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A dynamical model for the low-high (L-H) confinement mode transitions consisting of
three ordinary differential equations (3-ODE model) for the essential state variables is pro-
posed. The model is derived from the energy balance equations for the resistive pressure-
gradient-driven turbulence and describes temporal evolutions of three characteristic variables
(u, k, f), the potential énergy contained in the pressure gradient, the turbulent kinetic energy
and the shear flow energy. The energy input to the peripheral plasma region is included as
an external control parameter in the model. The model equations have stationary solutions
corresponding to the L and H modes. The L to H and H to L transitions are obtained by
varying the energy input parameter. The type of L-H transition, whether like a first-order or
second-order transition, is shown to be determined by the shear flow damping. At a higher
level of the energy input parameter the H mode stationary solution becomes unstable and
bifurcates to a limit cycle which shows periodic oscillations characteristic of the H localized

mode (ELM) confinement state.
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I. Introduction

In order to explain the mechanism of the L-H transitions observed in many tokamaks
and in some stellarators, various theoretical models have been proposed in recent years.! ="
The key points that such models attempt to describe are how the radial electric field or
the poloidal shear flow suppresses the turbulence and anomalous transport, and how the
electric field or the shear flow is produced. In our previous work,” the spontaneous shear
flow generation and the resultant transport reduction similar to the L-H transition are shown
in a single-helicity nonlinear simulation of the resistive g modes.8~'? The simulations and
supporting theory suggest that the shear flow generation is triggered by the decrease of the
collisional shear flow damping due to the increase of the temperature.

Shaing et al.® and Hassam et al.* also argue in their L-H transition models that the
bifurcation of the poloidal flow is caused by the decrease of the poloidal flow damping.
However, the poloidal rotation is driven by the torque due to the ion orbit loss in the theory
of Shaing et al. and due to the poloidal asymmetric radial diffusion in the model of Hassam
et al., while our simulation showed that the Reynolds stress directly generates the shear flow.

The plasma mass flow generation by the divergence of the Reynolds stress arises from the
nonlinear convective derivative in the mass acceleration term. This mechanism for flow gen-
eration is based on the self-consistent hydrodynamics for the interaction between the plasma
turbulence and the background mass flow and has been supported by several other theoret-
ical works.!3=!" In the L-H transition model presented in the present work, the Reymnolds
stress is considered to be the cause of the shear flow generation.

Diamond et al.® have also presented an L-H transition model which describes the temporal
behavior of the turbuleﬁce fluctuation and the shear flow although the pressure gradient is

fixed as an external parameter. In actual experiments, the pressure gradient also changes at



the L-H transition according to the change in the transport. Therefore, our model contains
the pressure gradient as a basic state variable as well as the fluctuation energy density and
the mean flow kinetic energy density. Thus, the state of the system is specified by these
three dynamical variables which interact through the hydrodynamic nonlinearities. Our
model consists of the three ordinary differential equations (3-ODE model) which govern the
temporal evolution of the three system state variables. The model reduces to the 2-ODE
model of Diamond et al.® if the pressure gradient variable is fixed. In the Diamond et al.
model, the stable H mode solution appears when some criterion is satisfied by the external
parameter. There, the L-H transition is considered as a second-order phase transition: the
magnitudes of the fluctuation and the flow are continuously changed at the critical point of
the transition. In contrast, most of other L-H transition models have claimed that the L-H
transition should be like a first-order phase transition where the fluctuation and the flow are
changed discontinuously at the transition and the hysteresis property appears.

In our 3-ODE model, the energy input to the peripheral plasma region is regarded as
an external control parameter. It will be shown that the type of the L-H transition is like
either a first-order or a second-order phasé transition depending on the form of the collisional
shear flow damping. In addition, we show that under certain conditions the present model
predicts the transition from the H mode to a time dependent state with relaxation oscillations
characteristic of the edge localized modes (ELM) observed in sufficiently high-beta H mode
plasmas. In order to explain the edge localized modes (ELM), Leboeuf et al. proposed
another 2-ODE model which has the same form as the Volterra-Lotka equations.'® Our
3-ODE model has the ELM behavior occurring as a subset of the parameter region in which
the H mode stationary solution becomes unstable and bifurcates to a limit cycle which shows
periodic relaxation oscillations like those observed in the ELM state.

This work is organized as follows. In Sec. II, our three-state variables are defined, and

the 3-ODE model is derived from the energy balance equations of the resistive pressure-



gradient-driven turbulence by modeling the energy transfer and dissipation terms. There we
also explain the L and H mode stationary solutions and the condition for the existence of
the H mode. In Sec. III, the linear stabilities of the L and H mode stationary solutions are
examined and the criterion for the unstable H mode (or occurrence of the ELM) is derived.
In Sec. IV, numerical solutions of our model equétions are given. We show the temporal
behavior of the pressure gradient, turbulence and shear flow energy for various values of the
external thermal power input parameter giving examples of the L and H modes and the
ELM-like limit cycle. In Sec. IV numerical solutions are shown for the case where the power
input is temporally varied to show the difference between the first-order and second-order

phase transitions. Finally, the conclusions and discussion are given in Sec. V.

