaling exponents v = (v, 1) in the two directions. Here P is the flux of

W (k) = P2 (4.1)

energy in the inertial range. In the long wave region (kp < 1) the analyses of Novakovskii
et al. (1988), Balk and Nazarenko (1990), and Balk et al. (1991) give v, = 3 and v, :-3/2,
which was tested in numerical simulations by Horton et al. (1991). To test the analytic
inertial range model an idealized isotropic source-sink model +*(k)¢y is added to the k-space
CHM equation (3.19). The actual plasma fluctuation source-sink physics occurs through the
mechanism of dissipation either in the form of finite resiétivity from electron-ion collisions or
resonant wave particle interactions. The dynamical description then requires changing the

structure of the CHM equation as given in Sec. IV.E.
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B. Wave-kinetic equation.

Here we review the key elements of this rather technically complex field of study. The‘

principal assumption in the analysis is that the energy-momentum transfer within the tur-

bulent spectrum W (k) occurs along the three-wave resonant manifold defined by
| k=k; +ky
(4.2)
Wk = Wk, + Wk,
in the kw-space. The resonance conditions (4.2) allow both a local (as in the Ke]mogorov
hypotheeis) and nonlocal interaction. In renormalized turbulence theory the sharp delta

function condition §(wx — wk, — wk,) on the frequency resonance in condition (4.2) is re-

placed by a broadened nonlinear propagator g, with finite correlation time 7. = 1/v;, that

is determined self-consistently with the fluctuation spectrum W (k). Taking v into account -

-is important for determining the spectral line widths Aw observed in the electromagnetic
scattering experiments discuesed in the introduction. The nonlinear broadening of the prop-
agator gx., however, is not considered to be important in determining the w-integi‘ated
distribution W (k) = / dw W (k,w) of the fluctuation energy in k-space.

~ The transport of fluctuation energy in k-space occurs resonantly along the three-wave

manifold (4.2) which is given in more detail by letting p=k; and ko =k —p .

AQ, = DyUa . (ky — Py)'Ud
P 1+p2+p2 14 (ke — o) + (ky — py)?
_hw '
1+k3,+k§“0 (43)

‘where for each (kz, ky) there is a resonant curve in p = k; shown in F1g 3. The interactions
are defined as local in k-space when all theéwave vectors are comparable in size |k| ~
|ki| ~ |k — ki|. It is the interaction of these comparable size fluctuations that is used in the
Kolmogorov pictnre of the inertial range cascade.b For example, from the drift wave dispersion

relation (3.20) it is easy to see that all equilateral triangles with sides k;, ko, k = —kj satisfy
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the resonant condition w; + ws + ws = 0 and thus from part of the local transport in k-
space. VIn addition, there are nonlocal transport processes in which one of the k-vectors is
much smaller than the other two. The fluctuation at small |k| is then part of the large scale
turbulent flow and this large scale flow can have a dominant influence over the small scale
turbulence. One method of analyzing the nonlocal fluctuation dynamics is by separating the
fluctuation field into ¢ = @r, + ¢, where L and s are the large scale and small scale parts of
the field respectively. The turbulence analysis based on this two-scale analysis is discussed
in Sec. V.H. - |

In the three-wave resonant manifold (a 3-dimensional surface in the 4-dimensional vector
space of k,k; = p) shown in Fig. 3 there are two important regions of nonlocal contributions
to the k-space transport processes. The region around the origin defined by |p| < |k]| is
one in which k and k — p are strongly coupled by the large scale fluctuation p. Balk: et al.
(1991) show that these small |p| interactions reduce to a diffusion of W (k) in k-space along
a curve of given v = kyvz — wy as shown in Fig. 4. Such transport takes energy from the
source at kyp = 0, kyp ~ 0.5 region of max vy to the regime of kyp — 0 and finite kmp which
is the region of shear flows or zonal flows where v,(z,t) & —cE,/ B> v,.

A second region of strong, nonlocal transport occurs from the region around p = (2k.,0)
as indicated in Fig. 3. In this region the spectral equation contains finite deference terms
that directly couple energy from k to O(% ks, k,) through the strength of the short scale
shear flow at (2kz,0). Thus, the combination of the nonlocal and local transport in k space
of fluctuation energy and momentum contained in the turbulent fluctuations is a complex
anisotropic process for the CHM equation.

To formulate the transpért analysis in k-space under the resonance condition (4.2) and
to derive the weak-turbulence Kolmogorov scaling exponents it is necessary to transform

the mode coupling Eqs. (3.19) to a form showing the symmetry of the exchange of any two
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3 3
of the three waves {ki,wr, }3_, where k3 = —k,ws = —wx = wg, and k; = w; = 0.
3 .

) i=1 i=1
The transformation of ¢y, (t) to ax,(t) required to show the wave exchange symmetry follows
naturally from the Hamiltonian formulation of the wave dynamics with ia; = 6H/6a} where
the field Hamiltonian is expanded in powers of ax, () with

1 - »
H= Zwk:i' a’; a; + 31 E Vijk aia’jak‘ski+kj+ke,o +oe (4.4)
j .

ik
(Balk et al., 1990, Appendix A). The result of the Hamiltonian analysis is that the usual
prescripfion of introducing the plasma number spectrum by ny = Wy /|wi| = af ax and thus
| ax(t) = (1 +k2) i (t) /|ky|/? gives the desired symmetric interaction elements. We note that
ny reduces to N, = N;, in Eq. (3.35) at the limit of weak interactions where the linear
dispersioh relation holds. -

' It is straightforward to show that the mode coupling elements A}:lkz of Eq. (3.19) are
transformed to the fully symmetric Vix,, for the ax (t) dynamics by |

2 (14 E2)AE .
(1+ k(1 + k2)

kly k2y
kay

V—ks,khkz -

TR T+ 1+ R

= lklyk2yk3y|l'/2 [ (4-5) ‘

which has complete symmetry in the interchange of any two of the three waves. In making
the reduction shown in Eq. (4.5) the resonance condition (4.2) must be used.

Ndw for sufficiently short wave interaction times the dispersion of the wave frequencies
wk over the spectrum of W(k,¢) = |wk|nk(t) allows the ﬂuctuation dynamics to be described

by the classical wave kinetic equation (Sagdeev and Galeev, 1968)

d
%& - 47T/dk1dk3 |ka1k2]2 §(k — ky — ko)
§(wk — Wiy, — Wk,) M1 Mky — Mk ey S9(WieWica) — Tk, 89 (Wit )] - (46)
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The kinetic equation (4.6) gives the time rate of change of any functional F' with flux fk

defined by

F)=1} [ fesg@mtd (47)
. |
dF
2 = or / Viyiea 260k — k1 — ko) (wic — whey — Whey)
i e e, (e = fis — ) (39 ) _ sg(urs) _ 59 (“"‘2)) dkdiydky . (48)
nk Nk, Tk,
Thus any flux fi which is conserved
fi = fia + fo " (4.9)

is under the resonant interactions defined by Eq. (4.2) gives an integraﬂ of the motion through
Eq. (4.8) with dF/dt = 0. Thus, from the resonance conditions (4.2) themselves the total

energy-momentum conservation laws for

W= / W (k)dk = 1 / lwin(k)dk | (4.10)
P= / ko (k) sg(we)dk (4.12).
P, = /ky n(k)sg(wk)dk | (4.12)

immediately follow. The conserved F-momentum is equivalent to the enstrophy conservation
- using k, nk sg(wk) = (1 + k?)|¢x|? so that Py =W + U defined in Egs. (3.1) and (3.2). The
momentum P, = 0 for a symmetric or antisymmetric wave field o(—z,y,t) = é(z,y,t)
which reduces the invariants to W and U. In general for the broken symmetry in z of the
actual physical equilibrium leads to P, # 0, and the conservation of P, gives a constraint.-on
the radial transport. .

