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Abstract

We investigate the beam-beam interaction in a synchrotron collider, specifically
studying slow particle diffusion in phase space away from tune resonances. Using the
tune and tune shift of contemporary large hadron colliders as reference parameters,
our computation shows all particles diffusive after 10° rotations in contrast to previous
single particle tracking results. The diffus;ion coefficients are several orders of magni-
tude higher than the tracking code and increase exponentially with the action, caused

by the collision induced variation of the second moment of the beams (22).
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beam-beam interaction discussed above:” 8
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where z is the position of the particle, 2’ is dz/ds, s is the distance along the collider,
vo = § ds/[(s) is the tune, Ay is the input tune shift, ﬁg is the betatron oscillation amplitude
at the IP, and F'(z) is the force of a 1-D Gaussian slab:

F(z) = g(%) erf( \/53;) , 3)

where erf is the error function and Oz, 18 the beam standard deviation in z.

In a fully self-consistent “strong-strong” treatment the force F(z) in Eq. (2) is solved for

both beams using the Vlasov equation for the beam-beam interaction:°

U o (K(e)- P L =0, @

where K (s)z is the magnetic guiding force, F'(z) is the beam kick from the other beam, and
6p(s) is the periodic delta function which is nonzero at only the IP.

In previous “strong-strong” treatments the distribution f was either represented by a
Gaussian with varying position and width!! or by a finite number of p&lxrticles.12 Each method
has its advantageé and disadvantages. While the advantage of the Gaussian treatment is the
lack of finite particle fluctuation noise, the disadvantage is higher moments of the distribution
do not evolve. The finite particle method allows the evolution of the higher moments, but
is subject to the noise.

The 6f method substantially reduces the fluctuation noise and allows the evolution of
higher moments by evolving only the perturbative part of the distribution.® 4 ® The total

distribution function f(z,,s) is decomposed into

flz,2',8) = folz, &, s) + 6f(z, 2, 5) , (5)
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diffuse over one standard deviafion of the beam emittance. For example, Fig 1(a) shows on
average the diffusion time is approximately 10'° turns in our self-consistent calculations. The
distinction between the real diffusion and apparent diffusion such as phase space oscillations
is determined using the method of Chirikov where coefficients, D; and Dy, are calculated
over two different timescales.b ? If D; ~ D,, then the motion in J is diffusive. If D; > D,
where D, is calculated on shorter timescales than D,, then the motioh is merely phase space
oscillations. In Fig. 1(a) the coefficients are calculated over intervals of AN; = 10° and
AN, = 10* turns. In Fig. 1(a) the ratio of the coefficients calculated for the tracking code.
sample particles is on the order of —gf ~ 0.01 — 0.1. The range of ratios indicates that the
particles are showing little diffusive behavior.

We find (i) that the D(J) is far greater in the § f code than in the tracking code, indicating
that conventional tracking code prediction is unrealistically low; (ii) that even the highest
value of D(J) from the self-consistent result remains within typical machine design lifetimes
of 10® turns; and (iii) there appears a strong action, J, dependence. In Fig. 1(a) for all sarhple
particles in the 6 f code the ratio D,/ Dy is on the order of 1, indicating that all particles are
diffusive. The diffusion coefficient D(J) is an approximately exponentiaﬂ function of J for
J > 0.5. We also find that the alternate breathing oscillations of the two beams appear in the
self-consistent calculations, But not in the tracking calculations. The onset of the oscillations
is due to the collective interaction. The diffusion is not strongly dependent on the number of
simulation particles. In this § f simulation each beam has 10% simulation particles; however,
the coefficients calculated for a simulation with N = 10 simulation particles give the same
results.®

The source of the enhanced diffusion in the self-consistent 6 f »simula,tion is identified with
the observed variation of the moments of each beam which does not occur in the tracking
code. The contribution of the first two beam moments (z) and (z%) to the beam diffusion

may be estimated by varying these moments in the tracking code which assumes a Gaussian



main contribution to the diffusion of the large J particles is resonance overlap.*

Figure 1(c) shows the diffusion coefficients obtained from the input of (z?) variation into
the tracking code including only the band of frequencies f shown in Fig. 2(b). There are some
particles in the range 1 < J < 2.2 whose diffusion coefficients are lower than that obtained
from the §f simulation. However, the diffusion observed in the §f code can be mostly
accounted for by the variation of (z?) in a narrow band of frequencies near 1 — 2(vp — Av)
where Av is that for large amplitude particles.