II. Model Equations

Basic variables for our dynamical model of L-H transtions are the turbulent kinetic energy
K, the background shear flow kinetic energy F', and the potential energy related to the

pressure profile U, which are defined by

KE%/d(E <2 , F——/ dx ’UO, /d o) B (1)

L. nom;

respectively, where we define the peripheral region'by —6 <z < 0. Here, z = 0 corresponds
to the plasma surface, or the last closed flux surface, and 6§ represents the radial width of
the shear flow layer, in which the resistive pressure gradient driven turbulence is a dominant
cause of the anomalous transport and an energy source of the shear flow generation. The
angle bracket (-) denotes the average over the (y, z)-plane (or the magnetic surface). The
velocity and the pressure are divided into the z-dependent average parts and the fluctuating
parts as v = vo(z) + ¥V and p = po(z) + 7, respectively. The average mass density is denoted
by nom,. The unfavorable average magnetic curvature is represented by 1/L, = d2/dz"°

and is assumed to be constant. The curvature reduces to 2/R for modes localized to the
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outside of a small aspect ratio tokamak with major radius R.
From the reduced resistive MHD equations (1) and (2) in Ref.7 with the electrostatic

approximation in the sheared slab geometry, we obtain the following energy balance equations

dK
E=PK_PF_€K (3)
dF
’_"=PF_€F . (4)

dt

where the production and dissipation terms in the right-hand sides are given by

— <§’l7:z:) |:L'=—6
Fy = Lg‘nomi (5)
_ pv:z:
- 5/ de Lg'n,omz (6)
Pr== / dz { my (7)

_;15. d:z:{ <<gw>> L <J,>} (8)
cr=t [ ds (d) . ©

Here p denotes the (kinematic) viscosity, 7 the resistivity and j" = —n~ V)¢ the parallel
current. The electrostatic potential ¢ gives the velocity as v = —(¢/By) V¢ X Z in the reduced
MHD model. In the temporal evolution equation for U, we have neglected the collisional
dissipation term by assuming that the turbulent thermal transport is much larger than the
collisional one. In order to solve Egs. (2)—(4), the production and dissipation terms (5)—(9)
need to be expressed in terms of U, K and F. Before proceeding to this closure problem,
some remark on these terms should be given here. The potential energy production Py is

given by the energy input to the peripheral region through the inner boundary at z = —6, the
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turbulent energy production P is expressed in terms of the pressure transport multiplied by
the unfavorable curvature, which is originally from the potential energy, and the background
flow production is represented by the product of the Reynolds stress and the flow shear,
which comes from the turbulent kinetic energy. As for the dissipation terms, ex stands for
the viscous and Joule dissipations of the fluctuation, and e the viscous dissipation of the
average flow. In equilibria, we obtain PU = Py = ex+¢er and Pr = €p. From the definitions,
we also find that Pr = ep = 0 in the case of no shear flow (since dvg/dz = 0) as in the
L mode phase. When Pr is positive, the stationary value of the turbulent energy dissipation
€x = Py — Pr becomes smaller than in the no shear flow case, which implies the reduction
of the turbulence level as observed in the H mode phase.

Now let us consider the closure problem. The time scale 7, in the g or ballooning mode
turbulence is given by 7, ~ [t] = (Lenomi/|dPy/dz|)/?. Approximating the background
pressure profile as Py(z) ~ Py(z = 0) + zd Py /dz, we have

52

1 dPy
3 Lc’nomi

dzx

U~
2 Lcnomi

(10)

where we assumed that dPy/dz < 0 and ng ~ const. Hereafter U is redefined by the pressure
gradient term in Eq. (10) as U = §2|dP,/dz|/(3L,ngm;) assuming that the pressure at the

outer boundary Py(z = 0) = const. Then we obtain
To ~ SUY? (11)

Estimating the anomalous pressure diffusivity as D ~ 7.K, we have

_ DldPy/dz]| _

Py
Lengmy

7K ~ 6TWUVK (12)

In the same way as in the background pressure profile, we approximate the background flow

profile as vo(z) =~ vo(z = 0) + zdvo/dz. Then F' is given by

1, o 1, (du\?



where Ty = 6~ [%5vy(z)dz denotes the volume-averaged poloidal flow. Hereafter we also
redefine F' as F' = 6*(dvo/dz)?/24 since the volume-averaged velocity Ty is not accelerated
by the divergence of the Reynolds stress —d (7,7,) /dz. The Reynolds stress is approximated
by (U,0y) ~ 7.(dvo/dz)K. We obtain

Pr ~ 7,K (dvp/dz)? ~ 6" UY2FK . (14)

Assuming that the Joule dissipation is dominant in (8), the turbulent energy dissipation can

be written?® as

ex ~ DplK? (15)

where Dy, = Dr(U) is, as seen later, the L mode anomalous diffusivity and a function of U
through its dependence on the background temperature. This form of the turbulent energy
dissipation ex o< K? is the same as in the Diamond’s 2-ODE model. Finally the background

flow energy dissipation is written as
€p ~ U6 2F (16)

where the ion viscosity p = u(U) is also given as a function of U due to the temperature

dependence of the viscosity. Thus a closed set of the equations for U, K and F' are obtained

as follows
%g = Py — Cx6 UK (17)
dK —1r71/2 ~1r7-1/2 1 =172
— =Cx8 UMK — Cp6™'U™*FK - CxD;'K (18)
C;_f = Cp6 WU VAFK — CL§~2uF (19)

where the potential energy U input power Py (> 0) is regarded as an external parameter and

C'’s are nondimensional numerical constants.