The existence of an additional invariant in the weak turbulence equation has been sho§vn
by Zakharov and his collaborators to be a signature of the integrability that occurs in the orig-

inal nonlinear pde’s, as shown in studies of the Korteweg-de Vries, Kadomtsev-Petviashvili
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and nonlinear Schrodinger equations (Zakharov and Schulman, 1988). For the CHM equation
Balk et al. (1991) show that there is.a remnant of the integrability by finding an additional
invariant of Eq. (4.6) given by fx = wi/k2. The implication of this additional invariant F°
is shown to be connected with the nonlocal interactions that generate a flux of energy along
the curves of constant vy = kyvg — wy shown in Fig. 4. The invariant of P,, W and F' (asso-
ciated with wf/k2) restrict the directions of the fluxes of these conserved quantities and the
regions of energy dissipation. Zakharov and collaborators show that the fastest transport in
k-space is the nonlocal transport from the region of |p| < |k| in Fig. 3 where the large scale
(|j)| < 1) fluctuations n(p) produce a flux of energy from (ke = 0,kyps ~ 1).to |kz| > |ky|
along the curves of constant -

ky 'Ud(kg + kg)

T+ R TR (413)

vk = kyvg — wg =

shown in Fig. 4(b).

The transport of fluctuation energy along the curves of constant vi leads directly to
the buildup of strong, small scale zonal flows with |kz| > |ky|. The fluctuation spectrum
W (kz, |ky| < 1) has a steep power lower drop;off 1/|kz|"= with v, > 2 for k, > 1. We now

derive the various Kolmogorov scaling exponents in the two scaling zones of k-space.

C. Scaling laws

~ The dynamics of the turbulent interactions is known from simulations and theory to
have different stréngths in the long wave k < 1 and short wave k > 1 regions. The scaling
properties for these two regions follow from the scaling laws for the dispersion and interaction
elements for the waves

ok = (4.14)

I/qk,qk]_ akz = qﬁ3 ‘/k,k]_,kz

where ¢ is the scaling factor for the wavenumber k — ¢k and a = (ag,y) and S = (Bz, Gy)

are the scaling exponents. From (3.20) and (4.5) we see that for the short waves a = (—2,1)
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and § = (—1,3/2) whereas for long waves a = (2,1) and 3 = (3,3/2). (For long Wa,v.es the
relevant dispersion law for scaling is for v, = wy — kyvg rather than wg.) Using fhe scaling
analysis of Zakharov as applied to drift-Rossby waves by Novakovskii et al. (1988) and Balk
et al. (1991) we obtain the following wavenumber distributions

( ko 2 ko 3/2
wli) @) e

W (ks ky) = ¢ (4.15)
ko 3 ko 3/2
Wo (k—) ('k—) kps 1.
\ €z Y

These scaling laws are required for dn(k)/dt = 0 in the inertial range of k where y(k) = 0.

If we consider the omnidirectional k-scaling in Eqgs. (4.15) the two scaling law regimés are
W (k) =Wo(ko/k)"/? and Wo(ko/k)*/? where the exponents 7/2 and 9/2 bracket the scaling
exponent of 4 reported by Hasegawa et al. (1978). An exponent of 4 leads to the omnidirec-
tional spectral density / dkkW (k) = / dkWo(ko/k)® of 3. The exponent of 3 is commonly
used in pfactical estimates of transport and appears consistent with the electromagnetic
scattering measurements. _

* Numerical simulations by Terry and Horton (1982, 1983); Waltz (1983, 1990), and Horton
(1986) have shown anisotropic spectra for the CHM equation, but have not been constructed
to have an inertial range.  The simulation of Horton et al. (1991) is constructed to have
‘an inertial range, and the scaling exponents are reported as briefly discussed in the next
subsection.

The energy spectrum (3.4) corresponds to the local thermodynamic equilibrium n(k) =
T/[lwk| + |ky|v] corresponding to the Réyleigh—Jeans law for the system. Here T and v
are constants. This thermodynamic equipartition solution does not have a finite energy-
momentum flux in k-space. The finite energy-momentum flux through the inertial range is
given by the Kolmogorov-type spectra (3.44) and (4.15). Thus the driven-damped system

must develop spectra of the Kolmogorov-type in the inertial range as we now illustrate with
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numerical simulations.

D. Inertial range simulation

A test of the scaling exponents and the shape of the driven-damped CHM equation was
carried out by Horton, Su and Morrison (1991). In these tests the CHM equation is solved
in a truncated k-space as written in Eq. (3.18) using the mode coupling elements AE ks
in.Eq. (3.19). To study the inertial range the source-sink term i ¢k(t) is added to the
right-hand side by wg ——+.wk + iy with the choice

| = +.005 for 0.35 < |k| < 0.4
Tk = 0 - for 0.4 <k[<20 (4.16)
l=%=-0005 for k|>20. |
Computations were carried out on the grid with k = (m,n)k; with klp = 0.05 giving the
periodic box size of (126p)2 for times up t0 tmax = 1000. Contour plots of the potential
| field ¢(z,y,t) = 5000 are given in Fig. 5. The simulation que energy spectra in the steady
state are peaked at kp = 0.35 (the source region) and decay in the .inerf,ial range as shown

in Fig. 6. Parameterizing the numerically computed one-djmensional projections to

1
[kal™

1
[y

Wwrim(k,) = Z W ks, ky) o ——
(4.17)
W"""‘(ky) = E W (ks, ky)
| the regression fit to the simulation determine the values of mg & ém, and my =+ ém,,.

The simulations show the change in the indices my, my in the high (mh) and low (m?)

wavenumber regimes as expected from the scaling theory Eq. (4.15). The exponents found |

in the example given in Eq. (4.16) shown in Fig. 6 are

mi=16+01 ml=16+01 for k>1

mt=37+04 mi=41£04 for k<1 (4.18)
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whﬂ:h confirms the trend but not the values of the scaling laws based on the asymptotic
forms in Eq. (4.15). The steeper decrease of the numerical k,k,-spectrum is either due to
the compressed inertial‘ range used in the test or due to the asymptotic theoretical reductions
of 1+%% — 1 and k2 used in obtaining the & and 3 scaling exponents from the wy and Vikyk,
formulas.

In the steady state shown in Figs. 5 and 6 the total turbulent energy density and enstrophy
are W = 0.8 and U = 0.3 in units of (p/Lyn)?noT.. The space-time averaged kurtosis and
skewness of ¢ are 2.9 and —0.1, respeétively. The equipotential contours at time tvg/p = 5000
are shown in Fig. 6 along with the maximum and minimum values of ¢. The system appears
-to be within the state of weak turbulence for these small values of 7.

A closely related simulation of drift wave turbulence driven by tlhe pafa.llel shear flow
in the ion-acoustic wave equation gives the spectra indices mg = 2 for 0.2 < kzp < 2 and
mg = 8 for 2 < kyp < 7 (Horton, Dong, Tajima, 1993).