The variation in (z) does not contribute as significantly to the particle diffusion in J as
(z?). The characteristic frequencies of the () motion is not as close to the characteristic
frequencies of the J variation as the (z?) motion.

An analytic_ expression for the diffusion in action J can be obtained for beam o, variation
by adapting the formalism of Stupakov'® which contained external kicks with (x) variation,
but no (z?) variation. The change in the action due to the beam-beam kick from a one

dimensional Gaussian slab can be written in the form:

AJ = (27!')3/2A1/00'mx’erf (\/;0' ) , | (8)

where
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and ¥ is the phase advance. Perturbing Eq. (8) with respect to o, an expression of the form:
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where Ij, represents the k-th modified Bessel function with arguments (%@—) The change
. zQ
in the action J over M turns is then after simplifying Eq. (10):
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where wi, = 2(k+1)27 (o4 (Av(J))). The peak in the power spectra S, (f) in Fig. 2(b) is at
4y which corresponds to k = 0 in Eq. (12). Figure 1(d) shows the diffusion obtained from
Eq. (12) for k = 0. The power spectra in Fig. 2(b) is used where the values at a particular
action J is obtained from measuring the frequency of the peaks in the power spectra of
the sample particle motion (Fig. 2(a)). Reasonable agreement between the ¢ f computation
and this analytic expression is found. If we used naive approximations for the correlation
function such as the Lorentzian, we were unable to reproduce the exponential J dependence
of D(J) for J > 0.5.

In summary, through our extensive computation and theory we have discovered that the
diffusion obtained from the self-consistent §f code is several orders of magnitude higher than
that of the prediction from conventional trackihg codes. The essence of the culprit of this en-
hanced diffusion is captured by the variation of the second moment of the beams (z*) which

is the result of beam-beam interaction induced collective variations of the beam distribution.

This work was supported by the U.S. Department of Energy, Texas National Research
Lab. Commission, and SSCL.



Figure Captions

1. D(J) from (a) our §f code and convéntional tracking code, (b) tracking code particles
with variations in (z?) input from the 6f, and (c) tracking code particles with (z?)
input using a band of frequencies around 2(vp — Av) for M = 10° rotations. D; and
D, have time scales of AN; = 1000 and AN, = 10000 rotations respectively. (d) The
diffusion D(J) from §f and our analytic theory.

2. After M = 10° rotations (a) part of the frequency spectra of sample particles from the
tracking code initially at J = 1,2,3, and 4 and (b) of o from the 6 f simulation where

the arrows indicate the range of frequencies with and without the tune shift.
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We investigate the beam-beam interaction in a synchrotron collider, specifically
studying slow particle diffusion in phase space away from tune resonances. Using the
tune and tune shift of contemporary large hadron colliders as reference parameters,
our computation shows all particles diffusive after 10° rotations in contrast to previous
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by the collision induced variation of the second moment of the beams (z?).

Pacs Nos.: 29.27.Bd, 52.65.4z, 29.20.Dh

@)Current address: Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka
Ibaraki 311-01, Japan



In synchrotron colliders one of the principal limitations on beam intensity is the beam-
beam interaction.” ? In the beam-beam interaction each beam imparts an impulse on the
other beam at the interaction point (IP) where the beams cross. For the hadron colliders the
beam-beam interaction is expected to be crucial, since there is little synchrotron radiation
damping to slow beam emittance growth as in electron storage rings.!

In this paper we investigate the beam-beam interaction with emphasis on subtle particle
diffusion away from resonances on time-scales of the order of machine operation times (~ 10*
seconds). A one dimensional model is employed at the IP so that oscillations in only one
transverse direction due to the counterstreaming beams are studied. The rest of the machine
is treated by symplectic harmonic transport (betatron oscillations). By employing a fully
self-consistent model at the interaction point, an assessment of the relative importance of
collisions as a whole and individual “soft” collisions (collective effects) can be determined.
Speciﬁcaﬂy, we will examine the contribution of self-consistent effects on particle diffusion
after a large number of interactions.

