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Abstract

It is shown that the binary Coulomb repulsion between two electrons can lead to spa-
tially localized pair states (preformed pairs) in the periodic potential of a crystalline solid.
These composite bosonic states, residing in the erstwhile forbidden gaps, could further our
understanding of the solid state, in particular, of the high temperature superconducting state.

The single most important concept in all microscopic theories of superconductivity is
that of an electron pair [1-4]. In the far reaching and highly successful theory of Bardeen,
Cooper and Schrieffer (BCS) [4], the pair formation is due to the attractive electron-phonon
interaction. The electrons, forming a Cooper pair, though highly correlated in momeﬁtum,
are rather loosely bound in physical space with spatial extensions ~ 10— 107%cm. On the
other hand, the primary constituent of the models inspired by Schafroth [5,1-3] is a highly
localized (in space) pair of electrons forming a composite, spin-zero boson. For want of a
physical mechanism for creating localized pairs however, these latter models have remained
dormant.

With the advent of high temperature superconductivity (HTSC) [6], with exciting new
phenomenology generated at a feverish pace, and with experiments indicating that highly
localized pairs may actually exist in superconductors [1,6], it is imperative that the theories
based on localized pairs be re-examined. It is even more important to discover the generic

mechanism(s) which could lead to such pairing.
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The idea of two mutually repelling particles forming a spatially compact pair seems para-
doxical. In fact the Coulomb repulsion (shielded by the lattice ions) between the electrons,
strong as it is, has always been considered to be a serious impediment to pair formation
mediated by other effectively ‘attractive’ interactions. In the periodic potential of a lattice,
however, this very Coulomb repulsion, under suitable conditions, can conspire to bind two
electrons. The periodic potential breaks up the electron energy spectrum into allowed bands
separated by forbidden gaps, although in some cases the bands ‘overlap’ and there may be
no gaps. Assuming the existence of gaps, the energy of the proposed bound pair of mutu-
ally repelling electrons will reside precisely in this gap forbidden to a noninteracting (i.e.,
Coulomb repulsion switched off) duo of electrons. In comparatively simpler settings, the
repulsive potential-generated gap states are known in solid state [impurity or surface states]
as well as in plasma physics [Toroidal Alfvén Eigenmodes [7]].

For simplicity of exposition we restrict our analysis to a single spatial dimension. Al-
though the analysis can be extended to higher dimensions, the solutions cannot be readily
obtained in analytic form. The quantum mechanics of two electrons a, b interacting with each
other via a mutual repulsive potential V,(|z, — x»|) in the presence of an external periodic

potential Vp(x + d) = V,(z) is described by the steady-state Schrédinger equation,

i A
T V(@) + V(@) + Vo] Za — 3 )] ¥ = B (24, 1) - (1)

In the absence of either V;, or V;, this equation may be solved to yield non-square inte-
grable solutions corresponding respectively to ‘Bloch states’ (V; = 0) or ‘scattering states’
(Vp = 0). For a short-ranged (e.g., screened coulomb) repulsive potential V, we now show
that Eq. (1) admits solutions that are Bloch-like ~ X% W (x, y) in the center of mass coordi-
nate x = (z,+2p)/2 [W{(x,y) is periodic in z with the lattice period d], and localized in the
relative coordinate y = x, — 2. These eigensolutions are nondegenerate and are labelled by

K, the center-of-mass ‘wavenumber’. Thus the wave function ¥(z,, z, K) has a character-



istic energy E(K). The proof given below applies to any reasonable periodic potential and
to any purely repulsive potential which is sufficiently short-ranged. The pair states will be
constructed in terms of one electron Bloch states & = ®(k,n,z) = exp(ikz)Ugn(z) [Ukn(x)

is periodic in z] obeying
[— (12 /2m) (8 /82) + Vy(z)| ®(k,n, ) = e(k, n)®(k,n,7) , (2)

with the normalization 2w6(k — k)6, e = [T @*(k,n,2) (K, ', z)dz, where €(k,n) is the
eigenenergy and where we have used the reduced zone scheme in which % is the reduced zone

-wavenumber —7/d < k < 7w /d, and n is the band index. In the rest of this paper we will
use £ as a composite symbol for k£ and n with fe = ”,/r‘jd(dk/ZW) denoting integration
over the allowed bands.