Even in the isotropic, 2D Euler limit given by Eq. (2.17) the question of the value of
spectral index remains an active area of research. High resolution simulations of the forced-
damped 2D Euler equation persistently show energy spectral decays faéter than the rate
k~3[¢n(k/k;)]"/? predicted by space filling, isotropic, homogeneous turbulence theory. The
reason for the larger decay indices has been traced to the emergence of long-lived, coherent
vortex structures [McWilliams (1984) and Legras et al. (1988)]. The high resolution simu-
lations of Legras et al. (1988) show clearly the correlation of larger decay indices (m =~ 4)
with the appearance of monopole, dipole and tripolar vortices. Legras et al. (1988) compare
the spectral indices and the associated vortex structures for (512)? simulations obtained
with the three types of drivers (i) constant, single mode k = (kr,0), forcing, (ii) stochas-
tic, narrow-band external forcing Fi(k; < |k| < ko) taken with new random phases at éach
time step, and (iii) narrow band linear growth rate similar to that given in Eq. (4.16). A

large-scale damping rate —vzé(k) and a hyperviscosity —vs(k3 )P¢(k) are used to produce
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the steady state. The resulting turbulence is characterized by the spectral index m and its
vortex content as follows: (i) m = 3.6 and a low-packing fraction of relatively large vortices
(ii) m = 3.5 and a denser packing of smaller vortices and (iii) m = 4.2 and the prominence
of several dipolar and one tripolar vortex. Thus, it appears that for 2D turbulence the spacé
ﬁliing, inverse cascade spectrum of k=3[fn(k/k;)]~'/% is an idealization that is not achieved
in practice due to the strong, self-organization properties of these turbulent ﬂows. A further
demonstration of the suppression of turbulent cascades by coher_ent vorltices in 2D turbulence
is given by McWilliams (1990a,b).

In contrast, in the next subsectioﬁ we consider the case where self-consistent wave growth -
and damping due to electron-ion collisions are used to drive the system. For typical values.
of these parameters the system enters a state of strong turbulence which is a more isotropic

, state. (

E. Self-consistent driven-damped nonlinear drift wave equation

- Fluctuations in tokamaks with characteristics of the drift waves are widely observed in
many confinement ’expefiments since the 1976-78 electromagnetic scattering experiments
described in Sec. I. The exact nature of the driving and damping mechanisms has proven
difficult to determine experimentally (Bravenec et al., 1992) and presumably varies widely
with the confinement system parameters, the plasma parameters, and plasma profiles as
linear stability théory predicts. The simplest and earliest form of driving and damping of the.
drift wave fluctuations occurs through the electron-ion collisions that determine the plasma
resistivity 7 = mevei/nee? and the ion-ion collisions that determine the plasma viscosity
pL = 0.3v;pf and u“ = (T;/mivi). For fluctuations with wavenumbers k., kj perpendicular
to and parallel to the magnetic field the associated decay rates are
| KT,
ne>ne

n_
W=

= K02 v = [yl
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W =kip =03k} ol <y © o (419)
I/{]" = kl?viz/lli _>_ |k|||vi .

It is well known that the resistive diffusion t/ﬁ’ is destabilizing and the viscous dampings
(vj‘_,vl‘!‘) are stabilizing. In the limit of low collision frequency the dissipation is replaced
with the collisionless Landau damping which is adequately described by the limiting formulas
yf — |kylve and v’ — |ky|v; and vf — 0.
There are two well-known descriptions of the resistive-dissipative drift wave turbulence:

(1) the Horton ifx-model (1976, 1986) that retains the single field description but intro-
duces an anti-Hermitian operator Lo to include the effects of the dissipation, and (2)
the Hasegawa-Wakatani (1983) model that introduces two fields, the density a.ndv the elec-
trostatic potential to describe the dissipé,tive dynamics and the partial decoﬁpling of the
density and potential that occurs when the dissipation is strong. For weak dissipation the
.Hasegawa-Wakata,ni equation reduces to the i6;-model (Horton, 1986). Finally, a more com-
‘plete collisional description that includes the coupling to the ion acoustic waves and the
electron temperature fluctuations (@, 7, 'TZ”,Te) is given by Hinton and Horton (1971) in a

work on the interpretation of the collisional drift wave experiments. The drift wave meé,sure-

ments analyzed were those of Hendel et al. (1968) in a long, straight cylindrical geométry

cbntaining a thermionically ionized cesium plasma, a device called a Q-machine for the qui- -
escent plésma produced. The four-field system (q~5, n, ﬁ",i) and other reduced equations -
drift wave models are analyzed in detail in Horton (1990) ahd Scott (1992). Here we restrict
the discussion to the Horton i6x-model and the Hasegawa-Wakatani equations.

In the limit of weak-dissipation the electron density response to the electrostatic potential

is nonlocal and dissipative as given by

ﬁ(w>y7t) = 67730 ¢+5o(01+v2)g—§:| = (

ENg
T,

) (1+ L*)¢ (4.20)

36




where the anti-Hermitian operator L£°" is of strength & and in general has the power series
expansion f(c; + c2V? + ¢3V4 + ---)0y. With the generalization of the electron density
Iiesponse from that in vK. (2.5) to that in Eq. (4.20) it is straightforward to repeat the
analysis leading to Eq. (2.16) to obtain the dissipative drift wave equation used by Horton
and his collaborators

206, 04 [09 0

o ey T or by (£4) - a¢ a (£¢) +uVig=0 (4.21)

where

L=1-V*+L", (4.22)

and p is the perpendicular ion viscosity that arises from the divergence of the ion cross-field

; cB av, ‘
JL= (Ez’) X [mi n; (_Elt—) - M.LVzVL]

 with v = cE xB/B? = ¢z x V¢/B. The model equation is also called the E x B nonlinear

current

drift wave model since the nonlinearity of the Poisson bracket now contains both the polar-
ization drift [#, V2¢] nonlinearity and the nonlinearity due to the E x B convection of the

density

ve- Vn=[p,n] = [p, L] . . | (4.23)
Waltz (1983, 1990) ha.s’compared the contributions of the two nonlinearities and shown from
simulations that the E x B nonlinearity is essential for saturation at the mixing length level.
Without the E x B nonlinearity the rms amplitude of the fluctuations continues to increase
with & beyond the mixing length (mf) level given by

fimt edg™ )\, dng '
'—n—‘ ~ 1_,,3 ~ ;),—(; -zi"a—:' . (4.24)

+ The linear modes for the dissipative equation are given by

) k,vg— iug k3
Wi + i = yUd — YULIK]

“TTR T iboky(c1— B (425)
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with 7, being positive in the region of kp < 1 with 7§ =~ k2é& (k] — c1)/(1 + k})? and
negative in the short wave region kp > 1 with v ~ —u. k3 /(1+k}). A typical distribution
of y(kz, ky) is shown in Fig. 7.

The relationship between the “mixing length” deécription of turbulence and the “direct
interaction approximation” and RNT turbulence theories is analyzed by Sudan and Pfirsch
(1992). |

The dissipative nonlinear drift wave equation shows both regimes of weak turbulence
with W = ) W(k) < 1 and strong turbulence W >> 1 where the vortex gas dynamics
dominates. Kn example of the vortex gas regime is shown in Fig. 8 where the parameter
set is {8, c1,u} = {1/4,—1/4,0.005}, taken to be representative of the trapped electron
turbulence in tokamaks, is used. The total energy and enstrophy in the saturated state is
W = 25.6 and U = 2.1, which gives a mean wavenumber of kp, = (U/W)Y? = 0.28: The

dimensionless dissipative Reynolds number for the system is

Rep = — =2x10° (4.26)

# .
where L = 62.8p,. The dissipationless Reynolds number or Kubo number formed by the

ratio of the convective derivative nonlinearity and the wave frequency wy is
kv
Rp=—2~2, (4.27)
o .

a value of Rg characteristic of drift wave vortices with speeds close to the drift wave speed.