We briefly describe the conventional tracking and our new 6f codes used to study the
beam-beam interaction. More detailed descriptions of the §f code can be found in other
references.® 4 % © The basic principle of conventional tracking codes is to follow the dynamics
of single particles around the machine.” ® In the beam-beam interaction the tracking code
consists of two components: a target beam and a projectile beam. The target beam is treated
as a rigid smooth Gaussian distribution of a large number of particles. It remains unchanged
from interaction to interaction. The projectile beam is considered to be a collection of
mutually noninteracting particles which are perturbed by the target beam. This is the so
called “weak-strong” approximation.”® In tracking code simulations in the “weak-strong”
approximation, transport about one turn is simulated as the product of two matrices, one

for the one turn Courant-Synder map,’ and the other for the impulsive application of the



beam-beam interaction discussed above:” 8
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where z is the position of the particle, 2’ is dx/ds, s is the distance along the collider,
vo = § ds/B(s) is the tune, Avy is the input tune shift, G3 is the betatron oscillation amplitude

at the IP, and F'(z) is the force of a 1-D Gaussian slab:

where erf is the error function and o, is the beam standard deviation in z.

In a fully self-consistent “strong-strong” treatment the force F'(z) in Eq. (2) is solved for

both beams using the Vlasov equation for the beam-beam interaction:°

U ol e - FEHEN L =0, )

where K (s)z is the magnetic guiding force, F'(z) is the beam kick from the other beam, and
6p(8) is the periodic delta function which is nonzero at only the IP.

In previous “strong-strong” treatments the distribution f was either represented by a
Gaussian with varying position and width! or by a finite number of particles.'? Each method
has its advantages and disadvantages. While the advantage of the Gaussian treatment is the
lack of finite particle fluctuation noise, the disadvantage is higher moments of the distribution
do not evolve. The finite particle method allows the evolution of the higher moments, but
is subject to the noise.

The 6f method substantially reduces the fluctuation noise and allows the evolution of
higher moments by evolving only the perturbative part of the distribution.® 4% The total

distribution function f(z,’,s) is decomposed into

f(@,7,8) = folz,2',s) +6f(x,2,5) , (5)
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where fo(z,2’, s) is the steady or slowly varying part of the distribution and 6 f(x, 2/, s) is
the perturbative part. For beam-beam interaction an analytic solution close to the origi-
nal Vlasov equation can be found using a linearized beam-beam force whose solution is a

Gaussian distribution. Equation (4) reduces to an exact form:

B %L (K(s)e — Po(w)sp(s) ok =
~(Fa) - Re)5y(s) 2 | ©)

where Fy(z) is the kick from a Gaussian beam, F'(z) is the kick from a Gaussian beam
Fy(x) plus §F(x) the force due to the perturbed distribution 6f, and Fp is the portion of
the beam-beam force F'(z) linear in 2. Only the nonlinear part of the beam-beam force on
the right-hand side of Eq. (6) is used to advance §f. The perturbative part §f(z, 2, s) is
then small, causes only small changes to the distribution representing the fluctuation levels.

Equation (6) can be represented by N particles by the method of characteristics:
N
5f (2,2, 8) = 3_wils, xi(s), 2(8)]6(% — :(s))6(z" — zi(s)) - (7)
i=1

where the weights of particles w; are evolved using Eq. (6).

We examine particle diffusion brought about by the self-consistent solution of the heam-
beam interaction through the 6f simulation that goes beyond the results from the “weak-
strong” tracking code. We also determine the contribution from beam moments to the
diffusion.