The two-electron wave function can be readily expanded in terms of the complete set of

product Bloch states,

Veoa) = [ [ (6,206 0)¥E6) ©
which, when substituted in Eq. (1) yields the following integral equation for the amplitude
v,

(@n)? 1B = (&) - (@) ¥, 8) = | [ P66l E)TE,E) (4

a b
with [Agwy = [Uk(x) Uf(x)]a) are periodic in zqp)
P = P(¢,6160,6) = [[ dzadas Ao 8y Ve(wa = ) expliCk, — ka)za +i(ky = k)] - (5)

Transforming to the center of mass z and the relative coordinate y [z, = = + /2,2, =
x — y/2, dz, dxy, = dzdy], exploiting the periodicity of the Bloch functions, and using the
well-known identity 3= exp [m@] = 276(0) for —r < 6§ <, Eq. (5) can be manipulated
to yield [P(&, &l6,,&) = P]



= (27r/d)5(k¢’1 + k{) — ko — kb)P )

- d/2 (6)
P= [dyVi(y)eml-ig(k ~ k)] [, doA(+y/2)A@~y/2)

where the explicit appearance of the delta function allows us to define a conserved center of
mass momentum K = k, + ky, = k, + k;. In our manipulations, we have used the fact that
in the reduced zone scheme —7/d < K < 7/d.
Enormous simplification follows by the realization that Eqs. (4)—(6) admit a solution of
the form U(&,, &) = 6(K — ko — ko) F(ke, K — ka,mq,ms) with F satisfying
(B — e(€0) = e(6a)] Flkayna,m) = @nd)™ Y [ PF(kl,l,m)dk, (7)
nang
and k} lying in the range —w/d < K — kl, < 7/d; this range is a consequence of the kj
integration using one of the delta functions. Since both |K| and |&}| are limited to 7/d, the
integration interval has to be properly determined for finite K.

Equation (7), essentially a one-dimensional integral equation on a finite interval, is gen-
eral, rigorous and exact, and can serve as the starting point for detailed work. The primary
object of this letter, however, is to expose the basic physics underlying the pair-formation
phenomenon. Therefore we simplify the analysis by putting Bloch functions equal to unity,
by modelling the repulsive potential by V, = Vod6(y) leading to P = Vyd?, and by restricting
the k integration only to the two relevant bands n = 1,2.

Defining new dimensionless variables k£ = kd/27, K = Kd/2n(—1/2 < k,K < 1/2),
u = k — K/2, and remembering the constraints on k!, integration, Eq. (7) becomes [1,j =

1,2,K > 0. For K < 0, similar expressions pertain]

(1-K)/2
B — e;(u+ K/2) — ¢;(u— K/2)] Fy(u, K) =2Vp /0 du' Fyje(u!, K) (8)
il,jl .
leading to the dispersion relation
(1~K)/2 du
= L;
Z/ E —¢(u— K/2) — ¢;(u+ K/2) Z i ()
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which can be solved if the single-particle energy spectrum in the periodic potential V,, is
known. For Eq. (9) to represent a true [not quasi or unstable] pair eigenstate, i.e., to yield
a real energy E (for real Vp), all four of the energy denominators D;; = [E — €; — ¢;] must
remain nonzero in the range of integration.

This very condition insures the spatial (in y) localization of the pair wave function [derived

from Eqgs. (3)—(8) with z and y measured in d]
_ w-Kp
¥(z,y) = C exp[i2r K] Z /0 du Dj; (u, K, E) cos(2myu) , (10)
i

which (for nonzero D;;) vanishes as |y| — oo by Riemann-Lebesgue theorem. Indeed, from
Parseval’s formula, it follows that [T |¥(z,)|?dy < |C|?>. Notice that keeping the Bloch
functions [which are nonsingular] in the integrand does not alter the conclusion. The exact
behavior for large |y| depends upon the details of D;;. Thus to demonstrate the existence of
localized pair states, we must show that for typical crystalline periodic potentials, D;;’s can
be nonzero for some choice(s) of E.