Having Rg > 1 puts the drift wave dynamics in the regime of self-trapping of the wave energy

into vortices. This regime of self-trapping significantly reduces the effect of inhomogeneities .

on the waves, as shown in Sec. V.G, and greatly increases the lifetime of the fluctuation.
The condition for self-trapping is just above the mixing length level as shown, noting that

a circular vortex of radius 7o has an effective wavenumber kry ~ 7 and thus using wz/ky = vg
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and ¥ = keg/B we obtain from Eq. (4.27)

CPmax

) _ECTG2‘
B

LE iy iy g
n

(4.28)

| ~ which corresponds to an amplitude just above the mixing length level (4.24).

In the vortex regime (4.28) there is trapped fluid or plasma (Horton and Petviashvili,
1993) that rotates around the potential maximum at the rate Qg. We calculate the rotation
rate from the local model of vortex with ¢ = @max(1 — 72/r2) to obtain angular rotation

frequency

Vg c d¢ 2CPmax

el . it A 4.29
r rBdr Brg (429)

which is clockwise for ¢mx > 0 where the pressure and density are high (anticyclone) and

Qp =

counterclockwise for ¢max < 0 where the pressure and density are low.

Thus, the solid curves where ¢ > 0 in Fig. 8 describe the high pressure anticyclones and
the dashed curves describe the low pressure cyclones. These vortices are observed in rotating
water tank éxperiments by Nezlin (1986), Antonova et al. (1983), Antipov ét al. (1982), and
Behringer (1991). They are observed to have long lifetimes when 27 /g is small compared
to the linear wave period and the dissipation time scale from the friction of the rotating fluid
with the walls of the vessel. Some experiments (Nezlin, 1986) show that the anticyclone
has a longer lifetime than the cyclone which is not a property predicted by the dissipative
equation (4'.21) which has the symmetry ¢(—z,y,t) = —¢(z,y,t). As we show in Sec. V.C |
. for larger scale vortices there is a structural change in the nqnlinea.r equation that brings in
the new nonlinearity |

ad 99 = scalar or KAV nonlinearity (4.30)

9y
that has the property of removing the degeneracy of the cyclones and anticyclones. Nezlin
argues, as supported by theory and simulations, that this nonlinearity is important in the
rotating water tank experiments and has the sign of the strength parameter o such that the

anticyclonic vortices form the long-lived self-organized structures.
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Vortex dynamics has also been observed in the plasmas produced in Q-machines. In the
experiments of Pecseli et al. (1984, 1985), externally excited vortices of like signs were shown
to coalesce into one vortex. Vortices of opposite signs were reported to interact with each
other but no claim was made about the formation of a dipole vortex pair. The presence
of vortices in a spectrum of waves changes the wave number spectrum making the spectral
decay index m appreciably larger than the values of m = 3 to 4 derived in Secs. IIL.E and

IV.C.
V. Stability and Dynamicé of the Drift-Rossby Vortices

In this section we review recent developments in the stability of the dipolar vortex so-
lutions and describe the associated vortex wave dynamics of the drift wave-Rossby wave

systems.

A. Stability of the dipolar vortex

The numerical simulations of both head-on collisions (Flierl et al., 1980; Makino et al.,
1981) and collisions with the impact parameter b ~ a by Horton (1989) show that the
~ dipoles have a high degree of stability and resilience. Efforts to prove stability analytically
have failed for the reasons described here.

From simulations and physical reasoning we can see that there are two types of unstable
perturbations: (1) the addition of an overall shear flow and (2) the addition df a monopolar
structure often called a “rider.” The addition of a shear flow gives ¢ — ¢dp+ (dvé, /dx)x which
produces & stagnation point at vy(z,y = 0) = ddgp/dx + dvy/dx = 0. Here ¢gp(x,y — ut) is -
the dipolar vortex given in Eq. (3.16). For small v} = dv,/dz the stagnation point occurs in
the exponentially shielded part of the vortex and the effect is weak. For larger v;, however,
the stagnation poiht allows the leakage of the trapped potential vorticity to escape from the
lobe that is counter-rotating to the vorticity in the shear flow. The leakage allows the decay
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of the counter-rotating vortex lobe leaving the final state as one with a single monopolar
vortex embedded in the shear flow (Horton, Tajima, and Kamimura, 1987).

" For the plasma physics problem the presence .of a sheared magnetic field also gives a
leaikage of trapped plasma from the two lobes of the dipole vortex, both lobes in this case,
and is described in Sec. V.G on wave radiation. For the shear flow we can estimate the
condition for a rapid transformation from dipolar to a monopolar vortex from shear flow
~ is that av, 2 u ~ vg. We now discuss the effect of adding a symmetric rider ¢o(r) to the
antisymmetric dipole. , |

The application of a small symmetri;: rider ¢ — Pap(r,6) + do(r) with a localization
radius R comparable to the dipole radiﬁs desymmetrizes the dipole giving one side a stronger

vorticity. The side with the stronger vorticity then convects the neighboring vortex more

strongly and vice-versa for the effect of the weaker side on the stronger side. This asymmetry

causes the dipole to propagate at a tilted angle with respect to the 6rigina1 14 ¥ drift direction.

Now by considering the conservation of the pof;ential vorticity 4
g(x,y,¢) = V2%$ — ¢+ vaz = constant along Auid trajectory (5.1)

we can see from 6q = 0 that for the resulting displacement éx to have a restoring influence
on ¢ in the vortex lobes where V2¢/¢ < 0, we must have the dipole polarization such that
" Eg, x B (or Z X Véyp) is opposite to the direction of wave propagation '(vdj‘r or vg¥). On
the other hand, for dipoles oriented such that Eg, x B is parallel to the direction of wave
propagation there is no restoring tendency from the conservation of g since now the ¢ and
vgz terms are of the same sign. As the angle of deviation increases, one lobe soon dominates
over the other;

In the geophysical coordinates the situation is shown in Fig. 9where the westward trav-

eling dipole has a = 6p, and u/vg = 1.2 with ¢max =~ a(u — vr) =~ avgr/5. A small (2%)

axisymmetric perturbation [¢o(r) = vra/(1 + r?/R?)] is added at ¢ = 0. The perturbation |

4
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_increases the strength of the northern anticyclone which then swings the weaker southern

cyclone to the north. The dipole tilts to about 7/2 and then splits apart. In frame 9b at
‘tug/p, = 50 the structure is just coming é,part, and by tvgr/p, = 100 in frame 9c there is
only the strong anticyclonic monopole with the previous cyclonic part now dispersing as a
wave train. This situation of an anticyclone plus a wake of waves continues as shown in
frame 9d for tvr = 150 p.

A single monopolar structure is not an exact solitary wave solution to the CHM eqﬁation,
but it does form a long-lived structure when the trapping condition is satisfied which is
equivalent to the internal rotation frequency Qg > vg/ro. The.monopolar coherent structure
can be calculated analytically and is shown to have the shelf (or plateau) shown clearly in

Fig. 9d that extends on the northern side of the anticyclone.