Figure 1(a) shows the diffusion coefficients of 100 randomly distributed sample particles

versus their initial action calculated for the §f code and the tracking code, where the nor-

Oz

2 2
malized action is J = % ((l) +- ({;—:) ) The diffusion coefficients are obtained after 10°
rotations with the tune 1o = 0.285 and tune shift Ay = 2.1 x 1072 similar to large hadron
collider reference parameters. The diffusion coefficient D(J) in the action is normalized to

0% /N,, where 07 = 0,2/8* and N, is the number of rotations so that it takes D(J)~* turns to

4



diffuse over one standard deviation of the beam emittance. For example, Fig 1(a) shows on
average the diffusion time is approximately 10%° turns in our self-consistent calculations. The
distinction between the real diffusion and apparent diffusion such as phase space oscillations
is determined using the method of Chirikov where coefficients, D; and D,, are calculated
over two different timescales.> 2 If D; ~ D,, then the motion in J is diffusive. If Dy > Ds
where D; is calculated on shorter timescales than D, then the motion is merely phase space
oscillations. In Fig. 1(a) the coefficients are calculated over intervals of AN; = 10® and
AN, = 10* turns. In Fig. 1(a) the ratio of the coefficients calculated for the tracking code
sample particles is on the order of %f ~ 0.01 — 0.1. The range of ratios indicates that the
particles are showing little diffusive behavior.

We find (i) that the D(J) is far greater in the § f code than in the tracking code, indicating
that conventional tracking code prediction is unrealistically low; (ii) that even the highest
value of D(J) from the self-consistent result remains within typical machine design lifetimes
of 108 turns; and (iii) there appears a strong action, J, dependence. In Fig. 1(a) for all sample
particles in the § f code the ratio Ds/D; is on the order of 1, indicating that all particles are
diffusive. The diffusion coefficient D(J) is an approximately eprnential function of J for
J > 0.5. We also find that the alternate breathing oscillations of the two beams appear in the
self-consistent calculations, but not in the tracking calculations. The onset of the oscillations
is due to the collective interaction. The diffusion is not strongly dependent on the number of
simulation particles. In this § f simulation each beam has 10® simulation particles; however,
the coefficients calculated for a simulation with N = 10* simulation particles give the same
results.®

The source of the enhanced diffusion in the self-consistent § f simulation is identified with
the observed variation of the moments of each beam which does not occur in the tracking
code. The contribution of the first two beam moments (z) and (x?) to the beam diffusion

may be estimated by varying these moments in the tracking code which assumes a Gaussian



beam.

When the beam moment (z) from the §f code is input into the tracking code, the
diffusion coefficients calculated for sample particles with J < 1 are close to that of the §f
code. However, for J > 1 the diffusion coefficients level off and deviate substantially from
the exponentially increasing diffusion coefficients of the §f code. Figure 1(b) shows diffusion
coefficients from the tracking code particles when the beam o, of the tracking code is varied
using (z?) from the §f code. The solid curve for the §f diffusion is obtained by smoothing
the diffusion coefficients calculated for 10000 rotations. The diffusion coefficients from the
tracking code with the appropriate spectrum of variations of (z?) and the §f code nearly
overlap for most values of J > 2. For values of J < 2 the tracking code coefficients are
smaller than the 6 f code. Thus, most of the enhanced diffusion can be accounted for by the
variation of the second moment (z?) incurred by collective ’breathing’ modes. Diffusion at
the core of the beam can be accounted for by the variations in both the first (x) and second
(x?) moments.

Figure 2(a) shows the frequency spectra S;(f) taken from the autocorrelation of J for
sample particles initially at J = 1,2, 3, and 4 over M = 10° rotations. The frequency f of the
peak in Sy(f) for the sample particles is decreasing with increasing J and corresponds to ap-
proximately to f = 1—2(vp— Av(J)) where Av(J) is the tune shift of the particular particle.
The decrease in frequency can be attributed to the decrease in Av(J) with increasing J of
the particle, typical of the beam-beam tune shift. Figure 2(b) shows the frequency spectrum
Ss. (f) of the second moment of motion o, = 4/(z?) for M = 10° rotations. The arrows
indicate the upper and lower bounds of frequencies accessible to particles in the beam. The
frequency f of the peak in Fig. 2(b) of the o, motion is approximately 1 — 2(vp — Av) where
Av is the tune shift of the large J particles. Sample particles with large J are in resonance
with the o, variation. Sample particles with small J have a characteristic frequency f in

their motion which is higher than the o, frequency and are not in resonance. Therefore, the




main contribution to the diffusion of the large J particles is resonance overlap.?

