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This work describes a study of plasmas with highly intermittent filamentary
structures. A statistical model of two-dimensional magnetohydrodynamics is
presented, based on a representation of the fluid.as a collection of discrete
current-vorticity concentrations. This approach is modeled after discrete vor-
tex models of hydrodynamical turbulence, which cannot be expected in general
to produce results identical to a theory based on a Fourier decomposition of
the fields. In a highly intermittent plasma, the induction force is small com-
pared to the convective motion, and when this force is neglected, the plasma
vortex system is described by a Hamiltonian. Canonical and micro-canonical
statistical calculations show that both the vorticity and the current may exhibit
large-scale structure, and the expected states revert to known hydrodynami-
cal states as the magnetic field vanishes. These results differ from previous
Fourier-based statistical theories, but it is found that when the filament cal-
culation is expanded to include the inductive force, the results approach the
Fourier equilibria in the low-temperature limit, and the previous Hamiltonian
plasma vortex results in the high-temperature limit. Numerical simulations of
a large number of filaments are carried out and support the theory. A three-

dimensional vortex model is outlined as well, which is also Hamiltonian when
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the inductive force is negleéted. A statistical calculation in the canonical en-
semble and numerical simulations show that a non-zero large-scale magnetic
field is statistically favored, and that the preferred shape of this field is a long,

thin tube of fux.

In a tokamak, a stochastic magnetic field will give rise to strongly fila-
mented current distributions. An external magnetic field possesses field lines
described by a non-linear map, while current fluctuations along these field lines
have a toroidal dependence which takes the same form as the time dependence
of a system of hydrodynamical vortices. Magnetic surfaces of a tokamak inte-
rior in steady state are given by the asymptotic limit of the behavior of the
current filaments. Numerical simulations combining the effects of the internal
and external fields show that ideal magnetic surfaces are always disrupted by
current fluctuations along the field lines, and measures the dependence of the

diffusion on external field strength and current fluctuation magnitude.
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Chapter 1

Introduction

General plasma dynamics are so complex, and the equations that describe them
so intractable that physicists have had great difficulty determining plasma
behavior in any degree of generality. While waiting for mathematical tech-
niques for handling non-linear partial differential equations to be developed,
the physics community has meanwhile had to rely heavily on its collective in-

genuity to wrest information from their models.

Before the age of the calculating machine, much effort was expended on
a linearized version of the magnetohydrodynamical (MHD) equations, simply
because the assumption rendered the equation soluble in special cases. Even-
tually, however, the inherent importance of the non-linearity of the plasma
equations became clear, and with the convenient introduction of machines ca-
pable of calculation significantly quicker than the average human, non-linear

problems have begun to become tractable.

As an alternative to what has been the traditional approach of describ-
ing a plasma as a collection of potential “instabilities” which may be stable or
unstable under certain conditions, and in the face of our inability to solve non-
linear partial differential equations analytically, some investigators are looking
for probabilistic descriptions of plasmas to shed light on what is happening
in these gases. This leads us natﬁrally into the field of statistical mechan-

ics. Mathematically, the formalism of statistical mechanics is applicable to




any system described by a phase space in which the volume is conserved by
the system’s evolution. Because fundamentally, a fluid is just a whole lot of
molecules, one may naively expect a fluid’s equilibrium states to conform to
the bland Gaussian of true thermodynamic equilibrium. Certainly, if one is
sufficiently patient, and in the absence of external influences, any fluid must
eventually reach such an equilibrium, but how long must one wait, and what
is transpiring meanwhile? The time required for the N bodies to reach their
ultimate distribution may be agonizingly long, and they may find some long-
lived states in the interim. If the time- and length-scales of a fluid are such
that a continuous description is more apt than an N-molecule model, then any
statistical analysis should be based on the fluid equations, which will produce

states quite different from a particle model.

Because a fluid is a continuous system, very different mathematical tools
must be employed in performing the ensemble averages that define statistical
mechanics. Tools, in fact, which at the moment barely exist [1]. To perform
statistical mechanics as we know it on a fluid system, one must first make
some discretization that will approach the continuous system in some limit,
and take on faith that the final results will be applicable as well. A point of
great subtlety is that discrete representations of continuous objects are in no
sense unique, and results obtained via one representation may be quite different

from those obtained through another discretization [2].

Two discrete representations which have been shown to be effective in
modeling hydrodynamical turbulence in two dimensions are a Fourier-mode
representation and a discrete-vortex representation. The two approaches do
not yield identical results, but bot]:1 display interesting thermodynamical fea-
tures in that the temperature is allowed to be negative (in two dimensions),
permitting the system to exhibit self-organizational tendencies. The matter of
the difference in results between the two approaches should not be cause to

panic into thinking one approach is wrong, but the question of which model




is a fairer representation of reality, and under what conditions, is legitimate.
The discrete-vortex model is appealing in that it is a Hamiltonian system, for
which great number of mathematical tools are available, but the question of
which model more accurately represents a real fluid, like the choice of basing
statistics on the fluid equations rather than particle equations, may ultimately

be only phenomenologically resolvable.

There is a well-known tendency for a fluid to form very intermittent
structures when dissipation is small. In addition to casual observations of
naturally-occurring vortices in day-to-day life, experimental observations of
thin films of superfiuid Helium [3] have been rich in vortex structure. Very
high-resolution spectral-based numerical simulations of high Reynolds-number
[4, 5] fluids have consistently shown a tendency towards intermittency, specif-
ically a formation of a.xisymmetricxsharply peaked vortex filaments which are
quite persistent in time. While such structures can clearly be represented by
Fourier modes, the phase correlations represented by the intermittency are very
difficult to treat in a statistical theory. Present statistical theories based on
Fourier representation are unable to predict the formation of these filaments,
the presence of which has significant effects on dynamical quantities such as

cascade rates [6].

The case for intermittent structures in plasmas is equally strong, if not
stronger. Pouquet, in an analysis of two-dimensional MHD using a closure
method [7], showed that a cascade of current to small wavelengths is to be
expected, with singularities formed within a finite time from smooth initial
conditions. Since strongly intermittent magnetic were first observed in the
solar atmosphere [8], much evidence of intermittent, filamentary plasma struc-
tures has been found in many astrophysical plasmas [9, 10, 11]. Laboratory
plasmas have also displayed key features indicating intermittency [12], as have
numerical simulations. Two-dimensional spectral fluid simulations at increas-

ingly high resolution [13, 14, 15] have shown strongly peaked structures in both




current and vorticity. Our own simulations indicate this as well. Figure 1.1
shows results from a simulation of the coalescence instability [16] with a three-
dimensional magneto-inductive particle code [17]. The contours show surfaces
of constant axial current. An explosive collapse breaks the pair of current

columns into many smaller columns.

The purpose of this work is to describe a turbulent MHD model that
has singular structures as its fundamental objects. Chapter 2 contains a review
of work done previously for two-dimensional neutral fluid turbulence, in both
the Fourier and point vortex discretizations. Chapter 3 studies filamentary
currents in a steady-state tokamak, using statistical arguments and numerical
simulations to obtain information on the interior magnetic surfaces. Chapter 4
introduces a general formalism for fitting MHD into a discrete vortex formalism
in two dimensions, and chapter 5 de‘scribes computer simulations of such vortex
systems. Chapter 6 extends the MHD vortex model to three dimensions, with
accompanying analysis and simulation results, and chapter 7 gives an overview

of the results and their implications.
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Figure 1.1: Current columns from a 3-dimensional particle simulation of the
coalescence instability. Two columns with parallel currents are attracted, meet
explosively, and break up into many smaller currents in (b).




Chapfer 2

Self-Organization and Structures in Neutral
Fluids |

Given the unpredictable, chaotic behavior of fluids at high Reynolds numbers,
a statistical approach to describing turbulence seems very natural. Beginning
with Onsager’s 1949 paper [18], authors have found no shortage of interesting
statistical properties of turbulent neutral fluids, especially in two dimensions.
A simple first approach of taking a Gibbs ensemble based on the kinetic en-
ergy of the system leads to a simple result: the energy is partitioned equally
among Fourier modes. No structure is present, no phase transitions. How-
ever, a proper construction of a Gibbs canonical ensemble must take account
of all additive invariants of a system, and there is another for two-dimensional
hydrodynamics: the enstrophy, or mean squared vorticity, which completely
changes the character of the Fourier analysis results. Reviews are available in
the literature [19, 20]. This chapter gives an outline of the results of decades
of investigation into two-dimensional turbulence as it relates to the present

parallel attempts for magnetohydrodynamics.

2.1 Basic Hydrodynamical Equations

Throughout this dissertation, the velocity field will be assumed to incompress-

ible, and the effects of viscocity will be neglected. The fluid motion is described




by the Navier-Stokes equation,
0w +v-Vu+Vp/p=0, (2.1)

with

V.v=0. (2.2)
These two equations (actually four) are to be solved for the vector velocity field
v(®,t) and the pressure field p(,t). If the mass density p(#,t) is not constant,
an equation of state must also be specified. We will take p to be a constant,
and furthermore, choose units in which p = L. For convenience we define the
vorticity w = V xwv and separate equations for v and p by taking the curl and

the divergence of eq. (2.1), giving

Biw + W x (vxw) =0 | (2.3)
and .

Vip+ V-(v-Vv) =0. (2.4)

Since most of the interesting information of the system is contained in the
velocity field, we concentrate on solving eq. (2.3), knowing that the pressure is

obtainable from (2.4) once (2.3) has been solved.

The Navier-Stokes equation has a number of dynamic invariants. If one
chooses a closed loop which moves with the fluid, then the integral around
any such loop §v-dl is a constant. These invariants do not survive when
the continuous system is truncated into a discrete form. Invariants which do

survive are the linear invariants of total momentum and vorticity:

/vda: = const.

/wdw = const., (2.5)




which serve only to locate the origin of phase space, and the quadratic invariants
of total energy and helicity:

1
—2-/v2dzc = const.

/’u-w = const., (2.6)
which are the critical invariants for determining statistical behavior.
In two dimensions, v, = 0, w = w2, and we define the stream function
¥ such that v = V x 2¥. The vorticity field solves

Ow +v-Vw = 0. (2.7)

The helicity is identically zero in two dimensions, but taking its place as a

quadratic invariant is the enstrophy,

Q= /w"-dm. (2.8)

2.2 Harmonic Analysis

In order to legitimize the use of statistical mechanics, a system must be shown
to have a conservative flow in phase space; it must obey Liousville’s theorem.
Given a system which is described by a set of coordinates {g;}, with a prob-
ability distribution function f(gi(¢),...), the total phase volume occupied by

the system is [ f[]; d¢; In order for this to be conserved, we must have

0q;

0 CRY o RTINS

Liousville’s theorem,

0¢;
=0 2.10

i

is necessary and sufficient for phase volume conservation. A detailed Liousville’s
theorem results if the equality holds when the sum runs over some subset of

the 1’s (or even for each individual g;).




A statistical analysis of a continuous fluid based on the harmonic func-
tions of the field variables is made possible on the basis of the existence of
a detailed Liousville theorem, which was first proved for hydrodynamics by
Lee [21]. The simpler proof given here is due to Kraichnan [22], who is also
responsible for most of the early work in this area [23, 24]. If we introduce

orthonormal eigenfunctions of the Laplacian operator,

Vi¢n(®) + kadn(z) = 0, (2.11)

and write
w(@,t) = Y wn(t)dn(x) (2.12)

T

with
wa(t) = /w(m,t)g{)n(m). (2.13)

Then the coefficients w, evolve according to
(l)n = z Anlmwlwm (214)
Im
where the A’s are constant coeflicients given by

A-nlm = f ¢n5ijai¢laj¢m

Anlm = —Anml (215) .

The enstrophy is given by

Q=) wl, (2.16)

n

while the energy is
E= Z k2wl (2.17)

The conservation of these quantities implies that

Z Anpimwpwiw, = 0

nlm

>k Apimwnwiws, = 0 (2.18)

nlm




for all possible flows at all times. This can only be true if

Anlm + Alnm + Amln =0
kTZZAnlm + kl_zAlnm + k;,,zAmln = 0) (219)

from which we may deduce

Annn = Anmn = Annm = Amnn = 07 (2'20)
and
dw,, :
B, = 0. (2.21)

Eq. (2.21) is our detailed Liousville’s theorem. That the relation (2.21) holds
for each mode individually is important, for it allows one to truncate the system
after a finite number of modes and still enjoy a conservative flow in phase space.