B. Lyapunov stability analysis of dipolar vortices

Considerable research effort has been expended to find the mathematically correct sta-
bility conditions on the dipolar parameters (u,a) corresponding to the stability behavior
observed in the numerical experiments with dipole vortices. At the present time there is
no satisfactory derivation of the stability properties of the dipole vor;cices. The original ef-
fdrts by Laedke and Spatschek (1986, 1988) havé provided the étability theory formulation
used by most authors. Rather than to search the linear stability equation for the spectrufn
of unstable eigenmodes §¢(z,y)e* of the dipolar vortex dgp, the technique is to use Lya-
punov stability theory. Laedke and Spatschek and others use the equation governing the
.perturbation od(x,y,t) . | '

06

(1— V2)—5t— =2 V(uz + ¢ap) x V(V36¢ — g6¢) (5.2)

where g = —\? for r < a and g = p? for r > a along with continuity of 6¢ and dé¢/dr at

r = a and §¢(r — o0) — 0, to construct the quadratic functional invariant of the motion
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L[6¢] — the Lyapunov functional. That is dL/d¢t = 0 under the motion given by Eq. (5.2)
and the boundary conditions that |6¢] — 0 as 7 — oo.

In addition, four other invariants of the linear motion / (6p—V2%6¢9) [1, z,y, (ux + ¢dp)2] dxdy
are used as constraints on the admissible functions §¢. The main idea is then to attempt
to show that the invariant L[6¢] cannot vanish. Then the Liyapunov argument for stability
follows. A similar argument is given by Gordin and Petviashvili (1985) in which a finite,
positive definite energy W (8¢) integral invariant and the Casimir invariants chosen to cancel
the first order §W variation about the stationary solution ¢g,, are used to derive a second
order §*W (6¢) stability principle. When §2W (6¢) is positive definite, the system is stable.

Both groups of authors claim to have proved stability but have failed. The failures
of the arguments are explained in mathematical terms by Nycander (1992) and by way
of giving a counterexample by Muzyler and Reznik (1992). The counterexample given by
Muzyler and Reznik (1992) is a physically realistic perturbation. ’I‘lhey are able to show
that the perturbation found is such as to make the L[6¢] and 62°W (6¢) integrals negative.
The integrals are carried out analytically. They then explicitly study the parameters that
make thé functionals L[§¢] and §2W [6¢] negative. The effect of the perturbation used in the
counterexample is to give a tilt to the dipole. The counterexample of Muzyler and Reznik
is consistent with the tilting instability shown in Fig. 9 from Jovanovié¢ and Horton (1993).

The absence of a general stability theorem of the dipole vortex structures appears con-
sistent with the stability studies of Swaters (1986) and Pierini (1985). Swaters introduces a
mean wavenumber 7 of the perturbation by using the ratio of enstrophy to energy integrals
for the perturbation. The loss of the positive definiteness of the Lyapunov functional is shown
to depend on the ratios u/vg and /A where X is the inner (r < a) wavenumber parameter of
the mode structure defined in Eq. (3.16). (For the ground state vortex 3.8 < Aa < 5.2). In
particular, Swaters asserts that (i) vortices propagating parallel to the waves (uvg > 0) lose

their stability for long wavelength perturbations (7 < \) and (ii) vortices propagating op-
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posité to the waves (uvg < 0) lose their stability to short wavelength perturbations (7 > A).
The first result (i) is consistent with result of Pierini (1985) where vortices with uvg > 0 are

shown to be stable to small scale (7 > A ~ 1/a) perturbations.

C. Structural stability of Rossby-drift wave vortex structures

In Sec. II we gave the details of the derivation .of the nonlinear drift wave equation
(2.16) based on the &-expansion in Eq. (2.1) and the corresponding derivation of the quasi-
geostrophic nonlinear equation (2.27) for the 2D flow on the surface of a rotating planet
describéd by Egs. (2.19)—(2.22). The resulting nonlinear dynamics éar} be expressed in both
cases by the conservation law known as Ertel’s theorem (Eftel, 1942)]. Ertel’s theorem

applies to the 2D-motion of the fluid taken from the dynanﬁcs of the total system vorticity

(-g—t+v-V)(wo+w)—{—'(wo+w)V-v=(wo+w)-Vv, (5.3)

- where the plasma wy — ¢B /mc and for the planetary problem wy = f = 2(wyot), Z Where
27 Jwrot is the period for the rotating planet and (wmt)z‘ = Wrot Sin @ where 6 is the local
latitude. The right-hand side of Eq. (5.8) is called the vorticity stretching term and couplés
the vorticity equation for plasmas to the ion acoustic waves w? = k2(T,/m;) along the
magnetic field B and for the planeté.ry problem couples the vorticity to vertical gravitational
waves known as the internal gravity waves. When (i) the z-component of Eq. (5.3) is taken,
(i) the vortex stretching term is neglected, and (iii) the mass conservation 1avs} is used to
eliminate V - v, we obtain the CHM equation in a form that expresses the conservation of a

generalized or potential vorticity ¢(z,y,t) where

dg _ (8 o\, _ |
az_-(aﬁv v>q—0 | (5.4
with .
_ Weitws _ wei(1 + V29) (5.5)

n  no(z)expled/T.)
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for plasmas and
!

7= f+2-Vxv _ f(1+V3h)

Ty L@ (56)

for quasi-geostrophic plaﬁeta.ry flows. It is not difficult to show that both Egs. (2.16) and
.(2.27). aré equivalent to Eq. (5.4) with Eq. (5.5) or (5.6) for g, respectively.

Expressing the CHM e(iuation as the conse'rve.d flow of the generalized vorticity ¢ is
important for dériving the effect of small changes in the form of the equation. In addition
the conservation. form (5.4) makes clear that there is a general class of invariants of the
motion called Casimirs (Kandrup and Morrison, 1993) that are given by ahy function F(q)

integrated over all space, or over a periodic box,
9 /dmdy F(g)=0 (5.7
ot

in the dissipationless limit. These Casimirs may be thought of as restricting the dynamics
in function space to lie on fixed sheets defined by the value of C' = / dxdy F.

The éicistence of the Casimir invariants is a reflection of the Hamiltonian structure of
the dynamical system and does not imply integrability. Piterbarg ;cx,nd Schulmé.n (1989)
address the issue of integrabﬂity of the CHM equation. They claim to show that there
are no invariants of the CHM motion other than the CasimjrsAand the standard energy W
and momenta (P, P,) invariants [(;r equivaleﬁtly the energy W, enstrophy U and the P,
momentum]. It is then argued that the nonexistence of further invariants implies the non-
integrability of the CHM equation. The arguments are technically complex and follow the
method of Zakhé.rov and Schulman (1988) which is based on a continuum field generalization
of the well-known Poincaré approach for the investigation of the integrability of finite number
of degrees of freedom Hamiltonians. Further consideration of the integrability issue is given
in Piterbarg and Schulman (1989).

From Egs. (5.4)-(5.6) we now consider the effect of weak spatial inhomogeneities in the

system that give rise to a well-studied structural perturbation (or change in form) of the
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CHM equation. The modification to the CHM equation is to add the nonlinear term ¢ d,¢
" known alternatively as the Korteweg-deVries (KdV) nonlinearity or the scalar nonlinearity
to contrast its form from the Z - V¢ x Vg-vector (or Poisson-Bracket) nonlinearity. Both
types of nonlinearities (¢8,¢ and z - V¢ x VV2@) have been extensively studied and are
known to be characteristic of Hamiltonian field equations (Morrison (1982)).

The most important aspect of the change in the CHM equatién from the weak inhomo-
geneity can be described by adding the Korteweg-de Vries term with the variable pegturba.—

-tion parameter a so that the model equation is

1= rugt ras S v -0 (58)

Even for vefy small « this new equation has a qualitatively different behavior in the long-

time limit due to the existence of new solitary waves that have peak amplitude varying as

- 1/e.