The constants C’s may be estimated either through comparisons of the solutions of
Eqgs. (17)~(19) with numerical simulations or empirically from modelling time series obtained
for L-H and ELM dynamics in tokamaks.

Stationary solutions of Eqs. (17)—(19) can be easily obtained. The L mode solution in

the L mode case is given by
F=0, K=6'CxkCD(U)U? U=U; (20)
where Uy, = UL(Py) is a function of Py given by the solution of
CxCiy*Dp(UL)UL = Cx*6%Py . (21)
In this case, the anomalous pressure diffusivity D ~ 7,K is written as
D = CpbU 2K = CpCxCic* Dy (UyL) | (22)

which confirms the previous statement that Dy agrees with the L mode diffusivity except
for the nondimensional numerical factor.

Another stationary solution, i.e., the H mode stationary solution is given by

F = CxCr'Ua D7 (Un)[CxCx* D(Ug) — Cr'Crp(Ug)]
K = 57 C5' Cop(Us)U”

U=Ugy. (23)

In this stationary state the fluctuation level is controlled by the viscous damping of the mean

shear flow. The H mode solution exists only when
OKC}ElDL(UH) > OEIO%‘M(UH> . (24)

Condition (24) requires that the viscous drag be sufficiently weak compared to the thermal
diffusivity, 4/Dr < const, for the onset of the H mode. Essentially, this requires that the

edge ion temperature be sufficiently high.



From Egs. (20) and (23) we see that when the H mode condition (24) is satisfied the
turbulence level K is decreased. Here U u = Ug(Py) is a function of Py given by the

solution of

CEIC%[L(UH)UH = Oj;vl(SZPU . (25)
The anomalous pressure diffusivity in the H mode is written as
D = CpéU™V2K = CpCr'Clops(Ug) . (26)

From Eqgs. (22) and (26), we obtain the ratio of the H mode to L mode pressure diffusivity

for Py > P,, which is given by

D(H) _ C5'CpuUs) _ Uy

= =—<1 27
D) ~ CxCo'Dr(Uy) ~ Ug (27)
where Egs. (21) and (25) are used.
Now let us define (P, U ) by the solution of
CI—{lé‘chl = OKCEIUchL(Ucl) = C'ElC},.Uclpc(Ucl) . (28)

We assume that Eq. (28) has only a unique solution (P, Uy ) and consider the two cases
where UDy(U) and Uu(U) are functions of U as shown schematically in Figs. 1(a) and (b).

The condition for the existence of the H mode stationary solution is given by Py > P,;
in the case of Fig. 1(b). In the case of Fig. 1(a), the H mode solution exists for Py > P
where 01}162}302 denotes the minimum value of C';lC'}pUcl,u(U ) at U = U, > U, as shown
in Fig. 1(a). In the latter case, Eq. (25) has the two solutions for Py < Py < P,;, which are
denoted by Un— and Ugy(> Ug-). As seen in the next section, Uy_ is unstable and Uy
corresponds to the real H mode.

Before ending this section, we introduce the following normalized variables, functions and



parameters
u=U/Uy, k=K/Uy, f=F/Us, 7=CréUY%
d(u) = CxCig* 6L DL(U) , m(u) = CRrCH6- UL u(U)
q=Cg'6U;*Py, ¢=Cp/Cx

in terms of which, Eqgs. (17)—(19) are rewritten as

dT_q u 'k

dk

/20 =1/2 8 _ =103 7.2
7 = U k—cu fl? d™ (u)k

gj—; = gu"1/2fk —cem(u)f .

The L and H mode stationary points are give by the normalized variables as

(ur, ko, fr),  (um, ka, fu)

respectively, where
kr =uy’d(us), fo=0

ki = ugim(ug) , fa = ¢ ugd ™ (ug) (d(ug) — m(uz))

and vz and uy are functions of the external parameter q defined by
urd(ur) = ugm(ug) =¢q .
The condition for the existence of the H mode stationary solution is written as
d(ug) > m(ug)
‘The critical value gq; is given by solving

ucld(ucl) = uclm(ucl) = Ge1-
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(33)

(34)

(35)

(36)

(37)



where ug = 1 from the normalization in Eq. (29). In the case of Fig. 1(b), the condition (36)
is equivalent to ¢ > g;. In the case of Fig. 1(a), the H mode solution exists for ¢ > g, where
Qo is the minimum value of um(u) at u = up(> uyg = 1). In this case, for gu < g < g,
the equation um(u) = ¢ has two solutions ug_ and ugy (> ug_) where ug_ is unstable and

ugy corresponds to the real H mode.

III. Linear Stability of the L and H States

In this section, we examine linear stabilities of the L and H mode stationary solutions
obtained in the previous section.
Putting (u, k, f) = (uz, kr, f1) + (@, &, f) and linearizing Eqs. (30)—(32) around the L

mode stationary solution, we obtain the following equations

(B (0
f f .

where My, is a matrix defined by

—% dL —’U,}l/z 0
ML = %dL -+ uLdi—, —’U,};/2 —CdL (39)
0 0 C(dL — mL)

Here dy, = d(ur), mr = m(ug), dy, = d'(uz) and ' denotes the derivative with respect to u.