The coefficients w,, are the phase-space coordinates used to describe the state

10

of the turbulent system. In a periodic box, the eigenfunctions ¢, are simply

e’ and the eigenvalues are the wavenumbers.

In a periodic box, there is a minimum wavenumber kpyy, but there must
be a maximum wavenumber in order to avoid an ultraviolet divergence in the
000 - Lt . 2 2 2
partition function. Restricting therefore the wavenumbers to k2, < k* < kZ,.,

and taking the w,’s as phase variables, the partition function is

Z= /exp(—/o’E — af2) [] dwn. (2.22)

The inverse temperatures 3, and « are determined uniquely by the mean energy

and enstrophy along with the minimum and maximum wave numbers. Using
(2.22), the expected mode distributions are:
k2

(2 =57 Fry (2.23)

First, note the importance of including Q as an invariant. Without it (a = 0),

the enérgy is partitioned equally between the modes, f§ is necessarily positive,

and there is no structure in the statistical state.




The addition of the invariant Q allows for a varied structure in the
expected state. The temperatures o and B may be either positive or negative,

although the non-negativity of (w?) gives the restrictions

B+ 2akk, >0 ifa>0
B+2ak2,, >0 if a<0. (2.24)

There are three regimes for the temperatures. One in which both a and 3 are
positive, and two regimes in which either o or § is positive and the other is
negative. Typical expected spectra for the three regimes are shown in figure
2.1. When a > 0 and 8 < 0, kg, is exaggerated above the other modes,
organizing the vorticity into large-scale structures. When o > 0 and § > 0,

the knin mode is suppressed. With kn.x fixed, as o shrinks in magnitude, the

expected energy rises, and the B > 0 spectrum begins to grow o k%, until o

drops below 0, and the kmax mode is exaggerated. Practically, though, kwin is
restricted by the size of the periodic system, whereas kmax is an arbitrary limit
and may be taken as large as desired for any given system. Consequently, knax
the a < 0 states are difficult to obtain due to the limitations of eq. (2.24), and

are not expected to appear in real systems.

2.3 Point-Vortex Representation

Another possible representation of a general turbulent fluid is as a system
of point vortices. The total velocity field is expressed simply as a sum of
divergence-free fields from individual vortex filaments. A single vortex filament

with a strength a produces a velocity field at » of

Y ©
.= —a’ = aZ. 2.25
v a- vy = (2.25)

In other words, the vorticity field is a sum of delta functions

w(e,t) = Z a;6(z — ;(t)). (2.26)

11
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The scalar potential, ¥, is given by
(x,t) = Z o;G(z|®;), (2.27)
where G is a Green’s function that satisfies
ViG(z|x') = 8(= — ). (2.28)
The total kinetic energy is
1
= 520@‘1’( ZoczozJ (;];), (2.29)

which includes a self-energy from each filament. When the boundaries are
rigid walls, a filament’s self-energy depends on its proximity to the boundary,
but with free or periodic boundary conditions, each filament has a constant
self-energy, so the total energy majy be replaced by the interaction energy, in
which the summation includes onlsr terms with ¢ # 7. This is one manifest
difference between the vortex and Fourier discretizations. The self-energies of
any intermittent structures in a Fourier representation are not subtracted from

the energy that appears in the Boltzmann distribution.

Each filament simply moves with the total velocity field at its location.

It is easy to see that the equations of motion for the filaments can be written

de; OFE dy; OF
aiﬁ = —(—9‘3; Q; dt 0z’ (2'30)

from which it is plain that the interaction energy F is a Hamiltonian for the
system. The canonical coordinates are none other than the Cartesian coor-
dinates of the filaments themselves. The detailed Liousville theorem follows

directly from the existence of a Hamiltonian.

When Onsager first proposed the idea of a statistical treatment of fluid
turbulence, based on a representation in terms of discrete vortices, he was

motivated simply by their observed prevalence in experimental (and indeed
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everyday) fluids. He made some very simple arguments that extracted intu-
itively and qualitatively many of the results which would follow later from
more detailed mathematical treatments. His argument was that in a fluid with
a boundary, or a fluid in a periodic box, the system’s phase space is simply the
volume of the fluid and hence is finite. The structure function, ®(E), the vol-
ume of phase space with energy F, is positive everywhere, but must approach
0 as E — “+oo. Therefore, ® must have a maximum at some finite E,. The
temperature @ /@’ must then be negative for £ > E,,. A negative temperature
means that as the system energy increases, the entropy decreases. A large pos-
itive energy is created when filaments of like sign come close together. Raising
the energy while decreasing entropy is accomplished by creating large clusters
of like-signed filaments, while the other extreme, large negative energies, are
accompanied by an increase in entropy, and so are manifested by large numbers

of tightly-bound positive-negative vortex filament pairs.

First descriptions of systems of vortex filaments were characterized by
the invocation of a “random-phase approximation,” [25, 26, 27] in which a
change of variables was made from the coordinates of the filaments, ®; to the

density modes
p(k) =) ;e (2.31)

The idea is that if the particles are distributed randomly, then these modes
are simply a sum of random phases. The central limit theorem applies, and
the distribution of these modes (which is the Jacobian of the transformation)

is simply a Gaussian
J oc eI/, (2.32)

The interaction energy can be expressed as

H =Y ojo;G(eilms) = > k7%|o(k)|* + Eo (2.33)
i<j k0
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The constant Ey may be disregarded for some purposes, but must be carefully
evaluated in order to produce a proper thermodynamic limit because of its
unusual scaling with the system size. For a system of IV filaments of strength

o, and N with —a, Seyler [28] showed the constant to be

Ey= —2.62Na’* + No’In V. (2.34)

Edwards and Taylor [27] used the micro-canonical ensemble, and eval-

uated the structure function,
$ = / §(H{w} — B)]] das, (2.35)

under the random-phase approximation, using the p,’s as variables, reducing
eq. (2.35) to a single-dimensional integral which they evaluated by approximate
techniques. The central result was that when the energy climbs above a certain
value, the temperature becomes negative, and the amplitude of the lowest
wavenumber component of the vorticity begins to climb relative to the rest of
the modes. Thus, negative-temperature states are represented by large-scale

filament clumping.

A second approach, following initial efforts by Joyce and Montgomery
[29], sought a differential equation which was solved by the vorticity in the
most probable state. The volume is divided into cells with area A;, and one
defines occupation numbers n; in each cell for each of the two types of filaments:
positive and negative. The value of the vorticity at cell ¢, w;, is just nf —n;.
Entropy, the logarithm of the probability of obtaining a given set of occupation
numbers {ni} is

i 2.36
. (236)

+
n; n

o= nfln A +n; In

The idea of this approach is to maximize the entropy subject to certain con-
straints. One constraint is that the Hamiltonian remain constant. The Hamil-

tonian may be expressed in terms of the Green’s function matrix Gi; between
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two cells ¢z and 7,

o= Z[n"'n +nin; — niny — ny n}|Gij. (2.37)

We introduce a Lagrange multiplier (inverse temperature) for each constraint.
For example, if we wish to keep the total number of (positive and negative)
filaments constant, we use the multiplier § for the Hamiltonian, and « for
the total number of filaments, and maximize o + SH + aN under individual
variations of the ni*’s. The requirement that the entropy be stationary leads

to the relations

lnnt +BY Gy(nt —n7)+a=0
i

Inn~ —ﬂz Gij(nt —n7)+a=0. (2.38)

Tn the limit of small cell size, these occupation numbers revert to the continuous

fields, and eq. (2.38) leads to
V30 = —C%sinh 7. (2.39)

where C is a constant that is determined by the total number of filaments, and
f follows from the Hamiltonian. This result was re-derived by more sophisti-
cated methods from a canonical ensemble [30] as well as for the microcanonical
ensemble [31, 32]. The solutions to (2.39) were also calculated in detail in [33].
When N+ # N the solutions are unique, given B. They characteristically
show a smooth stream function with a single minimum or maximum in the
center of the box. When Nt = N, there are several branches of solutions,
with different values of the temperature for a specified energy. One branch
gives a solution similar to the non-neutral case, while other branches give so-
lutions that divide the domain into regions which contain vorticity of one sign
or another. A typical high-entropy solution is one which fills the box with a

large extended vortex of each sign.
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These two methods were shown to be equivalent by Lundgren and
Pointin [33], who showed that there were two possible asymptotic scalings of
the energy with N. The random-phase approximation was appropriate in the
“low-energy” limit, in which the energy scaled as V. In the “high-energy” limit,
the energy scales as N?, and the vorticity modes can be shown to have non-
Gaussian distributions, such that (2.32) is no longer appropriate. They showed
that in this limit, with a properly chosen Jacobian, evaluation of the probability

density leads to the same results as the entropy-maximizing approach.

2.4 Simulations of Two-Dimensional Turbulence

Recently, experimenters have begun to run laboratory tests of the guiding-
center plasma theories [34], but because of the difficulty of realizing two-
dimensional systems in a laboratory, the primary test of two-dimensional the-
ories has remained the computer siinulation. Early numerical tests of Kraich-
nan’s Fourier-mode theory [35] consisted of runs on a grid of roughly 16 x 16
modes. Initial conditions in which the energy was concentrated into a small
number of modes evolved into states with spectra that agreed well with Kraich-
nan’s theory in all three regimes. Other simulations [36, 37] established the
mixing properties of the system, and that canonical and micro-canonical en-
semble averages yielded nearly the same results. In the negative temperature
regime, large-scale vortices were clearly visible from streamline plots of the final

states, as predicted by both Fourier and vortex theories.

At the same time, other authors were conducting direct simulations
of discrete vortex systems to compare with the vortex theories [29, 30, 27].
Comparison with the theory was mot so quantitative as with the truncated
Fourier runs, but large-scale clustering of filaments was also clearly observed at
energies above the threshold value for negative temperatures. Vortex methods

of fluid simulation have continued to be used and developed [57], and are now
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being proposed as appropriate models for viscid fluids [43].

Simulations have also been z;ble to provide answers to dynamical ques-
tions of spectral transfer and relaxation. As computational capacity increased,
simulation grids increased in resolution, to the point that Reynolds numbers
10* were able to be simulated on a grid that was sufficiently smaller than the
diffusion length scale [4, 38, 39]. McWilliams [4, 40] found that under a broad
range of initial conditions, the flow evolved so as to concentrate the vorticity
into compact axisymmetric structures, which quickly became the dominant fea-
tures of the flow. Close encounters between like-signed vortices, which became
rarer as the system evolved, would result in the two vortices merging into a sin-
gle vortex. These vortices have a marked effect on the rates of spectral transfer
[6]. The classic Kolmogorov scaling theory of turbulent cascade [41, 42] has
as its basis the assumption that phases of different Fourier modes are random
‘and uncorrelated, and that the most important information is contained in the
energy spectrum. Flows in which coherent structures dominate clearly violate
this assumption, and will require a completely new formalism to describe them,

perhaps in terms of a vortex scaling theory [43].

The work of McWilliams was extended and carried out to very long times
recently [44]. These runs were carried out to the point at which all vortices of
like sign had merged together into just two vortices, one of each sign. What
was most remarkable was that the final state was almost perfectly described by
a negative @ solution of the sinh-Poisson equation, eq. (2.39). The tendency of
the fluid to form coherent vortices was so strong that even a spectral simulation
code evolved to a state seemingly better described by a discrete vortex model

than by a truncated Fourier model.
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Chapter 3

Current Filaments in a Tokamak

A two-dimensional system of charged rods that move with the E x B force in
a uniform background vertical magnetic field has identical equations of motion
to the system of hydrodynamical vortices discussed in the last chapter. For
this reason, many of the work on two-dimensional vortices was presented as a
theory of a guiding-center plasma. Our interest is to show that this formalism
can be applied to more general plasmas as well. The first step is to present a
model for a steady-state two-dimensional plasma. Here, it is current filaments

within the plasma which form a Hamiltonian system.