The sign of the peak is determined by the sign of @ which we aliow to carry its algebraic
sign in Eq. (58) and in the subsequent analysis. In the rotating parabolic water tank ex-
periments « is opposite in sign to that of thé usual plasma regime in-Which the sign of a is
determined by the ratio of the electron-to-density gradient pararﬁeter Ne = Op0n T, /Op€n ne.
The difference in the sign of o will change the preferred solitary wave structure from anti-
cyclonic to cyclonic as discussed by Nezlin and Snezhkin (1993). In the plasma the sign of
the structure is important in its tehdency to trap ions or electrons in the motion parallel to
the magnetic field (Jovanovié and Horton, 1993).

In the study of nonlinear drift waves, equations of the 1D limit of Eq. (5.8) which is

(1-82) ‘;f+ d-—?+ ap- ¢ (5.9)

were actually discovered before the Hasegawa-Mima equation by Tasso (1967) by studying the
effect of a temperature gradient Te(z). The coefficient a = —va7. where 7. = dfn T, /dén no.
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Equation (5.8) is closely related to the classical KdV equation by considering the long wave-
length limit where (8;+v40,)¢ ~ 0 and then replacing the term 82 8;¢ with —vg 03¢ retrieves
the classical KdV equation. Thus, Eq. (5.9) is often called the modified KdV equation or

MKdV. The modified KdV equation is importanf from the physical point of view since it

has solitary waves and quasielastic scattering but only a few polynomial invariants of the
motion and no inverse scattering theory. Thus, the modified KdV equation is closer in kind
to the CHM equation than the classical KdV equation which has an infinite sequence of
pblynomjal invariants and an exact solution of the initial value pfoblem given by inverse

scattering theory.

The fluctuation spectrum and other dynamical characteristics of the one-dimensional

multible—sq]jtary wave dynamics produced by Eq. (59) is reported in Meiss and Horton

(1992).

D. Splitting of dipolar vortex into monopbles

Now we consider the physical role of the KdV term. By combining the coefficients of the

08¢ /0y terms in Eq. (5.8) we see that effective spread of propagation of a structure is

dy L .
= =V + agp (5.10)

so-that regions with a¢/vs > 0 propagate faster than vg, while regions with aqb/pd <0
propagate slower than vg. '
Considering the dipole vortex solution of Sec. II.C we now see that the positive and
negative vortex lobes propagate with different speeds. Studies by Su et al. (1991) show that
the speeds of the positive and negative centers are u+ = vg % a|@ap|/4.8 so that in time At
the relative speeds v — u_ sepa.réte the two dipole lobes by its own diameter 27'6 where

(48 _n '
Ag_ ( : ) e | (5.11)
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After time At the dipoles are split into monopoles and both signs will propagate for a
period depending on the strength of the vortices. In the presence of the a-term, however,
there is a preferred sign for vortex self-binding. So after some number of rotation periods
only the preferred sign monopole will survive.

An example of the dipole vortex splitting from Su et al. (1991) is shown in Fig. 11 for
a = 0.1. In the last time frame the long-lived, anticyclonic vortex has been formed and
continues to propagate for a long time. The long-lived anticyclonic vortices produced by this
KdV or .sca.la.r nonlinearity appear to be the explanation for the preferential existence of the
anticyclones in the experiments of Antipov et al. (1982) and Nezlin (1986).

Now we show the existence of the monopolar vortex solution with the sign (cyclone ¢ < 0
versus anticyclone ¢ > 0) determined by the sign of a. The type of monopolar vortex given
here was first derived by Petviashvili (1977) and proposed as a model for the Giant: Red
Spot vortex on Jupiter [Petviashvili (1980)]. The model equation is derived by Petviashvili
by keeping nonlinear terms in the expansion of ¢(¢) or g(h) in Eq. (5.4). |

In contrast to the planétary geostrophic dynamics and the rotating parabolic tank ex-
periments, the University. of Texas rotating water tank has a strictly linear dependence of

potential vorticity ¢ on the stream function h(z,y,t). The linearity arises from the fixed,

F11

rigid upper lid on the vessel and the f-effect is produced by the slope (s = dz/dr = —0.1) of
the bottom of the tank. In this system g(h) = (fo+V2h)/(Ho—sy) which gives ¢ = V?h+fy

with 8 = fos/Hp. As shown by Diego and Morrison (1993) the nonlinear dynamiics is solely
governed by the nonlinear convective derivative. In these experiments the preference for cy-
clonic or anticyclonic vortices occurs from the direction of pumping which produces either an
eastward or westward (Bickley) jet Upsech®(y/L) with the associated shear flow instability
for U/L? > B = fos/Hp.
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E. Monopolar vortices from the KdV-term in the generalized CHM equation

When the amplitude ¢, of a coherent structure is large enough that the rotation rate 2,

around the local maximum ¢,,(1 — r2/r2) of the potential, or h function, given by

1d¢ __ 20m - (5.12)

Q, =
- rdr 78

exceeds the corresponding wave frequencies wx = ky va =~ mva/ro. When Q, > mva/ro then

the convective nonlinearity in the CHM equation forces the coherent structure to be nearly
axistmetrié, ¢ = ¢o(r) + ¢1(r) cos 0 with ¢1 < do.

. Now we look for exactly axisymmetric solutions in the frame moving wit}} the structure
¢(z,y,t) = ¢o(r)‘ | | (5.13)
with
r= [+ (g - ut)?]”

6 = tan™! (_y — ut) '
z

Since 2- Ve x V f = (g f, — ¢, fo) vanishes for ¢(r) and f = w(r) = V2 = r718,(r,4),
Eq. (5.8) reduces to |

o¢ 09 5¢ -
u(l — V)= 3y + ug By + agb =0
for which integration in y yields the nonlinear elliptic equatlon
d¢ a
2 2o — X 42 ,
Vg = ( dr) k“¢ o [ (5.14)
where
:2_1_%
B=1--. | (5.15)

For k% > 0 (u > vg or uvg < 0) as in the dipolar solution we have the exponentially decaying

Bessel function solution ¢ ~ ¢ Ko(kr) ~ e~*"// for |¢| < 2uk?/a. The presence of the
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a- term allows solutions with the sign of ¢ the same as the sign of uk?/a to change from
positive to negative curvature, and thus to form bound nonlinear states for sufficiently large
é(r = 0) > 2uk?/a. Mathematically, finding the physically acceptable solutions of Eq. (5.14)
poses a nonlinear eigenvalue problem which has been solved analytically and numerically by
Su et al. (1991). |

The solutions of (5.14) are well approximated by

6= 4.8;;]5;2 [sech (% k [:1:2 +y— ut)z] 1/2)]4/3 . (516)

This approximate solution given by Petviashvili and Pokhotelov (1986) is found by con-
structing a variational principal with the trial solution ¢max [sech(kr/p)}” which matches the
asymptotic form kr > 1 of e7*" and has ¢ =~ ¢, (1 —72/r) for r — 0. The parameters Pmax
and p are determingd by the variational formulation of Eq. (5.14) and the boundary condi-
tions. The relation @max = 4.8uk?/a gives the speed of the vortex as u = v4(1 + APmax/4.8)
which explains the observed dipole splitting discussed in Sec. V.D. The sign of the structure

®max is determined by the sign of a.