The eigenvalues of M, are easily obtained as
A1 =c¢(dp —my) , AL+ s AL— (40)
where Az and Az are the solutions of the quadratic equations
A2+ <%— dr + u}:ﬂ) A+ u(urd) =0 . (41)

We find that Re Ar4+ < 0 and Re Az~ < 0 since (ud)’ > 0 is assumed as seen in Figs. 1(a) and

(b). The eigenvectors corresponding to Az4 and Az are both tangential to the (u, k)-plane
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defined by f = 0 and the L mode solution (ur, kr,0) is a sink for the orbits on this plane.

The L mode solution is unstable if and only if d, > my, which is equivalent to the condition

q > ge1-

Next, in the similar way as above, putting (u,k, f) = (ug, kx, fu) + (@, k, f) and lin-

earizing Egs. (30)—(32) around the H mode solution yield the following equations

1)L
T\7F !

with :
_%mH ——’U,%z 0
My = | myg — tm}/dg +ugm? dy/dy —uPmy/dy  —cmy (43)

—(1—mg/dg) (% myg + uHm}I) ul*(1—mg/dg) 0
where dy = d(ug), mg = m(ug) and my = m/(ug). The eigenvalues of My are given. by
the solutions of

N+ AN +BA+C=0 (44)

where

1 M
A=myg (5 + %f;—)

B =uf’mu((1+¢)(1 — ma/du) + mu(ugds)' /d%)

C= cu%2mH(uHmH)'(1 —mg/dg) . (45)

Here we consider the case in which the condition for the existence of the H mode solution
dg > my is satisfied. It is found that both A and B are positive. In the case of ug = ug_
in Fig. 1(a) where g < g < gu1, we obtain C < 0 since (um)’ < 0 for ugy < u < ug. Then
the stationary point (ug—, kg—, fg—) is unstable since Eq. (44) has one real and positive
solution for C' < 0. For the H mode stationary point in Fig. 1(b) and for that at u > ue in

Fig. 1(a), we have C > 0 and therefore at least one real and negative solution of Eq. (44).
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In these cases where C' > 0, other two solutions of Eq. (44) are both real and negative or
a pair of complex conjugate values since both A and B are positive. Thus the marginal
stability of the H mode solution except for (ug—, kg—, frr—) occurs when C = AB which
implies that Eq. (44) has a pair of pure imaginary solutions. Then these H mode solutions
become unstable when C' > AB which is rewritten as

(uamp)’ s, o1 ma/de (ugde)\ (1 uf?
myg >\ e 1—mH/dH dH 2+dH ' (46)

This criterion for the instability of the H mode depends on the values of ¢ (through ug =
ur(q)), c as well as the functional forms of d(u) and m(u). As shown by the numerical
examples in the next section, there appears a Hopf-bifurcation from the stable H mode
solution to the limit cycle around the unstable H mode solution just when the criterion (46)
is satisfied.

Technically, the language of bifurcation theory should be used to describe the transitions
between the sequence of states rather than the terms “first and second order phase transi-
tions.” Traditionally, the terms “phase transitions” apply to the statistical behavior of the
many-body system. While not established, the idea here is that the statistical physics does
épply to the underlying infinite degree of freedom partial differential equations upon which
the Egs. (1)—(9) and their closure given in Eqs. (17)—(19) are based. It requires further

investigation to establish the degree of correspondence between the two systems.

IV. Numerical Modeling

Here we explore the properties of Egs. (30)—(32) for two models of the function d(u) and
m(u) based on neoclassical viscosity and turbulent viscosity. Simulations by Hamaguchi®
and scaling theory by Connor?! show that the anomalous diffusivity is proportional to the

pressure gradient. Thus, we take

d(u) =u (47)
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in all the numerical calculations reported here. The unit coefficient is not a direct result from
the normalization (29). From Egs. (10) and (29), we have Dy, ~ §%vp;/ \/EL—C -d(u) with the
scale length L, of the pressure gradient. Thus the unit coefficient in Eq. (47) corresponds to
Dy (Uy) ~ 52'0111-/@ (£10m?/sif § ~ lem, +/LyL, ~ 1m and T < 100eV). In the high

pressure gradient limit u >> 1 the anomalous viscosity from small scale turbulence giving

~ m(u) = c,u where the positive constant c,, is small [~ .01 to .05].

For smaller pressure gradients the neoclassical viscosity??

. Rqupivs
e = T¥ 1) (L + €/20y)

where v,y = Rqu;/ vpi€? and € = 7 /R gives the damping of the mean shear flow through
dF/dt = —(3unc/R%(1 + 2¢%))F which has a strong ion temperature dependence varying as
1% for v < 1 and TH? for 1 < vy < €732, Here we model this dependence by taking
u proportional to T; and introduce m(u) =~ u~%2 for model A as in the banana regime and
for model B the transitional dependence of m(u) ~ u~! for low u.

Thus, for the numerical studies we take

gaéeé 1) m(u) = u=*/*(0.95 + 0.054°?)
g/aéeNBl) m(u) = u~*(0.97 + 0.03%) . (48)

Figures 2(a) and (b) show ud(u) and um(u) from Eq. (48) for Case A and Case B, respectively.
We can see that Case A and Case B correspond to the cases in Figs. 1(a) and (b), respectively.