The tokamak, as a toroidal plasma containment device, does exhibit evi-
dence of possessing a natural current profile, just as in other devices, such as the
reversed field pinch (RFP). This is in spite of the fact that, unlike some fusion
devices, the tokamak cannot be said to undergo relaxation. Relaxed profiles
for such experiments as RFP’s can be obtained by assuming that the plasma
is in or undergoes a period of strong turbulence, during which the magnetic
field memory is destroyed and energy is dissipated subject to the constraint
that the global magnetic helicity remains constant [45]. Thus, a variational
principle can predict the relaxed state of the plasma by minimizing the mag-
netic energy while helicity remains constant. There have also been variational
treatments in which complete relaxation of the plasma is not assumed to take

place, and the helicity density is conserved [46].
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In a tokamak the physical justification for such a method is absent,
because such strong turbulence does not occur during the device’s normal op-
eration, though such variational calculations have been carried out for the toka-
mak, and do lead to plausible profiles [47, 48, 49]. Taylor [51] has proposed
a physical model of the tokamak interior which can lead to the same current
profiles, but without relying on an ad hoc variational principle. In this model,
which owes much to the “clump” picture of magnetohydrodynamic (MHD) tur-
bulence put forth by Tetreault [52], the tokamak interior is characterized by
filamented currents running along stochastic magnetic field lines. The field-line
trajectories are determined self-consistently by the self-interactions of the cur-
rent filaments. This chapter focuses on integrating the current self-interaction

together with the external field’s action.

3.1 Taylor’s Tokamak Interior Model

The fundamental assumption of this model is that the magnetic field is to some
degree stochastic. Even though the ideal MHD equations allow for perfect flux
surfaces from which a given field line will never deviate, we assert that small-
scale turbulent effects neglected in those equations will always cause a field
line to wander from any surface. The plasma interior is considered to be filled
with ergodic field lines that wander throughout the torus and never close on

themselves. Current in the plasma flows along the magnetic field lines.

One may find the toroidal (z) projection of the magnetic field by se-
lecting a set of field lines (each of which carries a current) at a particular
cross-section in the plasma, and tracing their progression through an infinite
number of revolutions around the torus. Note that because field lines do not
close on themselves individual field line positions are not periodic functions of
z. At the same time, there may be a periodic (possibly uniform) environment

set up by the external coils which influences the motion of the filaments. Even
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though the overall flux function is periodic, this does not necessarily translate
into periodic behavior for each field line, as the total flux is obtained in the limit
z — oo. Taylor considered only the flux from the internal current filaments,

and we will add the effects of an external field in the next section.

In a slow-moving or equilibrium plasma in a tokamak, we consider the

combined internal and external toroidal and poloidal magnetic fields to take
the form
B =By(2+2xV¥), (3.1)
where the poloidal field is related to the toroidal current by
J=J:=VxB=(V0)z, (3.2)
and the current and magnetic field satisfy

Vx(IxB)=0. (3.3)

Eq (3.3) can be written as

oJ
5; + [\Pﬂj] - 0.7 (3'4)

where [---] indicates the usual Poisson bracket in the poloidal coordinates.
From (3.4) it is plain that with z acting as a time-like variable, ¥ acts as a
Hamiltonian describing the evolution of the toroidal current. We represent the

current as a collection of filaments of strength «;:
J(r,z) = Z r:b(r — r;(2)). . (3.5)

The filaments’ positions evolve according the Hamiltonian equations

dri R aI{(Tl,...,TN;Z)
=zX

7 dz a’l’i y (36)

where /k;@; is conjugate to /;y;, and the part of the Hamiltonian is played
by the flux function ¥, which will in general have contributions both from the

current filaments and from an external field.
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This discretization may be looked upon as a representation of the na-
ture of flux found in a real tokamak, but may more generally be considered
as a mathematical procedure in which the number of degrees of freedom rep-
resenting the current field is reduced from the continuum infinity of a field
variable to the discrete infinity of a set of filament positions, which may even
be represented by a large but finite number of filaments in order to be han-
dled computationally. This most-probable state method was applied to general
two-dimensional MHD systems by Montgomery, Turner, and Vahala [53], and
later extended by Ambrosiano and Vahala [54] to parameter regimes relevant

to both tokamak and RFP devices with good results.

The essential point is the realization that because our system is governed
by a Hamiltonian set of equations, conventional statistical mechanics can be
used to find reasonable (and physically justifiable) current profiles. The ran-
domization necessary to perform statistical mechanics comes not from strong
turbulence in the fluid, which would not be compatible with typical tokamak
operations, but from the stochasticity of the magnetic field. Assuming all fila-
ments have equal strength x, one may define a statistical distribution function
of filament positions p(7y,...,7n), and calculate the expected current profile
J(r) = & (p(r)). A calculation for the most probable state, like that which lead
to the “sinh-Poisson” equation 2.39, gives an equation for the most probable

current profile,
J(r) = Ke#¥(T) (3.7)
which, together with the equilibrium equation (3.2), gives the profile

Jo
(1+ ar?/a?)?’ (3:8)

This profile is hardly new, having been derived by variational methods [47, 48,

J =

49], and from Vlasov theory as early as 1934 [50], but the ideas used in arriving
at it are different from these previous derivations. The current profile is as-

sumed to be the z — oo limit of the distribution of a collection of z-dependent
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current filaments that run along stochastic field lines. This limit is obtained
from the ensemble-average of a statistical collection of such filaments, which
obey Hamilton’s equations. Even tilough the system is steady-state and hence
time-independent, the equations we are solving are dynamical rather than vari-
ational in nature. The techniques are the same as used in Ref. [53] and [54],
except that our filaments are associated with physical currents (rather than
conceptual discretizations of a continuous field), and the invariant “Hamilto-
nian” arises naturally out of the MHD equations rather than being one of a

number of freely-chosen possible invariants.

3.2 Interior Model with External Applied Field

In the previous section, the flux ¥ arose entirely from the field of the current
filaments. Now we wish to add the effects of a field from the external coils of the
tokamak. This external field will provide a periodic background in which the
interior current filaments interact. The structure of the total field is determined
by the action of these interacting filaments on top of the basic structure of the

imposed field. We assume the following form for the flux-function Hamiltonian:
H=0=> 5[Teu(r:) + Tine(rs)], (3.9)

where we write

Tine(7:) = Y 6;G(7i|r;), (3.10)

j<i

the appropriate flux for a system of parallel currents in two dimensions. G is
the Green’s function of Poisson’s equation appropriate for the chosen boundary
conditions (in a boundaryless domain, G(r;|r;) = In|r; — r;|). For our numer-
ical simulations, we choose boundary conditions periodic in z and y. Wiy
represents the mutual interaction of the current-carrying filaments; its Lapla-

cian is the sum of delta functions in eq. (3.5). The first term of (3.9), Vex, is
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the external field, and has Laplacian equal to zero. ¥y takes the general form

Ueri(r) = To(r) + Z Umn(r)ei(me‘”"b), (3.11)

in which ¢ = z/R.

Although the analysis in the last section dealt with global profiles, we
investigate here only local filament dynamics in the vicinity of a rational surface

of the external field, i.e. we restrict Tey to a single helical mode such that

_ | Uy = constant m = £me,n = kno |
U = { 0 otherwise ’ (3.12)

and expand ¥, to second order around ro (where a(re) = mo/mo)-

To emphasize the dynamical nature of our equations, we express the
filament coordinates as functions of ¢ (defined below) rather than z. We point
out again that the filament positions need not be periodic functions of t, but
that the external field is periodic in ¢. The equations (3.6) and (3.11) lead to

equations of motion for the current flaments as follows:

With ¢ = £, the field line is described by
dr B, dd _ By

?d_gg — _B_O , E{g = Be (3.13)
Define
_ Wt _ Bor®
¢=—2  I=m, (3.14)

as normalized external poloidal and toroidal flux. Wey is the external flux of
section 3.2, and L is an arbitrary quantity with dimensions of length. The co-
ordinates I and § obey Hamiltonian’s equations with ¢ as the time coordinate:
a_ov o _ o
dp — 90 ' d¢ 8l

Let us change coordinates from (I,8) to (p,7) by way of a canonical transfor-

(3.15)

mation with the generating function

F(p,0;6) = p(mof — nod) + Iob. (3.16)
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Our new coordinates are determined by the equations

oF

I= ¥Tl = mop + Io
o
n= £ = mof — no, (3.17)
while the “Hamiltonian” transforms like
oF
By = Bopg + —. 3.18
b Dota + 94 (3.18)
The general form for &g is
Da = Bo(r) + Z U,,m(r)ei(mo""qs). (3.19)

In order that this represent the field from an external current source, the Lapla-
cian of this flux must be zero. Therefore, ®o must be alogarithm, and the Unn’s
are modified Bessel functions. We choose modified Bessel functions of the first
kind Upn(r) = Ugln(nr/R), and lock at a local region around I = Iy by ex-
panding ®, to second order and letting Upnn = Uoln(nro/R). The transformed

flux, @ pew, looks like

1
@new ~ q:)O(IO) + mopq}é)(fo) + E(mop)z(:f’g(Io)

+ Z U, e ™19 _ nop. (3.20)

If we now choose Iy such that

(L) = 2, (3.21)

Mo
in other words, look at the region where the local ¢ = mq/n0, then

@ncw ~ q)O(IO) + %(mﬂp)zq}g(lo) + Z Umnei(%n_(n—m&onﬂ)d’)' (322)

m,n

Now let us restrict the flux to a single helical mode such that m =

+mg,n = £ny (but both having the same sign). In this case, we have

1
Prew ~ @O(IO) + E(mop)zq)g(IO)UO cos 1, (323)

25




absorbing all constant factors into Up. In our helical coordinates, the field-line

moves in a way which is not explicitly ¢-dependent. The field-line equations

K

become

dn a(I)new "

= 0, g (Lo)mop

dP a(I)m:w .

—_—= = = 2

i3 o Up sin7, (3.24)
and with the definition

U= 27r<I>{)’(Io)(T—Z£)2U0, (3.25)

0

we obtain the equations of motion for the field lines:

dz;

Tl U sin(2my;)

v o*(yi — y;)
i 2T (m — ) + (3 — y5)*

d’yi
= {Bi

dt :

Kj T — T
+ Lt - (3.26)
2o (e — wiP
with
T = ;::0 (r* —rg)  a rescaled radial coordinate,
0
§ —
Y= M a helical angular coordinate,
™
= 0% the time-like toroidal coordinate,
2w K
2w dln !ll . .
and o= ——Tq— proportional to the magnetic shear.
Mo nr

o
In the absence of internal current, field lines from the external field move ac-
cording to the first terms in the right-hand side of eq. (3.26). When field lines
are allowed to carry currents of individual strengths x;, an additional interac-
tion force must be taken into account, which is represented by the second terms

in the right-hand side of (3.26).
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3.3 The Standard Map

The portion of the filament motion due to the externally applied current in
eq. (3.26) (that is, the first terms of the right-hand side) can be represented in
its finite-difference form by the “standard map,” a well-known non-linear map
which has been studied both for its own interest and as a model for various
physical systems (See, e.g. Ref. [55] and [56]). The toroidal projection of
the unperturbed (x; = 0) external magnetic field lines is given by successive

iterations of this map, defined by:

Yn+l = Yn + T,
Top1 = o+ Usin(2mynis) (3.27)

The map is characterized by stable orbits surrounded by stochastic re-
gions, the areas of which increase with the parameter U. For a critical value of
U near 0.1546, the stochastic regions of adjacent orbits overlap, and trajecto-
ries diffuse throughout the region without limit. For U < Uey: trajectories stay
confined within one particular orbit. Thus, a weak external field will produce
magnetic surfaces that are distinct and separate, with individual field lines

confined to roughly concentric tori. Under a stronger applied field, surfaces

will overlap and the volume will approach one large stochastic region, with a

single field line wandering ergodically throughout the region. Figure 3.1 shows

stochastic regions for U < Ugyy and U > Uge-

Another feature of the standard map are the “accelerator modes” [56].
These modes are present only for particular values of U > Ugyt such that when
U takes on one of these (near-integral) values, there exist particular regions
of phase space in which a trajectory may become greatly accelerated in z.
The displacement of trajectories in this region grows faster than linearly with
time (whereas over most of the phase space, diffusion is linear), although they
eventually diffuse out of the accelerating region altogether, to diffuse at the

normal rate. '
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+]

Figure 3.1: Phase-space i)].ot (%n,yn) for 25,000 iterations of the standard map
beginning at a point near the X-point, (0,0). Plot shows stochastic region of
the standard map for (a) U = 0.15 < Uge and (b) U = 0.20 > Uit
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3.4 Computational model

The interaction term of (3.26) also takes a well-known form. Hydrodynamical
vortices [57] and two-dimensional guiding-center plasmas [58] (in which parti-
cles move exclusively under the E x B force) both have equations of motion
identical to ours, apart from scaling factors. We simulate this system with a
two-dimensional electrostatic particle-in-cell technigue. The code accumulates
the filament density onto a grid from the filament positions. From this filament
density, it calculates the electric potential Vi, and field in Fourier space via
Poisson’s equation, eq. (3.2). The field is then interpolated back to the fila-
ments’ positions to advance them forward in time. Calculations are performed
for 1024 filaments on a 32 x 32 grid with periodic boundary conditions. On
top of the interaction motion, we impose the action of the standard map. We
let these “kicks” from the external field occur every 25 time steps. With the
filament interaction strengths set to zero, we have measured the variance of
diffusion times with U and obtained agreement with Chirikov’s calculations
[55]. These are shown in figure 3.2.