We sketch the argument for the K = 0 case. Similar considerations apply for K > 0.
Since the one-particle spectrum is assumed to have a gap (e2(1/2) > €,(1/2)), D13, Doy are
nonzero in 2¢;(1/2) < E < 2¢3(1/2) and the corresponding integrals, 11, Ir; are well defined,
the former being positive. It is obvious that we must choose E to be outside the range of
e12(u) = €1(u) + e2(w) for Iio(= Iz;) to be defined. When €12(w) is decreasing, clearly all the
denominators of the dispersion integral are nonzero in the interval, 2¢;(1/2) < E < €15(1/2).
If, in addition, the range of €;o does not overlap that of 2ex(u) (i-e., €12(0) < 2€3(1/2)), there
is a second, higher energy solution in the interval, €15(0) < E < 2¢3(1/2).

Since the dispersion integral is a monotonic decreasing function of E varying between
—oo and +oo in its intervals of definition, there is a unique solution corresponding to each
gap. The lower energy solutions always exist (for decreasing ¢;2) and are called ‘lower gap’

pairs. The upper solutions exist if the periodic potential is strong enough. A third possibility



where €12(u) is increasing and overlaps with 2¢;; could occur if the range of €;(u) is wider
than that of e;. In this case the upper gap pairs necessarily exist but not the lower ones.

For an explicit demonstration, we display numerical solutions based on the one-particle
dispersion relation cos2me'/? + (sin 2mwe'/?/27€Y/2)Qy = cos2mk corresponding to the well-
known Kronig-Penney potential V,(z) = Qo(h*/md) Xr="_ §(xz — nd), Qo = (md/h*)Qb,
where Q(b) is the strength (range) of the potential. Here we present a typical strong potential
(Qo = 5) example (possibly relevant to materials exhibiting high T, superconductivity) for
which the gap size is comparable to the band size.

In Fig. 1, the lower, the middle, and the upper curves respectively represent (for K = 0)
the functions €;(k) [lower band], ez(k) [upper band] and [e1(k) + e2(k)]/2. For finite K, all
the curves in Fig. 1 will be a little different. The precise location of the energy eigenvalue
E(K) (in the allowed range) will depend on the strength of the repulsive potential V. For
Vo = 0.5 (a typical value when the screened Coulomb potential is approximated by a delta
function), Fig. 2 gives a plot of E(K)/2 as a function of K revealing extremely slow K
variation with F(K)m,n very close to K = 1/2. Thus the lower-gap pairs are more tightly
bound for K = 1/2 as compared to K = 0.

In Fig. 3 we display a plot of the relative probability density |¥(z,)[?/|¥(z,0)]? = p(y)
[Eq. (10)] as a function of y (measured in d) for the most tightly bound K = 1/2 state. The
probability density falls rapidly implying a highly localized pair of size Ay ~ d, the lattice
period. The pair size remains between 1 — 10d for all reasonable values of @y and V4.

It is now evident that the localized pairs owe their existence to the mutual Coulomb
repulsion (which is always there) between the constituent electrons, and the gaps in the
one-electron energy spectrum created by the periodic potential. In higher dimensions, the
dispersion integral will be multidimensional, and the energy denominators will be more
complicated due to the vectorial nature of k. However, as long as there are gaps in the

three-dimensional energy spectrum, there will always be room for the localized pairs, the



singlet as well as the higher energy triplet states. These latter states will also have physically
interesting consequences.

The existence of these pair states forces us to redraw the electronic picture of a solid.
In the conventional picture, the electrons in a solid move as independent Fermi particles
in the periodic lattice potential due to both the ions and the smoothed-out Hartree-Fock
contribution of the electron gas (mean field theory). The residual binary screened Coulomb
potential is totally neglected. The independent particle model leads to the well-known band
structure, and the electrons are arranged to occupy these allowed states in conformity with
Fermi-Dirac statistics. Let us consider solids in which the dynamically interesting valence and
conduction bands have a definite gap separating them (non-overlapping bands). Typically,
the valence band is filled and the conduction band is partially so in a metallic solid. Let
us now switch on the binary short-ranged Coulomb repulsion. Although there will be some
quantitative changes in the erstwhile one-electron states, the most significant consequence is
the creation of a new continuum of pair-states [with energy E(K), K is continuous| in the
gap. These pair states, with energies decidedly lower than that of any duo of electrons in
the conduction band, must be occupied before the electrons (after filling the valence band)
find their way to the conduction band. If pair-pair interaction is neglected, then there is
nothing to prevent all those electrons (which would have occupied the conduction band in
the absence of binary repulsion) from preferentially populating the pair states as long as the
temperature is less than the gap size. Since the spatial wave function of the pair is symmetric
in the relative coordinate y = x, — s, Pauli principle demands that its spin wave function be
antisymmetric (singlet). The pairs will, therefore, constitute a weakly interacting spin-zero
gas of bosons with charge (—2¢), and whose energy E is a very slowly varying function of
the momentum K. It seems that we have just supplied the missing element in the theory of
superconductivity due to Schafroth and coworkers!