We put ¢ = 5 for which we can satisfy the H mode instability criterion (46).

Case A (banana regime v,; < 1)

By the normalization in Eq. (29), we have u. = 1. From Egs. (37), (46), (47) and (48),
we obtain gnq = 1, u}; = 3.01, ue = 1.86, u}y = 0.93, g2 = 0.87, ugz = 4.40 and g5 = 1.42,
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which are shown in Fig. 2(a). Here (gcs, uc3) denotes the critical point for the bifurcation of
the H mode into the limit cycle associated with ELM state. The solid and dashed curves in
Fig. 2 correspond to the stable and unstable stationary solutions, respectively.

For g < g9, there exists only one stationary solution, i.e., the stable L mode solution.
Figures 3(a), (b), and (c) show the numerical solution of Eqs. (30)—(32) as the trajectory in
the (u, k, f) phase space, its projection onto the (k, f)-plane and the temporal dependence
of (u,k, f), respectively, where the external parameter ¢ = 0.8 and the initial condition
(u,k, f)r=0 = (0.3,0.2,0.1) are used. Here we see that the trajectory is approaching the
stable L mode solution (ug, kr, fz) = (0.89,0.85,0).

For g2 < ¢ < g1, the L mode stationary solution remains stable while there appears
one stable H mode solution and another unstable stationary solution. Figures 4(a)—(d)
show the numerical solutions for ¢ = 0.9 with two different initial conditions (u, &, f)r=0 =
(1.5,0.2,0.08) and (u, k, f)r=0 = (1.5,0.2,0.1). Here, both the solutions firstly are close to
each other along the stable manifold shrinking to the unstable stationary point (ug_, kg_, fr—) =
(1.41,0.76,0.15) before reaching the unstable manifolds expanding from the point. (The lin-
earized matrix around this unstable point has one positive real eigenvalue and a pair of
complex-conjugate eigenvalues with negative real parts.) Then the two solutions deviate
from each other : the one starting from (u, &, f)r=0 = (1.5,0.2,0.08) goes to the L mode sta-
ble point (ur, kz, fz) = (0.95,0.92,0) and the other starting from (u, k, f)r=0 = (1.5,0.2,0.1)
to the H mode stable point (ug+, ku+, fa+) = (2.39,0.58,0.40).

For g, < ¢ < gc3, the L mode stétionary solution is unstable and the stable H mode
solution appears. Figures 5(a)—(c) show the numerical solution for ¢ = 1.05 and (u, k, f)r=0 =
(0.3,0.2,0.1). Here the trajectory starting from (u', k, f)r=0 = (0.3,0.2,0.1) first approaches
to the L mode solution (ur, kz, fr.) = (1.02,1.04,0) tangentially to the (k, f)-plane at f =
0 and next leave it at angle to the (k, f)-plane and finally goes to the H mode solution

(umg, ke, fr) = (3.23,0.58, 0.58). For g > q.3, the L mode solution remains unstable and the
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H mode solution also becomes unstable. Figures 6(a)-(d) show the numerical solution for
g = 1.6 and (u, %, f)r=0 = (0.3,0.2,0.1). Here we find that the trajectory finally approaches
to a limit cycle existing around the H mode solution (ug, kg, fz) = (4.83,0.73,0.90). Thus
we obtain the Hopf-bifurcation at ¢ = ¢.3 = 1.42.

Let us regard a value of u for the stable stationary solution as an ‘order parameter’ in
our system and consider it as a function u = u(q) of the external parameter gq. Due to the
parameter region g.o < ¢ < g.1 where the two stable stationary solutions exist, we obtain the
hysteresis curve of the order paramater v = u(q) as shown by arrows in Fig. 2(a). At the
critical points ¢ = g1 and ¢ = g, of the L to H and H to L transitions, the order parameter
u changes discontinuously with respect to ¢ as ug — u; and um — u)y. Thus the L-H
transition in Case A is like a first-order phase transition.

Since the L-H transition is achieved experimentally by adding additional plasma heating,
it is interesting to consider a ramped up and down time profile for the control parameter g.
In Fig. 7, we find the results where the external parameter is temporally varied. Figure 7(a)
shows the external parameter ¢ = ¢(7) as a function of time. The temporal dependence of
(u, k, f), its trajectories in the (u, k, f)-space and in the (k, f)-plane are shown in Figs. 7(b),
(c), and (d), respectively. The hysteresis nature can be clearly seen in that the L to H
transition occurs when ¢ > ¢ =1 while the H to L transition occurs when q < g2 = 0.87.
We can also see that, while ¢ > g3 = 1.42, the ELM-like instability grows approaching to

the periodic oscillation represented by the limit cycle.
Case B (transitional regime v, ~ 1)

Here, we have u, =1, qcl =1, u,3 = 6.28 and ¢.3 = 2.15, which are shown in Fig. 2(b).
For ¢ < g1, there exist only one stationary solution, i.e., the stable L. mode solution.
In this case we find the numerical solution of Egs. (30)—(32) similar to that for ¢ < ge

in Case A as shown in Fig. 3. For gq < ¢ < ¢s and ¢ > ¢, the stability of the L
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and H stationary solutions and the behavior of the trajectories are similar to those in the
corresponding parameter regions in Case A as shown in Figs. 5 and 6. The Hopf-bifurcation
is again found at ¢ = ¢.3 = 2.15.