The computational grid represents the phase-space region 0 <y < 1,
—1 < z < 1, with a magnetic shear value ¢ = 2 in eq. (3.26). Filaments are
given random strengths between +« and —s with mean zero, and were initially
distributed randomly throughout 0 <y < 1, —1/2 < ¢ < 1/2. We calculate

the diffusion time by fitting the curve
1 t
— () — z;(0)]* = =—. : 2
7 D) = w00 = 7= (3.29)

For particularly slow diffusion, Tug was measured by calculating the

average time elapsed for a filament to first drift one unit in 2 from its starting

position.
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Figure 3.2: Crosses show computed diffusion time, Tag, versus the parameter
U for the standard map. The solid line is the fit calculated by Chirikov.




3.5 Results

We are interested in the “time” scale of filament “diffusion.” This determines
the degree to which the ideal magnetic surfaces from the external current are
maintained under the effects of internal current self-interaction in a tokamak
equilibrium. It is important to remember that what we measure is not actually
a diffusion time: our “time” is really the toroidal coordinate ¢. Hence the
“diffusion time” is the number of revolutions around the torus that a field line

must traverse in order to deviate significantly from its original surface.

The diffusion of field lines is characterized by three regimes. When U
is large, the stochasticity of the standard map dominates the diffusion. As

U — Ugy, the background magnetic surfaces become regular and the diffusion

is driven by the current interaction. In between is a regime wherein the diffusion

rates of the two effects are comparable. Figure 3.3 shows plots of the diffusion
vs. time in the three regimes. In the field-dominated regime, the magnetic
surfaces overlap, so the filaments wander throughout the region more or less
freely. When the rates become comiparable, a filament will spend a long time
within a particular orbit before diffusing across a boundary, so the diffusion
fluctuates around a mean linear growth. Finally, as U — 0, the closed orbits
narrow, and the fluctuations decrease in magnitude until the diffusion becomes
smooth in the current-dominated regime. Figure 3.4 shows the dependence
of diffusion time on U for different fixed values of the interaction x. From
this, one can see that the transition between the three regimes is smooth: the
fluctuations around the mean diffusion appear and disappeaﬁ: without affecting

the net diffusion rate.

Figure 3.5 shows the dependence of diffusion time on «. In the absence
of a background field, the current-dominated diffusion goes as ~ 7%, As &
grows large, the diffusion conforms to this law regardless of U. A qualitative

look at this figure reveals that this regime sets in at around In|x| ~ —4.5.
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When U > U,y the curve will flatten out as k — 0 (*’s in figure), making
diffusion independent of x and representing the field-dominated regime. Note
that this regime does not exist for U < Ugy, as the diffusion time will increase

without bound as x — 0, the rate ¢f this increase growing inversely with U.

One possible anticipated effect of filament interaction was that a fila-
ment would be jostled out of an orbit’s stochastic region and into a more tightly
bound region, thus possibly slowing the diffusive process. This was indicated
in some simulations involving only two filaments [59] but in none of our simula-
tions was this observed. Without exception, diffusion of magnetic surfaces was
enhanced by filament self- interaction. This effect may yet be observed with a
smaller number of filaments in the system, but we expect that for a realistic
model of a tokamak interior, a large number of filaments must be maintained,

and the anticipated diffusion inhibition would not appear in experiments.

The presence of accelerator modes of the standard map continued to be
observable for small values of x. Figure 3.6 shows the presence of accelerator
modes in our model. They are represented by dips in the diffusion ‘time at
U=~1.1,2.2, an& 3.2, where the présence of these modes increases the general
rate of diffusion. The effects of these modes can be seen for values of x up to

about the order of Uy, after which the effect becomes indiscernible.

We find the effect of the interaction of local current deviations to be
pronounced. When the interaction reaches a strength s ~ Uk, the accelerator
modes cease to become noticeable. The parameter regime for which the field
is stochastic ranges over all values of U, whereas for the unperturbed case,
the field is stochastic only for U > Ugy. In the “field-dominated” regime,
the stochasticity is due to the normal overlapping of magnetic islands, but
even as the magnetic surfaces become regular, the plasma becomes “current-
dominated” and the field remains stochastic due to filament interactions. The

onset of this regime is at  near 0.011 for U near the critical value 0.155.
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. The solid line represents the data from
U = 0. The o’s are from U = 0.06, the +’s from U = 0.15, and the *’s from

Figure 3.5: Log-log plot of Tus vs.
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Chapter 4

Theory of Two-Dimensional MHD Filaments

We wish to show that a point-vortex discretization like that of hydrodynamics
is also possible for more general MHD, first in two dimensions, and in chapter
6, in three dimensions. This approach has motivations that are theoretical,
observational, and computational. Briefly, we expect that a plasma description
in which intermittency is inherent is desirable for the same reasons that discrete
vortex models of hydrodynamics have been successful [19]. Because of the
demonstrated lack of general equivalence between different discretizations of
functional integrals [2], such a model may differ significantly from Fourier-based
statistical theories. Observations of plasmas in the sun [8] and in laboratories
[12] that reveal strong intermittencies, as well as numerical simulations [15]
argue in favor of a model based on jntermittent structures, and computational
algorithms can benefit similarly by the efficiency with which point-vortex codes

[57] can model high Reynolds-number fluids.

4.1 MHD Harmonic analysis

Fyfe, Joyce, and Montgomery [60] have presented a Fourier-mode-based statis-
tical theory of 2-d MHD like that of Kraichnan’s for hydrodynamics, showing
that the Fourier components‘ of the vorticity and current can be shown to obey
Louisville’s theorem as well [60]. In this case, there are three quadratic con-

stants of the motion which survive the truncation of modes k2, < k* < k2,




They are the total energy, the cross helicity, and the mean square potential,

B= 307+ BY) = 5 X el + P
P= 1vB =g el
A= R =Xl (41)

It has not been shown that other such constants do not exist. The construction

of the canonical distribution for these constants with the partition function,
Z = / exp(—aE — BP — 7 4), (4.2)

gives a predicted spectral distribution

(15F) = 5=
k 2a— 32/4a + v /k?

2

(i) = 5 (2 + oo he—s). (43)

a a-—pF?4a+y/k?
In the particular case in which (v-B) = 0, B is zero, and the spectra for v and

B are

(lwn[?) = K (4.4)

Compare these expected spectra with eq. (2.23). Regardless of the values
of the parameters for the MHD system, the kinetic energy is partitioned equally
between the modes. The w? spectrum is the same as if one had ignored the
effects of enstrophy in the derivation of (2.23). Indeed one has ignored these
effects, as enstrophy is not an invariant of MHD. Still, as the magnetic field
vanishes, the rate of change of the enstrophy slows to zero, so one would like to
have a theory in which the MHD predictions include a neutral fluid’s expected

states as a subset.
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Next, look at the behavior of the current spectrum in (4.4). The inverse
temperature o must be positive, but v can either positive or negative, subject

to the constraints

a+ ki, > 0ify >0,
a+ vk, > 0ify <0. (4.5)

Plots of (|5|?) for three values of v are shown in figure 4.1. The analogy with
the formation of large vortices in hydrodynamical turbulence is overwhelming.
The crucial parameter in determining whether magnetic islands will emerge is
the relative sign of 4 and a. In terms of physical quantities,
2 2\ X

;(m >—'§<|B| >_2Aa, (4.6)
indicating that whenever the magnetic field energy dominates the kinetic en-
ergy, the current will organize into two oppositely-signed current distributions.
Tt is with the motivation of adopting a description that recognizes the apparent
symmetry between the velocity and the magnetic fields and of a system which
reproduces neutral fluid results in the appropriate limit that we present the

point-vortex representation of magnetohydrodynamics.

4.2 Filamentary Equations of Motion

Long ago, Elsasser [61] pointed out that the basic equations of ideal MHD

ov _ Vp (VxB)xB
ot HoVy = p + drp
B
%— = Vx(vxB)
Vw= V-B =0, (4.7)

can be written in the form

% +(w-V)u=-Vnq
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Figure 4.1: Magnetic spectra of Fyfe et. al., showing large-scale magnetic
island in the negative temperature regime.
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%1;_1 +(u-V)w=-Vp
Vou=Vw=0, (4.8)
where the new variables are
u=v—{—B , w=v—B (4.9)
n = % + B2 (4.10)

Velocities are measured in units of an arbitrary constant vo, and the magnetic

field is measured in units of By = 1/4mpvd.

Let us also define functions  and A by

*=Vxu , u=VxA*
N =Vxw , w=VxAY (4.11)

We will use a general species superscript s to indicate one of either v or w, or

omit any superscript to generically indicate both possibilities.

In a neutral fluid, the vorticity is conservatively advected through the
fluid. We seek an analogous result for our Q’s. Defining the total advective

derivative operators

D*V =8,V — Vx(uxV)
DYV =8,V — Vx(wxV) (4.12)

one finds that the curl of the momentum equation becomes
DU + DY = 0, | (4.13)
while the induction equation may be written

D¥ % — D*2¥ =28, (4.14)
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in which there is a source term

S = 2Yx0¢
+[02" Vu— 2° V]
+% [V3(uxw) = (Viu)xw — ux(V?w)] . (4.15)

In two dimensions, {2 = 02 and A = A%, and most of the terms in .S vanish

identically. What remains can be written

S = Sz = [6,4%, 8:;A"] 2, (4.16)

where [- -] indicates the Poisson bracket in two dimensions. Let (1 take the

form

Q=) aif(e —a]). (4.17)
i€s
Egs. (4.13) and (4.14) are approximately solved by the motion of the filaments

if

dm? u da? — u w U

di w(mi) TR S(Wi )/n (wi)

dm';v w da;u — w w w

2L = u(ey) S = —5(er)/ne(=), (4.18)

where n° is the local number density of filaments. This solution is not a “weak”
solution of the MHD equations in the same sense that the point-vortex evolu-
tion in hydrodynamics is a solution of the Euler equations. The validity of eq.
(4.18) relies on the number density of filaments of each species being large. The
induction of current represented by the source term is manifested by a simul-

taneous increase in the strength of u-filaments and a decrease in the strength
of w-filaments.
A fair question at this point is why to bother with the Elsasser variables

at all. The MHD equations could equally well be written in terms of w and

7 with their own source terms, but there are several reasons why the Elsasser
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variables are a better choice for our purposes. The inherent .symmetry in eq.
(4.18), makes analytical study that much easier. In addition, there is real
observational evidence that plasmas often find themselves in states such that
v = £ B (in the solar wind, for example [62]), and the use of u and w gives the

source term the desirable property of being small for an intermittent plasma.