Figure 1(c) shows the diffusion coefficients obtained from the input of (x?) variation into
the tracking code including only the band of frequencies f shown in Fig. 2(b). There are some
particles in the range 1 < J < 2.2 whose diffusion coefficients are lower than that obtained
from the 6f simulation. However, the diffusion observed in the §f code can be mostly
accounted for by the variation of (x2) in a narrow band of frequencies near 1 — 2(vy — Av)
where Av is that for large amplitude particles.

The variation in (z) does not contribute as significantly to the particle diffusion in J as
(z?). The characteristic frequencies of the (x) motion is not as close to the characteristic
frequencies of the J variation as the (z2) motion.

An analytic expression for the diffusion in action J can be obtained for beam o, variation
by adapting the formalism of Stupakov!® which contained external kicks with (z) variation,
but no (z?) variation. The change in the action due to the beam-beam kick from a one

dimensional Gaussian slab can be written in the form:

AJ = 27)*2Avyo a'erf ( \/;_UU ) , (8)

where

x = \/27(:03(\11) , ¥ = —\/_%sin(\lf) , 9)

and V¥ is the phase advance. Perturbing Eq. (8) with respect to o, an expression of the form:
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where I}, represents the k-th modified Bessel function with arguments ( Qif ) The change
zQ

in the action J over M turns is then after simplifying Eq. (10):
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Aoy (1)
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where the arguments to the modified Bessel functions are <%}f—> The phase advance is

l
zo
Uy = 27l (v + (Av(J))) where (Av(J)) is the average tune shift that the particle encounters.

The diffusion coefficients can be calculated from:

D) = 80 (12

where
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In Eq. (13) the action, J, is assumed not to vary much over the M turns. Equation (13) can

be further simplified by rearranging terms:

AJy = 322 A2 J? exp (—-‘g) X

zo
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where K (n) is the correlation function of the o, variations over turn n:

K(n) = ]‘il Aoy (m) Aoy (m +n)

m=0

IM . (15)
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The correlation function may be defined in terms of the power spectrum, S,, (w):

M
Se,(w) = > K(n)exp(iwn) . (16)
n=1
Using this expression in Eq. (14) and substituting into Eq. (12) we get
D(J) = 3271'3AI/§J2 exXp (—J—f) Z(Ik — Ik+2)2,5',,z(wk) , (17)

zo/ k=0
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where wy = 2(k+1)27(vo+(Av(J))). The peak in the power spectra Sy, (f) in Fig. 2(b) is at
47y which corresponds to £ = 0 in Eq. (12). Figure 1(d) shows the diffusion obtained from
Eq. (12) for k = 0. The power spectra in Fig. 2(b) is used where the values at a particular
action J is obtained from measuring the frequency of the peaks in the power spectra of
the sample particle motion (Fig. 2(a)). Reasonable agreement between the §f computation
and this analytic expression is found. If we used naive approximations for the correlation
function such as the Lorentzian, we were unable to reproduce the exponential J dependence
of D(J) for J > 0.5.

In summary, through our extensive computation and theory we have discovered that the
diffusion obtained from the self-consistent §f code is several orders of magnitude higher than
that of the prediction from conventional tracking codes. The essence of the culprit of this en-
hanced diffusion is captured by the variation of the second moment of the beams (2?) which

is the result of beam-beam interaction induced collective variations of the beam distribution.

This work was supported by the U.S. Department of Energy, Texas National Research
Lab. Commission, and SSCL.
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Figure Captions

1. D(J) from (a) our §f code and conventional tracking code, (b) tracking code particles
with variations in (22?) input from the 6f, and (c) tracking code particles with (22)
input using a band of frequencies around 2(vy — Av) for M = 10° rotations. D; and
D, have time scales of AN; = 1000 and AN, = 10000 rotations respectively. (d) The
diffusion D(J) from §f and our analytic theory.

2. After M = 105 rotations (a) part of the frequency spectra of sample particles from the
tracking code initially at J = 1,2, 3, and 4 and (b) of o, from the §f simulation where

the arrows indicate the range of frequencies with and without the tune shift.
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