At the critical point ¢ = g1, the order parameter u as a function of the external parameter
q is continuous while the its first derivative du/dg is not. No hysteresis is obtained. Thus the
L-H transition in Case B is like a second-order phase transition. Finite change in ¢ is required
for finite change in u. In Fig. 8, the results where the external parameter is temporally varied
are shown in the same way as in Fig. 7. Even though this case corresponds to the second-
order transition, we find clear L to H and H to L transitions since certain time lag required to
reach the bifurcated stable solution causes the finite difference in ¢ and accordingly sudden
changes in (u, k, f). The ELM-like oscillations are also seen for ¢ > q.3 = 2.15.

Rather generally, the H mode solution undergoes Hopf bifurcation and sheds a limit.cycle
for input power above a critical level ¢ > g3 (here, e.g., g3 (A case) = 1.42 and g.3 (B case)
= 2.15). In the H-mode state, the presence of the shear flow stabilizes the resistive g or
ballooning mode described by reduced resistive MHD equations, which is unstable in the L-
mode. The unstable H-mode found in this paper is due to the imbalance between the shear
flow generation by the Reynolds stress and the flow damping by the viscosity. Increasing
g further allows this limit cycle to grow in amplitude about the unstable H mode. For the
current parameter value settings, the limit cycle continues to grow with ¢ until it approaches
the planes k¥ = 0 and f = 0. As is evident from the governing equations (30)—(32), these
planes are invariant; they are impermeable to trajectories. The invariant planes give the
lower bound to k¥ and f in the limit cycle. The pressure gradient u then increases linearly
with time until its amplitude becomes sufficiently large to kick the trajectory away from
the k& = 0 plane. This in turn ejects the trajectory from the plane f = 0, then nonlinear
feedback forces u to decrease and the trajectory to return to the invariant planes. The time

series of u then takes on the appearance of a sawtooth, and the time series for k¥ and f that
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of regular pulses.

We add some remarks on the g-dependence of the frequency and amplitude of the limit
cycle. The linear growth rate and frequency for the unstable H-mode are calculated from
(44) and (45). Near the critical point g = g3, the linear growth rate and frequency increase
with g as 7, = Real(A) = Cy(q—¢cs) and w; = Imag(\) = wes +C,(g — ge3) where C,, C,, and
wes are positive constants and given as C,, = 0.125, C,, = 0.448 and w = 1.966 for Case A.
For the limit cycle, the finite amplitude nonlinearity should be taken into account. From the
Landau theory, the limit cycle amplitude near critical point is supposed to be proportional
to the square root of the linear growth rate or (g — g.3)*/2. In fact, for Case A, we obtain
Ak =~ 6.0(g — ge3)*/? where Ak = kmax — kmin is the difference between the maximum and
minimum values of § along the limit cycle. The limit cycle frequency w is smaller than the
linear frequency w; due to the finite amplitude and is given as w ~ w3 — 1.75(¢ — ge3) near
the critical point for Case A. Thus, the oscillation frequency decreases with the input power,

and this tendency is consistent with the experimehtal observations for type III ELMs.?°

V. Conclusions and Discussion

In this work, we have derived a 3-dimensional state space dynamical model of the L-
H dynamics and transitions. The model predicts the temporal evolution of the potential
energy U(t) contained in the pressure gradient, the turbulent kinetic energy K(t) and the
background shear flow energy F'(t). The model is derived from the energy balance equations
by modeling the energy transfer and dissipation terms in terms of the three energy variables
(U,K,F). The thermal power input Py into the peripheral region is the external control
parameter in our model. Kukharkin et al.? also proposed an L-H transition model consisting
of three ODEs although that model has terms of a different form from those presented here,
and especially it does not contain the external parameter corresponding to Py. If we freeze

U, the equations for K and F' reduce to the 2-ODE model of the same form as that of
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Diamond et al.®

We have made estimates of the critical conditions required for achieving the H mode for
typical tokamak edge parameters There are two conditions that must be satisfied for the
H mode to occur. First, the viscous drag (neoclassical or otherwise) controlled by p must be
sufficiently small compared to the edge diffusivity Dy, as given by Eq. (24). In practice this
requires that the edge ion temperature must be above a certain level (of order 50 — 100 ev).
Secondly, with condition (24) satisfied there must be sufficient power (Py — q) injected into
the edge plasma as given by condition (28). While precise calculations are beyond the scope
of the present work, we make the following estimates.

The critical power calculations are made by using Eq. (28) with the composite constant

Cr taken as unity to estimate the critical power into the edge plasma as
Pn = 4m*a R(3/2) (V) = 6m°a R Cr Dy|dPy/dz|

where D, is the effective pressure diffusivity at the edge, respectively. For reference param-
eters we take ¢ = 0.3m, R = 1.0m, D, = 5.0 m2/s With L, = |d¢n Py/dz|™* = 0.10m we
get P ~ 140kW,; and with L, = 0.05m and Py = 1.0 x 10*' eV/m?, we get P, ~ 570kW
The time scale for the L to H transition decreases with the input power since, from Eq.(40),
the growth rate for the unstable L-mode is proportional to (d(uz) —m(ug)), which increases
with ¢. For the radius of curvature Lo = 2m and T; + T, = 100 eV we estimate the transi-
tion time, when well past the critical power level, to be of order 50 us. These estimates are
certainly idealizations due to numerous simplifications. The most important generalization
to include may be the coupling through radial diffusion of the local L-H shear-flow transi-
tion layer analyzed here to neighboring regions with weak shear flow. This coupling may
slow down the time for the L-H transition considerably as well as raising the critical power
requirement.