Of importance in eq. (4.14) is the fact that 5 contains no derivatives of
12, whereas D{? contains first-order derivatives of £2 in both space and time.
Thus, if we are interested in tracking the motion of filaments, and we assume
that in the vicinity of a filament, {2 is much more sharply peaked than u or

w, we may write

_ |[Vw|/[w]

€= < 1, (4.19)
Vax|/10|

and note that § is smaller by a factor ¢ than the convective terms D{2. This

amounts to saying that the filaments should change strength only slowly com-
pared to their convective motion. The benefit of choosing the Elsasser variables
is that a filament of simply current or vorticity alone will not last long, but if
current and vorticity filaments are correlated so as to form w or w filaments,

these structures will persist due to the relative smallness of S.

This is our filamentary repfesenta’cion of 2-d MHD. Unlike hydrody-
narmics, in which the vorticity field is exactly convected by the velocity field,
so that each filament simply moves in the total velocity field, the filaments
of a highly intermittent two-dimensional plasma fall into two species. The u-
filaments move in the field of the w’s, and the w-filaments move in the field of

the u’s.

4.3 Fixed-Strength Filaments

This section deals with the statistics of u-w filaments for which the source .5
is neglected. In this case, individual filament strengths do not change in time.

Let us have N total filaments, IV, of type v and N, of type w. in which the
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u’s have strength a* and w’s £a*. The potentials are given by

/G (x|x ) (2 = — Y o' G(z|x]), (4.20)
i€s
where G is the Green’s function for Poisson’s equation, V?G = §(= — &), with

appropriate boundary conditions. In an infinite domain, G(z|a’) o In & — ='].

The filaments move by

d:ti = w(al) = V x 24% ()
d;"tf = u(zl) = Vx24%a?), (4.21)

so this system of filaments is Hamiltonian with the canonically conjugate vari-
ables (1/|a|®;, /|a|y:). The (z,y) are the normal Cartesian coordinates, which
we take to be periodic. The Hamiltonian is
H(ey,...,zy) = ZZafoe}”G(mi]mj), (4.22)
i€u jEw

which may also be written
= /A“Q"’ /u-w - /v2 — B (4.23)

The Hamiltonian is the very same quantity as the parameter in eq.
(4.6) which determines the qualitative behavior of the magnetic field in the
Fourier description. The fact that we have retained this key parameter as our

Hamiltonian is an encouraging justification for omitting S.

‘The self-energy of a singular vortex filament is infinite. The interaction
energy of a such a structure in an external field, however, is well-defined. The
potential energy of a given vorticity distribution w in a velocity field that arises

from a vector potential A is given by

B = / w-A®. (4.24)
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For a given current distribution in a magnetic potential field, on the other hand,

the magnetic interaction energy differs by a sign,

EB, = —/J-A. (4.25)

int —
This is because work must be done against the magneto-inductive force in order
to maintain a given current distribution while bringing it in from far away. By
ignoring the source term in (4.14), we are slowly transferring energy into and
out of the system by counteracting the inductive force along the filament. As a

consequence, instead of the total magnetic plus kinetic field energy remaining

constant, the total interaction energy [v? — B? is conserved.

In the neutral-fluid vortex model, there is a delicate question of the self-
energy of the vortex filaments [28, 30], which must be treated carefully in order
to retain correct scaling behavior. In our case, because a single © or w filament
has velocity and magnetic fields of equal magnitude. The field of a single
filament does not contribute to H, and self-energy considerations do not appear.
Rather than an interaction energy, however, it is perhaps more convenient
to view Il as a parameter that measures whether the fluid is kinetically or
magnetically dominated. Unlike the usual plasma £, which measures the ratio
of magnetic energy to microscopic, thermal energy, H measures the difference
between the magnetic energy and the kinetic energy due to macroscopic fluid
motion. There is a natural boundary at A = 0. The sign of H can be changed
by reversing the signs of the filament strengths of either of the two species.

This transformation simply switches the fields v and B.

4.3.1 Canonical Ensemble

Let us construct a partition function for the fixed-strength u-w filament system

with the Hamiltonian H. The partition function is

7 = /e*ff/THdmg. (4.26)
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The trick in evaluating this integral is to represent our phase space not in terms
of the coordinates of the filaments, but to take as phase variables the Fourier
transforms of the filament densities,
k a‘g Ik Ty o k- Ty
po(ke) = v Z € (4.27)
£est ZEa
in terms of which the Hamiltonian is
H =8nrV :[_;0 kzéR pupl,) + const., (4.28)

R denoting the real part.

Naturally, this substitution is only valid for large IV, as, strictly speak-
ing, there should only be as many p’s as there are filaments. Nevertheless, if
we retain a large number of modes, we find that the Jacobian of our transfor-
mation, with error ~ 1/N, is

VE Sl
J=VV ] g™ (4.29)

This can be verified directly by checking explicitly that
Nsa52 n
(o) = [ IouP TLdms = [ Jlpu [T doo = ! ( o ) L (a30)
i k,s

while all other moments are zero.

The partition function turns out to be
k2
L= ——- 4.31
]_I:l[ kz . IHZk_zJ ( )
in which [ is the normalized inverse temperature

g =4 N;‘/];”a . (4.32)

The expected spectra are

N_,O!"Z kZ
<|Ps(k)‘2> V2 k2 - ke

(Rlpurl)) = L (433)
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In the case that N, = N, a* = o¥, these lead to the w? and j? spectra
kz
2\
<w > k24 p
. k?
(%) = (4.34)

These spectra are of the same form as eq. (2.23). If # is negative, the velocity

spectrum will exhibit exaggerated large-scale structures, while if § is positive,

magnetic islands of exactly the same form will appear.

4.3.2 Microcanonical Ensemble

The construction of a canonical ensemble assumes that a system is in contact
with some reservoir of the conserved quantity. When the conserved quantity is
internal energy, this thermal contact is easy to visualize and justify. It is, how-
ever, more difficult to envision a resevoir of constant v? — B*, and we have very
little idea how “thermal contact” between our system and such a resevoir might
be maintained. More justifyable is the microcanonical ensemble appropriate for
a closed system, in which the system motion is simply constrained to a surface
on which the Hamiltonian is constant. This ensemble is also most appropriate
for direct comparison with numerical simulations, in which “temperature” is

notoriously ill-defined.

To study the microcanonical ensemble, we use the techniques of Edwards
and Taylor [27], specifying the value of the Hamiltonian is specified to be F,

and calculating the structure function, defined as
®(E,V,N) = / §(E — H) [ des, (4.35)
from which follows the entropy (and all other thermodynamic quantities),

S(E,V,N)=In® (4.36)
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(5 6)°

Because our phase variables are physical coordinates, ® is bounded by the
volume of our system. A general consequence of systems with bounded phase
space is that negative temperatures may be obtained [18], which will show

increased order with higher energies.

Using the explicit representation of the delta function, we calculate
1 : 1 *
$ = —/d)\.] dp, zA[E-—-Sszk ﬁm(pupw)] 4.39
o {,[ pse : (4.39)
in which the domain of the p,’s is the entire complex plain. These integrations,
with the Gaussian integrand, are easily carried out, leaving only one integration

over A which we rescale to the dimensionless z, leaving

1

.1 .
¢ = ——/dze“E 11 - (4.40)
27 rary L 57
in terms of dimensionless guantities,
(j:) _ (I)‘\/ NuNwoz a¥
\e ’
. E
) = (4.41)

" . . 2
where k? = n2 + n? is the dimensionless wavenumber, and k* = ¥=£’.

The product in the integrand runs over all ng,n, > 0 except n, = ny =
0, and the integral can be reduced to an infinite sum over residues, which occur
along the imaginary axis at z = iwx. The general form for $ is

=S Po(|E])e ™1, (4.42)

Tl )Ty
where P,_; is a polynomial whose degree is one less than the degeneracy of

the (ng,n,) mode. &, in contrast to the hydrodynamical structure function, is

symmetric with respect to F, and differs from a Gaussian distribution in that
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it asymptotically approaches e~minlE] a5 | B| — +oo. Figure 4.2(a) shows the
structure function of the hydrodynamical structure function, from a numerical
integration of the results of Ref. [27]. Figure 4.2(b) shows the u-w structure
function, ®, from a numerical integration of eq. (4.40), along with a Gaussian
for comparison, both normalized and chosen to correspond at E = 0. Also
shown are histogram data of E from an ensemble of filament systems with
fixed filament intensities and random filament positions. The small number of
events in the tails of the distribution of E causes some scatter in the data, but
the data conforms to the calculated structure function in the center and clearly

deviates from a Gaussian in the tail.
One may also also calculate the filament density spectra,
(louln, m)) _ (low(nt, m)I*)
N,ov? N, ow?
1 1 B 1 1
—— /dze“’E " 11 (4.43)

- Viarg L+ g ren L

and the correlation spectrum,

<pu( m) y)pw( ’)>
\/NuNwoz“aw
11 /dz—neiZE : = 11 ——1—-6_WN2|EI. (4.44)

T V2979 K2 14 W namy Lt 5

While, (|pu]?) and (|pw|*) are even in E, (pyp;,) is odd. Both have
a pronounced lowest-wavenumber component when |E| is large. Ensemble-
average spectra of usual fluid quantities can be calculated from these density

spectra by the relations

3 (loul) + pul0)l?)
() = 7 (Ioul) = puls)2)
((lou)?) = {lpu(x)1)) - (4.45)
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We evaluate (4.40), (4.43), and (4.44) numerically, and in figure 4.3,
show (w?(s?)) for N, = N, and o* = o*. The spectrum of w? always flat-
tens out at large x, and when E is large, there is a dominance of vorticity in
the longest wavelength mode, such that the longest-wavelength mode grows
proportional to E as B — oo. As E — —oo, the lowest- wavelength mode
‘approa,ches a constant value &~ 0.26. As mentioned before, changing the sign of
E interchanges the spectra of 7% and w?, so a concentration of magnetic energy

at long wavelengths is expected for E < —1.

Comparing these results with those from [60] in eq. (4.4) we see that,

not surprisingly, their magnetic spectrum differs from ours in the limit of large

k. Indeed, it is precisely at short length scales that the filament model differs .

manifestly from the Fourier mode representation. At long wavelengths, though,
both pictures give the same prediction: magnetic energy accumulation at large
wavelengths. Indeed, the conditions necessary are the same; for (4.4) to yield
peaked structure at k = kmin, @ and v must be of different signs, or, by eq.
(4.6), [v* < [ B?, just as our B = [v? — B? must be negative to produce the

magnetic islands.

The velocity spectrum, however, is quite different. Eq (4.4) always pre-
dicts a flat kinetic energy spectrum, even when the magnetic field is identically
zero. The teason is that the Fourier statistics are based on the MHD invari-
ants, but as the magnetic field shrinks to zero, the invariants of the system
change. The total energy becomes the kinetic energy normally, but the mean
squared magnetic potential goes to zero. The enstrophy, meanwhile, changes
at a rate proportional to the magnetic field strength. As the magnetic energy
vanishes, the enstrophy should be included as an invariant in the calculations.
The omission of the enstrophy as an invariant in the analysis dramatically
alters the spectrum. The Elsasser variables approach the neutral limit more

easily because none of the field variables vanish for vanishing magnetic field.
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Instead, the u and w fields approach each other and become identical in the

zero magnetic field limit.

4.3.3 Most Probable Filamentary States

We use the formalism outlined in [31] to determine the most probably states
in the filamentary MHD representation, for systems We have a system of N =
N* + N* filaments. Of the u filaments, n% N* of the filaments have strength
o*, and n? N* have strength —a, and similarly for the w filaments. We define

an N-Point probability function in the microcanonical ensemble,
Py(rY, .. PR,y Phw) = §(E — H)/®(E,V). "(4.46)

which has been normalized such that

/PNdr;‘,...drﬁw =1. (4.47)
Temperature is defined by
1 Olnd®
— = . 4.48
T oF (4:48)

We define the single-filament probability densities
Pit(r) = /PI\r(‘i(r —r})dr}, .. drw

Pl (») = /PNS(T - r:‘Linrl)drtl‘, e dP R

(4.49)

which, once known, give us the vorticity fields by

Q) = /Zaga(r—Tg)PNdr;L,...,dr;”W

= N'a*(n Pt —nlP). (4.50)
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We can obtain a differential equation for P;* directly from the defini-
tions (4.46) and (4.49) and from the form of the Hamiltonian by differentiating
(4.49) with respect to r. This gives

u 'l' a u u w E
v Pt :/—VHEﬁJ(E—H)&(r —r})dry, ... dr . (4.51)

As pointed out for hydrodynamical vortex filaments [33], there are two possible
scalings of the energy with V. The first, in which energy scales o< IV, gives rise
to Gaussian probability densities, for which the random-phase approach of the
previous section is appropriate. The other possible scaling is £ oc N?, which
we adopt here. Because the temperature scales as N, the derivative of Py with
respect to F is smaller than 8®/8F by a factor of N, and may be neglected.