F. Generalized vortex dynamical models

The model equation (5.8) with only the addition of the KdV term, while clearly useful
and of historical interest, is not consistent with Ertel’s theorem and has been the subject
of considerable debaté during the past five years. The equation of this form was originally
given by Petviashvili (1977) and is often called the Petviashvili equation. The inconsisteﬁcy
of the Petviashvili equation with the conservation of potential vorticity, or Ertel’s theorem,
has been the subject of recent works by Lakhin et al. (1987), Horihata and Sato (1987),
Nycander (1992), Spatschek et al. (1990), and Su et al. (1991). Even much earlier the basic
difficulty can be seen from comparison of the Petviashvili model equation with the systematic

derivation of these terms in the works of Williams (1978) and (1985). Finally, the recent
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work of Spatschek et al. (1990) claims to have systematically obtained the Petviashvili model
by introducing a rather special ordering of the space-time scales. Basically the idea is to
éompare the space scale length L dependences of the contributions of ag8¢/0y ~ a¢?®/L
with those from V¢ x VV2.¢ ~ ¢*/L*. We see that for large-scale structures the KdV
dominates the vector nonlinearity. Thus Spatschek et al. propose a particular ordering for
which the model Eq. (5.9) is the leading order equation for large-scale (p,/€) structures where
¢ is a small expansion parameter.

In the late work of Petviashvili he recognized the difficulty and derived the consistent
model by using Eq. (5.4) for the conservation of the potential vorticity which is itself ex-
panded in powers of h and the inhomogeneity y. The CHM equation then is the lowest order
equation obtained from the linear part of the potential vorticity ¢¢ = V2h — h + By. The

generalized ¢ nonlinear potential vorticity is
¢=V?h—h+By+qg¥
o2 | _
¢ = —Pyh+ b — 'ﬁ% (5.17)

which is readily derived by expanding ¢ = (f + V2h)/(1 + h) with f = 1+ By — |#|y*/2
up to second order in y and h. The dynamical equation dg/dt = 0 now gives rise to both
the vector nonlinearity and the KdV nonlinearity as well as a nonlocal dependence in y of
the coefficients of the nonlinear particle differential equation. For the planetary problem
of radius ry at latitude 6y the values are § = (p,/r0) cot o aﬁd 18] 22 (pg/70)? With the
amplitude of the solitary monopole in Eq. (5.16) given by Amax =~ 4.8(u + §)/B. For small
height perturbations || < 1 this requires 48 < 0 and |u/8 + 1| < 1/5.

The same problem occurs with the plasma equation and is dealt with in the same manner.
If we begin with Egs. (5.4) and (5.5), and recognize that the temperature profile T, = T.(x)

determines the gradient of vy(z) across the diameter of the vortex, then we arrive at the
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equation

(75— V*) 08+ e 4 ke 524 1976, = .19

where T'(z) = Te(z) /Tp, k7 = psoI” (x)/T?%(x) and ¢ = (rn/ Ps0)(€®@/Th), va = —(cTp/eB)dénng /dx.

Here space and time derivatives are normalized by ps, and r,,/cs, respectively, and are _de—
fined by the temperature T, (x = 0) = Ty at the center of the vortex.

In geophysical literature essentially the same equation (5.18) is derived for the so-called
Intermediate Geostrophic dynamics which applies to larger-scale dynamics than the CHM,
or Quasi-Geostrophic equation, as discussed by Williams (1985).

G. Propagation and collisions of the monopole vortices

For the vortex-vortex interactions we have established from numerical simulations that
the monopole vortices that evolve from Eq. (5.18) with the initial data from (5.16)" can

behave under collisions as either as

1. soliton-like collisions with the stronger vortex overtaking and passing through the

weaker vortex or

2. point vortex-like interactions where two strong monopole vortices, which

by Eq. (5.16) are always of the same sign, rotate about one another.

In Fig. 12 we show an example of the soliton-like pass-through collision. In Fig. 13 we
show an example of the second case where two nearly equal strength monopole vorticés
interact like point-vortices rotating around one another.

Wave radiation occurs from the monopolar vortices. As the amplitude ¢,, of the vortices
becomes small, the speed of propagation in Eq. (5.16) approaches the linear wave speed and
the coupling to the wave field radiates energy from the vortex. Su et al. (1991) calculate this

radiative decay of the vortex. The local energy conservation equation is

Ot .
5 TV-8=0 (5.19)
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where

elot) =} |75 + (V07 (520)

and the “Poynting” energy flux is
— {1 2 __1__ 3\ % 7245 2
= (5 va(x)¢ 3 krd® | ¥ — ¢V Bt Vgz x V(¢°/2) . (5.21)

The results of a lengthy calculation are that the decay of the vortex energy

o, _ 8.2mutk} ( )
22
E,= [ed w3 +K8) (5.22)
is given by _ :
dE, ula| @2 4(1 — vg/u)3/?
a1 m — 5.23
dr  16r kS © 3l (5:23)

\

- where vap = va(z = 0),vg = dva(z)/dz and o = (k1 — vg/u). The exponential decay factor
is contfolled by thé strength of the inhorriogeneity through o (Eq. (5.18)) and the closeness
- of the spéed of propagation u to the drift speed vy evaluated at the center of the vortex.
Simulations for k3 > a and k§ < o are shown in Su et al. (1991).

The decay of the vortex amplitude in Eq. (5.23) via the coupling to the radiation field
will cause the speed u to decrease through Eq. (5.22), and as the speed u(t) decreases the
vortex decay rate increases exponentially through Eq. (5.23). Thﬁs, the vortex will decay
‘slowly initially and then suffer an abrupt death. |

In the case of magnetic shear, which is another form of inhomogeneity that gives rise to
a coupling to vertical v, oscillations, Meiss aﬁd Horton (1983) show that the decay rate of

the dipole vortex soliton is given by

= astn (1= 20) e (57 (- )
= =—-25¢: (1 -~ exp ~2L. 1 " (5..24)

where L, /Ly, is magnetic shear (inhomogeneity) length over the density gradient scale length

L,. Equation (5.24) is an important example of how the “self-organized” nonlinear state
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can greatly reduce or'eliminate the effect of the inhomogeneities Ls/L,, on the waves. When
the speed parameter u /v, is negative (eastward) or not too close to one then the decay rate
of the vortex becomes exponentially small. Thus, while small amplitude drift waves have
strong shear damping rates the large amplitude vortices can have very long lifetimes.

The vortex structures appear to be a natural or “self-organized” way in which the plasma

can feed upon the free energy available in the density gradient and limit the radiation

damping inherent in small amplitude waves. Recent simulations indicate that the vortex A

localization process in systems with rather different linear growth rates (due to damping
caused by magnetic or velocity shear) can end up in similar final turbulent states when
enough energy is fed into the system. This is because the localization to vortex structures
essentially eliminates the shear damping mechanisms. This nonlinear dynamics and the
shear damping introduces a form of hysteresis into the system, due to the slow decay rate of
the vortices once they are formed. An example of the 2D vortex in a sheared magnetic field

with coupling to the ion acoustic waves is given in Fig. 14.