Our dynamical model has the stationary solutions corresponding to the L and H confine-
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ment modes. Depending on the value of the external parameter Py, their stabilities change.
The pressure gradient energy U of the stable stationary solution is considered as the order
parameter of our system which then yields a function U = U(Py). We have examined two
cases: one is Case A, (first-order phase transition) in which U(Py) is discontinuous at the
transition and the system exhibits the hystersis property. Case A may also be called the
hard onset of the H mode. Another Case B (second-order phase transition) in which U(Py)
but dU/dPy is not discontinuous at the transition. This may also be called the soft onset of
the H mode.

The model also predicts the criterion for the loss of stability of the H mode, and the
observed Hopf bifurcation from the stable to the unstable H mode gives the attracting limit
cycle which behaves like the ELM plasma state. The limit cycle is a relaxation oscillation
with intermittent bursts (Fig. 6(d)) of high turbulence levels and associated transport. that
allow the system to pass through the higher input power Py values that trigger the ELM
state. In the 2-ODE model by Diamond et al. where U is treated as an external parameter,
we have neither a first-order phase transition nor the unstable H mode. In the L-H transition
model by Hinton,® the relation between the thermal flux and the temperature gradient similar
to the (Py,U)-curve in Case A is presented. In Hinton’s model, the poloidal flow is given
from the temperature gradient by the neoclassical theory while the poloidal shear flow effect
on the anomalous transport is separately modeled using the argument by Biglari et al.? and
the transport coefficient of drift wave turbulence. However, in our model, the interrelation
between the pressure gradient as a turbulence source, the turbulence energy as a cause of
anomalous transport and the shear flow as a stabilizer of the turbulence are self-consistently
coupled. The coupling is calculated by taking into account energy transfer nonlinearities due
to the product of the thermal transport flux and the pressure gradient and due to that of
the momentum transport from the Reynolds stress and the shear flow gradient. Because of

the abrupt change and the hysteresis property, the first-order-like phase transition seems to
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be supported by the experimental results although we found clear transition interval from
the temporal evolution of the numerical solution in Case B due to the time lag for reaching
to the bifurcated stable point. Figure 5(c) shows an example of the time lag for a case just
above the critical power required in Case A and a similar one is found also in Case B. In
order to have the functional form of the viscosity for the first-order transition as in Case A,
Vi <K 1 1is required, as mentioned earlier, and therefore low density is preferred.

A corresponding problem in neutral fluids is the onset of large-scale flows in the turbulent
Rayleigh-Benard convection at low Prandtl (normalized viscosity) number. A truncated 6-
ODE model derived from the 2D partial differential equations is analyzed by Howard and
Krishnamurti.?4 They also find a sequence of bifurcations from steady convection states
to oscillating states. In addition, they report on a further bifurcation to chaotic solutions
associated with heteroclinic orbits. They do not attempt to establish the correspondence of
the truncated model with the solutions of the nonlinear partial differential equations.

Recently, Zohm et al.?® extended the model by Itoh et al?® to investigate the grassy
ELM?" in the dithering H mode. The dithering H mode can be regarded as oscillations
between the L and H mode states. On the other hand, the oscillations in the unstable
H mode were found to have a different nature, and may correspond to another type of
ELM, such as type III ELM?: 230 gince its amplitude and frequency was found to be
changeable, depending on the condition. The resistive pressure-gradient-driven fluctuations
are considered to be correlated with it. Note that the criterion (46) for the unstable H
mode depends on the effective viscosity driven by the pressure gradient. The models by
Itoh et al. and by Zohm et al. are based on the ion orbit loss mechanism and also take
into account the temporal and spatial dependencies. There the grassy ELM in the dithering
H mode is reproduced by considering the spatial diffusion of the density and the electric
field (Zohm et al. include the temperature as well). In our model, the spatial structures are

not considered and inclusion of them into our model remains an important task, since the
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shear flow width may be related to the diffusivity of the electric field.? *® 3 However the
significant difference between their models and ours is that we include the turbulence energy
K as a basic variable and consider self-consistently the interaction between the turbulence
and shear flow. Thus in our model the change in anomalous transports in the L and H
modes is naturally derived from the temporal evolution of K, while in theirs the turbulence
variable is not explicitly treated, and only ad hoc expressions of the anomalous particle and
thermal diffusivities in terms of the electric field are used.