This allows us to rewrite the derivative of the delta function as

0
8_E6(E — H)dry,...,drNw

0
= —éE-(I’Pz(P,;, Tj)d'f'id'l'j
5}

BE((I)PI(Ti)Pl(rj))dridrj

~ 92 p(r) Pa(r;)drdr;, (4.52)

~

0F

where the approximation of the twe-point probability density as the product
of two single-point probabilities has also been made. The differential equation

becomes

aw a‘U. N‘w

VPH = ———T——Pl‘“’/VG(r,r')(ni v _ o pR-), (4.53)

Similar equations can be obtained for the other probability densities, which

may be integrated to give differential equations for the potentials A* and A,

VZAu — Cu+eﬂTﬁA‘” — oy e—%Aw

VIAY = CuteTAY — Oumem T4 (4.54)
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In the case in which n} = n?, this becomes
V24" = Cv2 sinh(%A“’)

Vi4Y = ov? sinh(-‘f‘T—A“). (4.55)

In the zero magnetic field limit, A* — A%, and we recover the neutral-fluid
most-probable state, typical solutions of which describe a pair of large-scale

opposite-sign filaments. If we let ot = a¥ = a, then from (4.55) follows

T [« o o
u wy|2 . u w : u 1 AW
/|V(A + AY)* = —a/T(A + A4 )(sthA + sinh —A4")

T
T 1o o o
U AW 2:_ et u AW : TOAY o e w. :
/|V(A A% a/T(A A )(sthA sthA ). (4.56)

Because sinh is a monotonic function, the integrands in eq. (4.56) are all positive
definite. This constrains the solutions of (4.55) to obey A* + A¥ = 0if G is
positive, or A* — A* = 0 if § is negative. In other words, there arise two
possibilities for the most probable state: either B = 0, with the stream function
obeying the sinh-Poisson equation (2.39), or v = 0, with the vector potential

obeying (2.39).

4.4 Variable-Strength Filaments

We expand our system to allow for'ﬁla,ment strengths to change in time under
the inductive force. The phase space now consists not only of the filament
positions {z;,y:}, but the intensities {o;} as well. At this point we make no
dttempt to continue with a Hamiltonian approach, but shbw only that these
variables satisfy Liousville’s theorem.. The flow is conservative in phase space

if and only if .
bar 03 | 0y _ i
2.2 50t 5o T oy = (4.57)

8 iEs (3

In fact, we can prove a detailed Liousville’s theorem in which each term of eq.

(4.57) is satisfied separately. The z and y equations of motion are the same as
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in the Hamiltonian case, so

8% 9Y;
iy YL g 4.58
5ot | Byt (4.58)

as before. That the remaining term is zero is no more than the statement that

a filament does not change strength under its own field. We write

di = :l:S(’JJ,) = ieijgalu]’alwk(wi). (4.59)
The derivative dd; /0w is determinéd by the field of a single filament, evaluated
at its own center. The derivatives satisfy G,u, = 8,u, = 0 at the filament

center, so we conclude that

Q0 (¥ .
D005 o R
which gives _
of \
9ot o Gj(gﬁ,;jka[wk = 0, (4.6]_)

and proves eq. (4.57).

The case in which the source is ignored has only one constant of the
motion: the Hamiltonian [ «-w. Even though the source term has only a small
effect on the motions of individual filaments, the overall effect of neglecting the
source is to cause the usual constants of total energy, cross-helicity, and mean
square potential to be no longer conserved. What is interesting in our study is
that the Ipa.ra,meter [ v?— B?1is of crucial importance to the qualitative behavior
of the plasma, and modeling a system in which that parameter is conserved

gives appropriate predictions for the full MHD system.

For filaments with the source term, it is most convenient to speak of the

conserved quantities,
u 1 2 1 2 2
E=§/u:§/v + B —i—/v-B, (4.62)

and

1
EW:E/w2=%/v2+BZ—/u-B, (4.63)
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in addition to the mean squared magnetic potential,

4= %/(A“ — A¥)2. (4.64)

In order to determine to what extent these quantities are preserved by

the u-w filament system, we write the energy E* in terms of filament quantities
u 1 w U £ U U 1 U AU U
%7 7

This energy changes in time as
BY =Y arA(=d) + ) ofz-u(el) xw(ey). (4.66)

With 62 = S(@¥) the sum over filameénts is just the Monte-Carlo approximation
of the corresponding continuous integral. Since we are assuming the system-
is ergodic and mixing, these approximations will become exact in the limit
N¥ — o0,

lim Ev = / sav+ [ Qruxw. (4.67)

N—0c0

Since, in two dimensions,
u 1 ux72 1 u 2 1 . 2
/SA :5//1 v (uxw)—E/A (v u)xw—.—z—/A”ux(V w)
= —E/Q“uxw + 3—/Qwu-v,4u + l/mu-\mw
2 2 2
_ [ v, (4.5)

this energy is conserved in the continuous limit, even though it is not manifestly

conserved exactly for finite IV.

We will again use the random-phase approximation to evaluate the par-

tition function in terms of filament densities p,.

1 1
E* =Y atofGlat|ey) = 3 loul + 305 2 ot (4.69)
ij k k B
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1 1
BY =) otayGallay) =3 Sleul*+ 52 o (470)
k k 7

ij
1 * 1 u w
A= Z E|Pu|2 + |Pwl2 - 2§R(pup'w) + Z Tt [Z Qa; 2+ Za 2] . (4.71)
ke k 1 )

When writing these invariants in terms of the Fourier modes, a sum of self-
energies emerges. When the filaments are allowed to change strength, these
self-energies are no longer constant, as the integral over configuration space

includes an integral over all filament strengths. The partition function is
7 = [ BT AT ] dutdal T] daydoy. (4.72)
i J

When we change the variables of integration from filament positions to Fourier

components, we must use the Jacobian for which

T .
o {_ 2 i + g St

1 1 uw U u w w
J 7
= J[] dpudpldpudps,. ' (4.73)
k .

This Jacobian is again a Gaussian, as can be verified by checking that fhe

/|pa|z" = n! (N;é?;——é) (4.74)

to leading order in IN. All that differs from the case in which the filament

moments are

strengths are fixed is the replacement of the constant a*? by the expected

value

1 1
82\ __ 32 _ 2 g
<a > = /a exp{ [Tskz + TA/c"‘] of }doz . (4.75)

Defining, as before, the normalized inverse temperatures

8

4N (o) g 4 /NI, (0?) (av?)

VT VT4 ’ (4.76)
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the partition function takes the form
Z=T1[(1+8k +p4%*) (1+ Bk + A4k - ﬁAzk‘g]_l . (47)
k

and the expected spectra are

<,p |z> _ l+ﬂwk_2+ﬂ‘4k"4
" (1 + Buk=? 4 BAk—%) (1 + Bvk-2 + [Ak-) — BA% -8
<| ’2> _ ‘ 1 -|-ﬂuk_2 +ﬁAk—4
P (14 Brk=2 + BAk—4) (1 + fwk=2 + [4k—1) — BAZ |8
. ,BAk_4 2
Ak_4
= b (Ipul®) - (4.78)

1+ Avk=2 + B4k—2

Even in the regime (v-B) = 0, eqs. (4.78) display a great range of possible
behaviors. Figure 4.4 demonstrates how, in the limit of small temperatures,
these spectra approach the equilibri‘um spectra of the Fourier-mode theory. On
the other hand, in the high temperature regime, these spectra conform more
closely to the spectra of the S = 0 theory of the previous section, as shown
in figure 4.5. Especially noteworthy is the continued allowability of peaked

vorticity as well as current in the longest wavelength mode.
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Figure 4.4: Equilibrium spectra of the u-w filamentary system with source
included. Regime shown is |3| > 1, the low-energy limit for which the spectra

approach the Fourier theory’s predictions.
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Figure 4.5: Spectra of w and j for |#| ~ 1, the high-energy limit that mimics
the behavior of the S = 0 approximation. -




Chapter b

Simulations of Two-Dimensional MHD
Filaments

One of the advantages of the point-vortex representation brought to hydro-
dynamics was the added ability to model systems with very high Reynolds
number. As viscocity decreases, the fluid has an increasing tendency to form
extremely small-scale structures [4]. In order for a standard spectral fluid code
to model such structures, greater and greater grid size must be used in order
to have resolution sufficient to resolve these fine structures. A vortex-bas‘ed
algorithm [57], by assuming such structure a prior: should be generally able
to handle low-viscocity systems at a lower cost. Newer techniques have also
been developed [43] in which finite viscocity effects can be included in a vortex
system by allowing vortex filaments to combine when brought sufficiently close

together, according to some phenomenologically determined reconnection rule

‘[49].

5.1 Numerical Algorithm

Our primary assumption is that the vorticities £2 are concentrated into localized
filaments. We will let the filaments have a finite core size,

2%, t) = 3 os(t)A(w — =(t))

1

72" (z,t) = z a;(t)A(e — =}'(t)), (5.1)

i
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with shape A. We use a finite-particle method [63] such that the shape is a

Gaussian,

1 _=2 _ 3%

Alw) = e 2% 29, (5.2)

2T A5y

The algorithm traces the locations ®; and strengths a; of the magnetic

vortex filaments. In terms of these variables, the MHD equations are
DoorA(m —w}) + > ofwy VA(x — @)
1 + w-VZafA(lm —a})=15
S A(n - of) + X ab et VA - a?)
’ +u-V Za}"A(; — ) =-35, (5.3)

which we separate into the two sets of equations for the a’s and the ®;’s. The

positions must evolve by

= [ w(w,)A(e - =) |
—/ NI o (59)

The filament strengths must change in such a way as to satisfy

Za A(z — &) = S(=,t)
Za}”(t)A(m — ) = —S(a,t). (5.5)
Since S is a continuous function of space, the success of this scheme depends
on the filaments being distributed throughout the volume with inter-vortex

spacing no larger than the filament cross-section. We let the vortex filaments

change strengths according to

= S(w?)/n"
6 = —S(w)/n", (5.6)
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where n® is the average number density of the species s. Since the accuracy
of this scheme will decrease as the filament distribution becomes more uneven,
one future improvement will allow for the addition of extra filaments, with
strength initially zero, into areas in which the filament density falls below a
threshold value.

In order to solve for the fields to advance the equations, we use a Fast

Fourier Transform field solver on a periodic grid. The vorticity is first accu-

mulated as a grid quantity. The vorticity field of a collection of filaments with

finite core size is a convolution of the delta-function-shaped filaments with the

shape factor A,

p(w) = Zai(?(w — x;)

e) = [ Afm - o')p(=')da’
(k) = A(R)p(k). (5.7)

The convolution of a function f with A results in a smoothing of that function.

Notationally, for any function f, we define

F(k) = A(k)f(k)
f(k) = A7 (k) f(R). - (5.8)

The density p may be accumulated to the grid from the particle positions by
a variety of techniques. Energy conservation is aided by choosing a scheme in
which the grid assignment is continuous as a particle crosses a cell boundary
[64]. The scheme which we use in two dimensions assigns weights to the nine
cells nearest a particle. Let wgo designate the cell nearest the particle, and wg
represent the cell directly above, wyy directly to the right, etc, and let (z,y)
be the relative displacement of the particle relative to the nearest cell. The

weights are assigned by
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(5.9)

The total of all weights assigned to the neighbor cells is o;, and the grid quan-

tity, as well as its derivatives, changes continuously with the particle position.