The consequence of a Bose gas of highly localized electron-pairs have been worked out in



great detail [1-3,5]. For this letter, we enumerate only the most relevant ones: (1) The Bose
Einstein condensation temperature 7, in degree Kelvin (the transition temperature for the
superconducting state) is given by T, = 8 x 10~ n?3 (m/M.g), where n is the density and
Mg is the effective mass of the pair states. Much care is needed to calculate the density as
well as the effective mass of the pair states. Making quite bold extrapolations from our 1D
calculation [Meg is calculated from E(K) versus K curve], we estimate that 7, can be as high
as 500° K for values of Qo and Vj in the range expected for HT'SC materials. Better and more
accurate estimates will be presented later. It seems hopeful that this mechanism could lead
to high temperature (even room temp.) superconductivity quite naturally, (2) assuming
a standard energy spectrum for the Bose gas, Schafroth and Blatt have shown that the
Meissner-Ochsenfeld effect occurs at the Bose-Einstein condensation temperature, and that
the material behaves like an extreme type II superconductor. All the relevant electrodynamic
properties can be readily calculated.

The linchpin of this alternative (to BCS) route to superconductivity (maybe the only
route to high T, superconductivity), the highly localized electron-pair is fundamentally dif-
ferent from the Cooper-pair. Firstly, it is strongly localized in space while the Cooper—iaair is
enormously extended. Secondly, the Cooper-pairs form (due to an attractive electron-phonon
interaction) at the Fermi surface; the band structure plays no part in their formation. The
Coulomb mediated localized pairs, on the other hand, live in the gaps between allowed bands;
their existence and properties (e.g., localization distance, effective mass Meg) are fundamen-
tally controlled by the band structure. Thirdly, unlike the Cooper pairs, which disappear
above the critical temperature, the localized pairs will exist at higher temperatures also;
they will start breaking up when the temperature becomes comparable to the gap-size. Fi-
nally, the localized pairs and Cooper pairs could exist simultaneously. For materials with
overlapping bands (where the pair states will be unstable resonances), the BCS mechanism

is likely to be dominant. Also the isotope-effect can enter the new mechanism only indirectly



through the weakening of the Coulomb repulsion by electron-phonon interaction.

There does exist some evidence [6] that such preformed pairs with charge (—2e) might
have been seen in materials exhibiting high T, superconductivity. The experimental ob-
servation that high T, superconductivity can occur in materials near the metal-insulator
transition (i.e., when nearly all the electrons are in the valence band) is also compatible with
the localized-pair (formed near the top edge of the valence band) route to superconductivity.

From simple quantum mechanics, we have shown that under the influence of their binary
short-range Coulomb repulsion, electrons in a solid (with non-overlapping bands) can form
pair states (spin zero bosons) of charge (—2e). These pair states will constitute a new dy-
namic element in the solid state, and below their Bose-Einstein condensation temperature,

may be the effective carriers of superconducting currents in strong type II superconductors.
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Figure Captions

[1] Single particle dispersion relations, a plot of €;(k) (lower band), ez(k) (upper band)
and € (k) + €2(k)/2 as a function of k for Qo = 5,Up = 0.5 and K = 0. Allowed range

for E is indicated.
[2] Pair energy eigenvalue E(K) as a function of K for Qo =5,V = 0.5.

[3] The highly localized pair probability density p(y) as a function of the relative distance
y for Qo = 5,Vo = 0.5, and K = 0.5.
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