H. Driving of the large-scale vortex structures and shear flows by the small-

scale Rossby-drift wave turbulence

Finally, we consider the interaction of the small scale, weakly correlated Rossby-drift
wave fluctuations

¢ (small scale) — 9 = ¥ i (ex, et) x>kt
_ Vi

with
' Ok, ke Vi (X, T')

(%bk(EX, St)")bk'(exy Et» = 1+ k.zL ) (5'25)- .

where the wave density Nx(X,T) with X = ex, T = ¢t satisfies the kinetic equation

0Nk + O ONy  Owy ON
or o6k 060X 06X 0Ok

=27 Nic + Tg!(Nie, M) (5.26)
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with T given in Eq. (4.6) and.the local drift wave frequency depends on the large scale

¢, variations through

k"Z\XV(no-}-ﬁL)

(5.2
1+ K (5.27)

W=k -Zx VoL +

with large-scale motions governed by ¢ (large scale) — ¢(X,Y,T) that satisfies the CHM
equation containing the average of ({1, VZ)}) over the small-scale turbulence. The driven

large-scale CHM equation is given by
- (1= V)0r¢ +vabrd — {9, V?¢} = (0% — 0})A + Oxy B (5.28)

where _

AX,Y,1) [(’%’“ﬂ) }Ml (5.29)
k

(k§ _ kZ) 1+ k‘i ’ ' :

B(X,Y,T)
The two-scale equations (5.26)—(5.29) are derived in Dyanchenkb et al. (1992) and Horton
and Petviashvili (1993). In this approach the small-scale turbulence is considered to consist
of a number density Ni(X,T) of high frequency quanta moving on the background of a
r_nean shear flow formed by the large scale motions. Dyachenko et al. (1992) point out
that the description is similar to that of the supérﬂuid Hé as a mixture of two fluids as the
spectrum of small scale rotons in the large scale phonons. They also propose that the system
may be solved numerically by modifying the standard particle-in-cell (PIC) codes with the
- drift wave kinetic equation replacing the parficle Vlasov equation. This system of equations
leads to the modulational growth of Ia.rge-scéle structures from the inhomogeneity of the

distribution of the small-scale fluctuations. In a tokamak the small-scale turbulence is known

to have a strongly increasing streﬁgth toward the low density side and, at a given radius, an
. increase in strength toward the outside of the torus compared with th|e inside. In plahetary

atmospheric turbulence it may be expected that the intensity of the small-scale turbulence

is stronger in the equatorial zones than in the high latitude regions. It is clear from the
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structure of Eqgs. (5.27)—(5.29) that when the basic assumptions of the scale separations are
satisfied, that anisotropy and inhomogeneity in the small-scale turbulence is a driving force
on the large-scale structures. In Sec. IV we have discussed the propagation of the small-scale
turbulence by the nonlinear wave kinetic equation (4.6) through nonlocal interactions with
the background flow. The separation of space-time scales appears to be an effective method
for extending the study of Rossby-drift wave turbulence to more realistic inhomogeneous
turbulent states compared with the previously studied homogeneous turbulent states.

In summary we note that the importance of the a-KdV term and other nonlocal effects
depends on the size of the cyclones and anticylcohes. In the earth’s atmosphefe the size
in terms of the Rossby radius depends on the. latitude as given by p, = (Hog)?/f =
2x 10%m/sin § where @ is the angle of latitude, the equilibrium depth H 22 10 m, the speed
¢, = (gH)'/? ~300m/s and B = 0.3 cot §, R, = 6.4x10°m. On the gaseous outer planets the
vortex structures are usually anticyclones larger than p,. For example, the Great Red Spot
on Jupiter is estimated to be 3p,. In plasmas, the peak of the wavenumber spectrum in some
tokamak p-wave scattering experiments is at k£, ~ 3cm™! and p, = 0.1 cm giving ky p, = 0.3.
If the fluctuations are associated with vortices such that k179 S , then the inferred radius is
ro < 10p; or about oﬁe centimeter. In other experiments the fluctuation spectrum appears to
increase monotonically down to the small k; ~ 1cm™! available from microwave scattering,
Attempts to find direct evidence of vortex structures have not been suqcessful in the toroidal
confinement experiments. In small, steady-state ()-machine experiments, however, vortices
of size 3p, have been measured in the shear flow boundary layer of these cylindrical plasmas

(Pecseli et al., 1984, 1985) and (Huld et al., 1991).
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Figure Captions

1.

Isolines of the stream function for the Rossby wave or equipotential lines for the drift
wave dipole vortex in the frame moving with the vortex. Solid contours are positive
potentials and dashed are negative. The vortex parameters are 7o = a = 6ps and

U= 2’Ud.

The complementary propagation regions of the waves and dipole vortices are shown for

an example in Meiss-Horton (1983) where there is coupling to the ion acoustic waves.

Resonant three-wave manifold for the drift wave-Rossby wave dispersion relation. For
fixed k, the zero levél contour gives the values of k; for which the frequency resonant
Wk — Wk, — Wk-k; = 0 is exactly satisfied. The dashed circle is of radius |k| so the
intersection with resonance manifold gives the region of local interaction. The two

special regions of nonlocal interactions are also marked.

Isolines of the wave frequency (a) in the center of mass frame and (b) in the frame

- moving with the drift-Rossby speed v; = vg.

Contours of the potential /stream function for the driven-damped CHM equation con-

structed to test the inertial range scaling exponents.

The one-dimensional energy spectra W(k,) and W (k,) for the driven-damped system
with fittings for the inertial range exponents. The profile of the source-sink term is
shown along the k-axis. The smooth curve is the time-averaged spectrum while the

bumpy curve is the instantaneous spectrum.

Perspective plots in the center of mass frame of the wave frequency w(k,, k,) and the

growth-damping rate vy(kz, ky) for the dissipative drift wave equation (4.21) with (4.25).
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8.

10.

11.

12.

-Contours of equipotential/stream at a given time for saturated state of strong turbu-

lence from the dissipative drift wave equation with parameters ¢o = 1/4,¢; = 1/4,u =

0.005.

Uﬁstable motion of dipole vortex propagating parallel to the electron diamagnetic
direction due to a 2% monopolar perturbation. The angular rotation frequency is
Qg =~ 3 in frame (a). In frame (b) at tvg/ps = 50 the position of the tilt is at 45%
and the center is at Az ~ 40 and Ay. In frame (c) at tvg/ps = 100 the anticyclone
(¢ > 0) dominates and Ay = 9p,. In frame (d) tvg/ps = 150, about 50 rotations of

the core, dispersion is setting in.

Cpmparison of the effect of a 2% monopolar perturbation on dipoles propagating in
(a) the eastward direction and (b) the westward direction. For u = —v, and a = 6ps,
the vortex propagates in the ion diamagnetic direction or eastward Rossby wave and is

stable. The same 2% monopolar perturbation applied in frame (b) to the dipole with

" u = 2v4 produces unstable rotation and splitting up into monopolar structures.

Splitting drift wave dipole vortex into monopoles. Dipole radius 79 = 6p,, amplitude

 of scalar nonlinearity o = 0.1(7e ps/rs), and vortex velocity u = 2vg(va = 1). At t =0,

(a) shows the contours for the exact dipole vortex solution of the Hasegawa-Mima—
Rossby wave Eq. (2.16). The solid lines represent positive value of potential ¢, and

the dashed lines, negative value. The contours for ¢ have contour interval A¢ = 4.0.

Nearly elastic overtaking collision of a strong monopole vortex with a weaker monopole.
The profile of 1/T(z) = 1/L32 =‘exp(0.46:r) gives a variation of 1.6 over tﬁe core of
the vortex. The gradient in the drift-Rossby speed is vg(z) = 1 — z/20. The solution
conservés q=V%—¢/T(z)+ / ’ vgdz'. The speeds are u; = 1.1 and uy = 1.7 giving
the expected collision time Af/Au = 20/0.6 = 33 compared with observed overlapping
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13.

14.

at t = 22 in frame (b). After separation (c)—(d) the weaker vortex still has 5 closed

contours.

Point vortex type of interaction of two strong monopole vortices with speeds u; = 1.3

and up = 1.35. Although merging might be expected here, instead the vortices rotate

around one another after pulling together from the initial separation of 15 p;.

Drift wave-ion acoustic wave vortex in a sheared magnetic field for s = 1. (a) 3D plot.

(b) Contour plot.
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