65

Once 2 is known on the grid, it is Fourier-transformed and the w or w -

field is solved for straightforwardly:
ikx 2p,(k)

k2

u(k) = A*(k) (5.10)

One factor of A comes from the smoothing of  when accumulated to the
grid, and another from the averaging of u over the pushed particle’s shape to

produce its net motion. Also calculated are the derivatives of the fields,

Upa(k) = thpus(k) = —uyy

(5.11)
for use in calculating the source function

S = Upe(Way — Wy ) — Wee(Uay — Uyz)- (5.12)

To advance the equations in a time-centered fashion, a predictor-corrector

scheme is used. The progression of a time step is as follows.

Known at beginning of time-step:
a¥n_1Z%—1, Y n-1,
awn—la an-—l ) ywn—-I)

U w U
AnT 'y Y ny
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0¥ny 2%n, Y¥n,
Accumulate O from particles:
{o,2,y}n = pn
Calculate fields from Q :
{0} = {un, wn, 5.}
Find predicted particle quantities:
x¥, = 2%,y + 20w, (x,)
a¥, = a“,:_l + 2AtS,(2,)
S Y, = @y + 2A0u,(x,)
a¥, = a¥n_1 — 2085, (2%,)
Calculate predicted fields:

{o, 2,5} — {2} — {up, w,}
Advance particle quantities to next time step:
Thnp = &%, + At%(wn(‘”un) + wy(2p))
Oé“n+1 =o', + At—;—(Sp(w”n) + Sp(mup))
e¥ = &%, + At%(u(wwn) + u(x¥,)

a“’n+1 = O’,wn — At%(Sn(wwn) + Sp(m"’p).

5.2 Constants of the Motion

~ The ability of the numerical algorithm to conserve the invariants B, E¥, and A

depends on the degree to which the analytical expression for the time derivative,

E, = a%/A“m - /Q“(w-V)A“—j—/A“S. (5.13)

is approximated by the discrete expression in terms of filament quantities,

E, =Y otat- VA + > ardr. (5.14)




However, even if the filaments are arranged so that the sums of (5.14) can be
converted to integrals, there will still be a non-zero time derivative of £* due to

the averaging of quantities over finite-sized filaments instead of point-vortices.
E* ~ /p“axw+/SA“
— — 1 U 1 —
= /p“uX'w-—-z—/Q uxw~§/9“uxw. (5.15)

Because of the averaging over particle size (represented by the bars), this ex-
pression differs from egs. (4.67) and (4.68), giving rise to a numerical diffusion.
This diffusion goes to zero as the size of the vortices goes to zero, but finite-
sized particles are very desirable for de-aliasing and other reasons [65]. Two
approaches may be taken to counter this numerical diffusion. On is to rewrite
the source term in a way so as to take account of the finite vortex shapes. The

form of the source which conserves E* and E% for finite-sized vortices is

S = % [Vza;fw —@-Vp*+ ﬁ-\?p“’] : (5.16)

This approach, however, gives an S which is an extremely spiky function of
space, and is not well-handled by the interpolation schemes in the code. A
second approach is to add a corrective term to the time-derivative of each
filament, proportional to the strength of that filament, in such a way as to
constrain the energies to remain constant. Such a correction turns out to be

only a few percent of the change in strength due to the source term alone.

5.3 Tests of Known Fixed-Strength Filament Solutions

A system of u-w filaments in free space has the Hamiltonian as an invariant,
in addition to three invariants arising from the translational and rotational

symmetry of the Hamiltonian. These invariants are

Zm = z Q4
J
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Zy =3 oy
J

M= ZZajakrf-k. (5.17)
FR

where 7% = |&; — @;|?, and the sum runs over both species. Because of these
symmetries, the system is integrable for some small numbers of filaments. For
hydrodynamical vortex filaments, Novikov and Sedov [66] explored the three-
filament case fully, in particular the case in which a trio of filaments collapse
symmetrically to a point. Such sclutions exist in the u-w case as well, so
these solutions can be used as a test of the code. Because of the periodic
boundary conditions of the code, these tests must be run in a small fraction
of the computational boundary so that the effects of the image filaments are

small.

The first, obvious, integrable case is for N, = N,, = 1. The two filaments
will rotate around their center of charge with a period equal to the squared
separation divided by the reduced charge. The paths of two rotating filaments
are shown in figure 5.1. Also shown is the distance between the filaments as
a function of time. The distance varies by about 1% during one revolution.
This effect is due to the image filaments. For larger separations, the filaments
feel stronger effects from the images. The variation in radius increases, but the

orbits are always closed.

For the symmetric collapsing case, we let N, = 1, N,, = 2, numbering
the u-filament is no. 1, and the two w-filaments nos. 2 and 3. We seek solutions
in which

rir(t) = A(£)rsx(0). (5.18)
That is, the triangle comprised by the filaments will shrink such that the ratio
of the sides will be preserved. From the constancy of the Hamiltonian, solutions

of this type require that
aiog + ayas =0, (5.19)

68




(a)
20 —— T
\
Y
\\ y
\_,/
10
10 X 20
b
17 T rl T T T T T |(| )‘
16.5 —
15.5 —
]
15 L l 1 I 1 L 1 | i 1 1 l 1 1 1
0 200 400 600 800

t

Figure 5.1: Paths of two rotating filaments (a), and the time history of their
relative distance (b).
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while in order for M to be conserved, we must have M = 0. The relative
distance between two filaments can only change due to the action of the third
filament. The time derivative of 7, follows directly from the equations of
motion and can be written
712 = :F;_‘Aafiﬁ_sz
i = :I:onzzrl_zz
T

= FoAon(rif — 7). (5.20)
A is the area of the triangle formed by the three filaments. The first sign is
taken if the filaments are numbered in a clockwise order, the opposite sign if
the numbering is counter-clockwise. From eq. (5.20), it follows that

X2 = const. = T zAagrl_szrl‘zz . (.5.21)

™ t=0

The three filaments collapse uniformly to a point as A — 0, rotating with an
angular speed x A7%. At XA = 0, they coincide, reflect about the center of
charge, and expand again, with the sign of A? reversed. The numerical code
of course cannot accurately represent filaments spinning infinitely fast as they
collapse to a singularity, but collapse beforehand and expansion afterward can

be tracked and checked against theory.

Figure 5.2 shows the triangle of filaments during the numerical test of
collapse. Filaments begin at the left, pass through the point of nearest approach
in the middle, and end in the positions on the right. The triangle appears to
have undergone nearly symmetric reflection. Figure 5.3(a) shows the ratios
of the three sides to their initial lengths as the filaments collapse, up to the

point where their mutual separation is about 1 grid space, the characteristic

size of the Gaussian shapes given the filaments. The solid line is from eq.

(5.21). Figure 5.3(b) shows these ratios as the triangle inverts and begins to

expand again. The shape of the triangle has changed slightly, as evidenced by
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Figure 5.2: Paths of the collapsing trio of u-w filaments. The triangle rotates
while shrinking, reflects, and expands.
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Figure 5.3: Plots of A%, vs. ¢ during (a) collapse, (b) bounce, and (c) expansion.
The shape of the triangle is maintained during collapse and expansion, but
changes slightly during the bounce.
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the fact that the three ratios no longer coincide after the reversal. After this
point, we take the sides as new initial positions and track the expansion of this
triangle. Figure 5.3(c) shows the ratios of the sides to those lengths as the

triangle expands.

5.4 Simulations of Large-N Filament Systems

We run the system on a 2-d grid of 32 x 32 points. First runs were made with
filaments intensities fixed (S = 0), with an average filament dénsity of one per
cell (1024 of each species). Following the technique of [29] and [27], we load
the filaments randomly into boxes distributed on the grid. Varying the size
of the boxes provides some control over the energy of the system. Shown in
figure 5.4 are u-filament positions for a run with energy E = 75. This is the
lowest energy for which clumping of filaments is visible from phase-space plots.
In this run, both u and w are given positive strengths of equal magnitude,
and the magnetic energy is much less than the kinetic energy. Contour plots
of the magnetic potential and the stream function are shown in figure 5.5.
The magnetic field has no obvious structure, but the velocity field has clearly
organized into one la,rgeb positive and one negative vortex. Figure 5.6 shows a
similar run with E ~ 150. In this run, the initial boxes are small enough that
they evolve initially into distinct clusters, which gradually merge until there is

only a single clump.

These runs indicate that the statistically preferred state is obtainable
from general (and artificial) initial conditions. However, if a high degree of
symmetry is imposed, the clusters of filaments do not mix, and interact more
as independent filaments in a highly-organized crystal-like state, as shown in
Figure 5.7. The initial square lattice quickly evolves to a hexagonal lattice
which remains stable. The lattice, however, is loose enough to allow motion of

the filament clusters and even interchange of positions in the lattice. During
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Figure 5.6: Filament positions from a run with E ~ 150. Initial positions are
shown in (a). Large clusters of filaments form as in (b), eventually merging to
a single clump as in (c).
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Figure 5.7: Filament positions from a run with filaments clustered onto a square
lattice. The clusters quickly fall into a stable hexagonal lattice. Marked clusters
correspond to the same cluster of filaments at different times, indicating that
clusters occasionally interchange sites on the lattice.




an interchange, the clusters retain their identity.

When studying systems of filaments with boths signs of intensity, the
box-loading technique does not satisfactorily produce negative energies. In
order to obtain starting configurations with a particular desired energy, we
employ a Monte-Carlo procedure. The filaments are given random positions,
and individual filament positions are proposed. If the proposed configuration
has energy closer to the target energy than the present configuration, the pro-
posal is accepted. When the energy falls within an accepted range of the target
energy, the positions are saved and become the initial conditions of the dy-
namic simulation. The systems are thus well-randomized at the beginning of
the simulation, and need not be run for so long a time to obtain acceptable
statis‘tics.

A time history of the value of H is shown in figure 5.8 for four separate
runs, the first with 1024 filaments on a 32% grid, the second with 4096 on
322, the third with 1024 on 8%, and the last with 1024 on 64%. The numerical
algorithm conserves the Hamiltonian best on the 8 x 8 grid, where the density
of filaments is greatest, and worst on the large grid, with a low filament density.
Figures 5.9, 5.10, and 5.11 show time histories of E*, E*, and A in the same

format for the same runs. Interestingly, these other quantities, which are strict

" invariants under the continuous MHD fluid equations, simply fluctuate about

a constant value in this approximate system. There is no net degradation or
increase in the total energy, cross-helicity or mean-squared flux. This supports
even further the contention that a u-w filament system even in which the source

S is ignored still serves as an acceptable statistical model for MHD turbulence.

Energies down to ~ 1 are still large enough to show structure, even
though the clustering of filaments represented by this is not visible from phase-
space plots. Figure 5.12 shows contour lines of the magnetic and velocity fields

from a run with B = 2. Typical spectra at a single time-step and averaged
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through the simulation are shown in figure 5.13. The solid line is the theoretical
spectrum from the micro-canonical ensemble, as calculated in the previous
chapter. Note that there is some evidence that the trajectories of neutral-fluid
vortices are not entirely ergodic [67], although the non-ergodicity appears to
be weak [68]. In our case, time-averaged quantities seem to correspond well

with the micro-canonical ensemble averages.

As mentioned before, reversing the sign of the Hamiltonian should sim-

ply interchange the fields v and /. Shown in figure 5.14 are spectra for a

simulation run with B = —1. The same correspondence with theory is shown,

this time with the magnetic energy spectrum exhibiting long-wavelength struc-
ture. Finally, figure 5.15 shows the values.of the lowest wavenumber modes,
w?(kmin) and j?(kmin), as a function of E. The asymptotic behaviors (w?) «x B

and (j*) — const. are clearly demonstrated.

A number of runs were also carried out with S # 0, that is, with the
filament strengths changing in time according to the inductive force. As men-
tioned, there is inherent numerical diffusion in our algorithm due to the finite
size of the computational filaments. Figures 5.16 and 5.17 show time histories
of the putative invariants E*, E¥, A, and the former Hamiltonian &, and the
time-averaged spectra of w? and j2. The energies decay away due to the diffu-
sion, but H remains relatively constant. This ma.kes‘ sense to some extent, for
if the ohmic and resistive decay rates are comparable, the kinetic and magnetic
energies should both decay at the same, and H, the difference between the
two, will remain roughly constant. The diffusion at small length scales changes
the form of the spectra at short wavelengths, falling off as k=2 rather than
approaching a constant. The values of the longest-wavelength modes, however,

continue to agree with theoretical predictions.