There remain some issues for the investigation in our model, such as the functional forms
of the diffusivity and viscosity as well as the values of the dimensionless numerical constants.
Here we have explained the general behavior of the L-H transition dynamics within the
context of a self-consistent turbulent transport model. However, further investigation on
the model is necessary especially on the viscosity function since its form affects the. critical
point and the type of the transition as well as the occurrence of the ELM-like instability. As
an extension of our model, the macroscopic spatial structures of the three variables should
be described by the partial differential equations (PDE model) taking into account their
transport. This spatial extension is required to address the issue of the nonlocal versus local
nature of the L-H transition. In our previous work,” the shear flow generation by the Reynolds
stress divergence from the resistive g mode is confirmed by the single-helicity nonlinear
simulation although in that simulation the energy input is modeled by fixed pressure gradient
(which is a conventional technique). In such simulations, we observed that the reduced 2-
ODE model describes well the qualitative behavior of the solutions. Comparison between
our 3-ODE model with numerical turbulence simulation, which includes the energy input as
an external parameter and allowing the self-consistent variation of the pressure gradient, is

an interesting research problem for future studies.
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Figure Captions

1. The functional forms of UDy(U) and Up(U). UD(U) is assumed to be a monoton-
ically increasing function of U. (a) Up(U) has a minimum value at U = Ug(> Uy).
For Py < Py < P, there are three stationary solutions, i.e., Uz, Ug—- and Ugy; (b)
Up(U) is a monotonically increasing function of U. For Py > P.;, there exist the L

and H mode solutions, which are denoted by Uy, and Uy, respectively.

2. The stationary solutions plotted in the (u,q)-plane. The solid and dashed curves
denote the stable and unstable stationary solutions, respectively. The expressions for
d(u) and m(u) are given in Egs. (47) and (48); (a) and (b) correspond to Case A and
Case B, respectively. Arrows in (a) represent the first-order phase transitions showing

the hysteresis property.

3. Case A: numerical solution of Egs. (30)—(32) for ¢ = 0.8(< ¢u) and (u,k, f)r=0 =
(0.3,0.2,0.1). The stable L mode solution is given by (ur, kz, fz) = (0.89,0.85,0). (a)
The trajectory in the (u, k, f) phase space. (b) The projection of the trajectory onto
the (k, f)-plane. (c) The temporal dependence of (u, k, f).

4. Case A: numerical solutions of Egs. (30)—(32) for ¢ = 0.9(gee < ¢ < ¢c1). Two different
initial conditions (u, k&, f)r=0 = (1.5, 0.2,0.08) and (u, k, f),=0 = (1.5,0.2,0.1) are used.
There are two stable stationary solutions given by (ug, kz, fr) = (0.95,0.92,0) and
(Ugrs, kg, fuy) = (2.39,0.58,0.40), and one unstable stationary solution given by
(um—, k-, fu-) = (1.41,0.76,0.15). (a) The two trajectories in the (u,k, f) phase
space starting from (u, &, f)r=0 = (1.5,0.2,0.08) and from (u, k, f)r=0 = (1.5,0.2,0.1).
(b) The projection of the two trajectories onto the (k, f)-plane. (c) The temporal
dependence of (u, k, f) for (u, k, f)r=0 = (1.5,0.2,0.08). (d) The temporal dependence
of (u, k, f) for (u,k, f)r=0 = (1.5,0.2,0.1).
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5. Case A: numerical solutions of Eqgs. (30)—(32) for ¢ = 1.05(gsx < ¢ < ¢e3) and
(u, &, f)r=0 = (0.3,0.2,0.1). The unstable L mode solution and the stable H mode
solution are given by (ur, kz, fr) = (1.02,1.04,0) and (ug, kg, fz) = (3.23,0.58,0.58),
respectively. (a) The trajectory in the (u, k, f) phase space. (b) The projection of the
trajectory onto the (k, f)-plane. (c) The temporal dependence of (u, k, f).

6. Case A: numerical solutions of Egs. (30)-(32) for ¢ = 1.6(> ¢xs) and (u, &, f)r=0 =
(0.3,0.2,0.1). The unstable L mode solution and the unstable H mode solution are
given by (ur, kr, fr) = (1.26,1.42,0) and (ug, kg, fr) = (4.83,0.73,0.90), respectively.
(a) The trajectory in the (u, k, f) phase space for 0 < 7 < 20 and for the limit cycle.
(b) The projection of the trajectory onto the (k, f)-plane for 0 < 7 < 20 and for the
limit cycle. (c) The temporal dependence of (u, k, f) for 0 < 7 < 20. (d) The temporal
dependence of (u, k, f) for the limit cycle.

7. Case A: numerical solutions of Eqs. (30)—(32) where the external parameter g is tem-
porally varied. The initial condition is given by (u, %, f)r=o = (0.4,0.4,0.4). (a) The
external parameter ¢ = ¢(7) as a function of time. The three horizontal lines correpond
t0 ¢ = gu(= 1), ¢ = gea(= 0.87) and ¢ = gu3(= 1.42). (b) The temporal dependence
of (u,k, f). (c) The trajectory in the (u, k, f) phase space. (d) The projection of the
trajectory onto the (k, f)-plane.

8. Case B: numerical solution of Egs. (30)—(32) where the external parameter ¢ is tem-
porally varied. The initial condition is given by (u,k, f)r=0 = (0.3,0.2,0.1). (a) The
external parameter ¢ = ¢(7) as a function of time. The two horizontal lines correpond

to ¢ = ga(=1) and g = ge3(= 2.15). (b) The temporal dependence of (u, k, f).
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