The numerical diffusion of our scheme can be compensated for by adding

an artificial small correction to the source S. This correction ensures that E*
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and E¥ will stay constant, although A remains unconstrained. Results from a
pair of such runs are presented in figures 5.18 and 5.19. The values of A and
H do not systematically decay in these cases either. The spectrum, lacking
the drain on small-scale modes, flattens out for large , and displays long-

wavelength behavior consistent with the theoretical predictions.
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Chapter 6

Filamentary Objects in Three Dimensional
MHD Turbulence

Three-dimensional MHD turbulence can be expected to have organizational
properties similar to two-dimensional turbulence, due to the fact that there
are still more than one quadratic invariant of the field equations. One loses
[ A%d?*z but gains [ A-Bd?z. In neutral fluids with low dissipation, intense
intermittency is beginning to be observed in laboratories [69] and simulations
[70, 71, 72] under general conditions. General filamentary objects [73, 74] are
also being studied with adapted computational models [75, 76], and are meeting

with success.

"In three dimensions, the computational advantage of this approach is
even greater than in two dimensions. Given a system in which strongly in-
termittent structures are present, the spatial resolution required to resolve the
swirls and eddies of a large three-dimensional system is an especially great
burden on present-day machines and techniques. In contrast, when modeling
vortex filaments as discrete objects, all fluid information is contained within
the filament positions, so there is no need to resolve spatial scales as finely.

Reducing the size of the problem is especially important in higher dimensions.

Fourier-based investigations of three-dimensional MHD turbulence [77,
78, 79] have predicted invariant spectra which are peaked at the maximum

wavelength, and predictions were confirmed in numerical simulations. The
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treatment here is less detailed than the two-dimensional presentation, concen-
trating on outlining a vortex-based numerical scheme, and presenting some

qualitative results of simulations.

6.1 Isolated Current-Vorticity Distributions

A general description of singular u-type and w-type filaments parameterizes

the vorticities in terms of curves g(s,t):
(e,t) Z /q'”6 — g¥(s,t))ds
(w,t) Za /q'w6 —q3(s,t))ds, (6.1)

where the prime indicates differentiation with respect to the curve parameter

5. The fields may be decomposed,

U = U, + U + U

w = w, + w; + W, (6.2)

into a poloidal component,

; z — q¥(s,t)
)= o [ FTEEO oy
(=, Z @ — g} (s,t)® i
97 (s,%)
oz, t) Za /130_(1] St|3><qJ “ds, (6.3)

plus & toroidal component,
- Zﬂ;‘/6(w — q¥(s,1))g"ds
=387 [ 8(= - a?(s,1))a"ds, (6.4)

plus background fields uo and wy. The toroidal field is non-zero only exactly
on points that are on a vortex filament, and is only important when filaments

overlap. One can comfortably take u; = w; = 0. Eq. (6.3), the Biot-Savart
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law, can be solved in Fourier space given any set of filament curves. The fields
may be interpolated to the filament positions, and used to advect them forward
in time.

In this investigation, we will treat, rather than the extended structures
of (6.1), a special case of such filaments, vortex distributions which are com-
pact and localized. When the mean filament separation is large compared to
the internal structure size, a turbulent MHD fluid may be represented as a
collection of isolated u-w current-vorticity distributions which are advected by

each other and whose strengths change according to some source.

Given the multipole expansions for a particular vortex,
Alwyt) = 30 ML) (b )————5@(w!wi<t)), (85)
n=0 n! e 04,
with G' the Green’s function for Poisson’s equation, fields of arbitrary specifi-
cations can be represented by suitably chosen distributions of point particles

possessing internal degrees of freedom (the multipole moments).

The equations of motion of a u-particle are solved by

zv = w(z")

M M V)w(zt) = S, (6.6)

i1yeenin 21gsenlin

and similarly for w-filaments. The source term is unique only up to an additive
gradient, because such a gradient added to the potentials does not actually
change the fields. The source term again represents the induction of current in

the advecting vortices, and will be neglected in the following treatment.

In three dimensions, the fundamental vortex object is the vortex ring,
or point dipole. A treatment in t;erms of point dipoles for hydrodynamical
turbulence was considered in [80] and [81]. In hydrodynamics, one must cope
with the problem that a vortex loop moves under its own influence at a speed

that scales inversely with the loop size. The problem of infinitely speedy rings
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is not present in our system, since a loop does not self-interact. We treat here

the case § = 0.

Our turbulent fluid is represented by the positions and dipole strengths

of the vortices, i.e. by the 6V variables ID; and @;. Defining the “Dipole field”

as
D*(z) =) Di§(= — i),

the field arising from the dipoles is given by
u(z) =D%x)-V / D*(x")G(z|=')dw'.
The filaments positions and dipole moments change according to

Dt = -V(D¥-w)lg, , DY =-V(D¥u)lgy,

2

and can be derived from a Hamiltonian of the form

H(z¥, D%,...,c%, DY)
=Y Diw(zy) = DY -u(z?),

iEu JEw
where the #’s are conjugate to the JD’s such that

. 8H : oH
% =30, DT e

and u(®) and w(=) are given by eq. (6.8). As in two dimensions,
H=[uww=[+-B"

6.2 Canonical Ensemble

Let us adopt a mean-field approximation, in which

_ 47N,

_47er
u=— =

Vv

(D%, w (D).

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)
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If we treat (D") as a given constant and consider D a variable, our partition

function is
=t (D |
Z=|[eVvT dD , (6.14)

and we can find the mean relative orientation of the dipole fields by

8lnZ _ 4NN,

e

(D¥)-(D®). (6.15)

Defining D = Dw-<,i?u>, nofe that
(D) = [(D*)]. | (6.16)

Let us fix the magnitude of a single dipole at D* , and integrate only over the

relative orientation to obtain

(Dp) = DvF (‘”N“ ]T(gm Dw) (6.17)
with
F(z) = ezt +er(etl) -1 coth . (6.18)

z(e~® — e*) 2

An identical calculation in which (D) is fixed gives

(Dy) = D*F (MN“’ (D7) Du) : (6.19)

VT
This result is similar to the expected orientation of a system of magnetic
dipoles. In that case, the parallel component solves D) = F(4D)). When
the temperature drops below the Curie point, this equation acquires a non-
zero solution, and the dipoles align themselves. Our solution is of the form
Dy = F(BF(B.D))). There is likewise a critical temperature below which
non-trivial solutions exist, T, = %*D”.Dw\/]—V:NZ/T/’, as shown in figure 6.1.
The dipoles in these solutions align themselves, with u’s anti-parallel to w’s.
This is the minimum energy state, because it aligns the magnetic moments,

but cancels the kinetic energy that the dipoles carry.
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6.3 Numerical Study

A particle-in-cell code can also be used to study this system in three dimensions.
In this case, we accumulate the dipole density D(=) as defined in (6.7) from
the pa,fticles to a grid, and calculate the fields in Fourier space:

D" -k

— (6.20)

u(k) = 4rD*(k) — 4k

Chefranov [80] produced some exact solutions for two-dipole hydrodynamical
systems, which is identical to a u-w system with one dipole of each type and
5 = 0. We use these solutions as test cases for the three-dimensional code.
The two dipoles have equal and opposite magnitudes D, separated by the
vector 7, both of which lie in the z-y plane. The angle between these two
vectors, ¢, determines the character of the solutions. For cos?¢ < 1/3, the
dipoles approach along a logarithmic spiral, while for cos?¢ > 1/3, the two
dipoles move away, their strengths growing without limit with |D| oc t3/°. The
solutions are indeterminate when the dipoles coincide, so there is no prediction

of what the state of the dipoles will be after the collision.

The predictions we compare with are that, given the value of the Hamil-

tonian, H,
d
—D - r=const. =5H
dt
d 5

Figures 6.2 and 6.3 shows plots of D-7 and r® for two different cases, the
first case the degenerate solution in which D and r are parallel and the dipoles
approach along a straight line, and the second a spiral collapsing case, cos ¢ = 0.
When approaching along a straight line, the dipoles simply move through one
another, but in the spiraling cases, the dipoles appear to interact and scatter
almost as soon as they are within each others’ Gaussian core, moving outward

along a different expanding path.
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Figure 6.2: Plots of D-7 and r° for dipoles collapsing along a line.
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We have run this system for 4096 dipoles of each species in a 16° compu-
tational cube. Dipoles were placed on grid points, and given random orienta-
tions. From such uniform random initial conditions, the system always chose to
evolve a net magnetic field by orienting the u-dipoles opposite that w-dipoles.
Figure 6.4 shows time histories of ID°, the sum of dipole vectors for each species.
The mean dipole strengths of the two species mirror each other, growing in op-
posite directions. The mean alignment angle, (cosf) = <.lA7u><lA7w>, for these
three runs are shown in figure 6.5. The angle approaches m, indicating the net

alignment of v and w dipoles pointing in opposite directions.

A glance at eq. (6.6) shows that there is the potential for exponential
growth of a dipole in a suitable field. Indeed, two dipoles aligned opposite each

other will move directly away from each other, and the magnitude of the dipole
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moments will grow in time without limit. This produces some computational .

hazards once the dipoles have aligned themselves. To study the behavior of
dipoles which begin aligned, we conduct numerical runs in which a dipole is
allowed to change its orientation, but not its magnitude. These runs begin
with u dipoles oriented randomly within a cone pointing in the +2 direction,
w dipoles similarly oriented around —2. This configuration corresponds to a

mean magnetic field in +2 with no net motion of the fluid.

Figures 6.6 and 6.7 show the computational volume of these fixed-
magnitude runs. The initial magnetic field is generally vertical. Plotted in
this volume are surfaces on which B? = 0.7B2_.. Stronger fields are present
within the volume defined by this surface. Initially, B? is within 30% of the
maximum throughout nearly the entire computational volume. The general
attraction between oppositely-aligned dipoles brings w and w dipoles together,
and the magnetic field becomes moxe localized. Finally the magnetic field be-
comes dominantly concentrated into a vertical column. These structures live

for a time and then decay away.




103

-—.——DU _—-DW
60 e \,’: ....... — (.b.)’
40 - //“—
20 [ ’,/’/ .
0 ""” -
-20 - _
.60 o [T Lovviieres ]
0 50 100 150
t t
e (e) —p4 -~ p"

0 50 100 150 ' 0 50 100 160

Figure 6.4: Time histories of the spatial components (a-c) and the magnitude
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magnetic field.
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Figure 6.6: Surfaces of constant B? for fixed dipole magnitude run (a) at initial
time and (b) as the field begins to organize.
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Figure 6.7: Continuation of the run from the previous figure, showing organi-
zation of magnetic field into flux tubes.

106



Chapter 7

Overview

Decades of scientific study of continuous non-linear systems have made plain
"that continuity implies anything but smoothness. Singularities seem always ea-
ger to form in fluids [69, 4], superfluids [3], condensed matter [82], and plasmas
[83, 84, 85, 12, 15], and only dissipation can hold them back. Intermittencies in
a plasma can be brought about not only by fluid motion, but by current run-
ning along stochastic magnetic field lines, as in an tokamak’s “ergodic limiter”
[86], or in coronal loops [87]. Intense intermittencies have profound effects on
the dynamics of turbulence, but ar: not well represented by typical statistical

theories based on a Fourier decomposition of the fluid variables.

It has been asserted [2] that different approaches to discretization of
functional integrations cannot in general be expected to yield equivalent re-
sults. This could explain why Fourier-mode and point-vortex models of two-
dimensional turbulence, while both making similar qualitative predictions, have
not yielded results that correspond exactly even in their continuum limits. The
mathematical inequivalence of a discrete system with countably infinite degrees
of freedom and a continuous system with uncountably infinite degrees of free-
dom is ultimately responsible for the discrepencies, but until a suitable analysis
framework for continuous systems is developed, a choice of discrete represen-

tations must be made, and that choice may ultimately rely on phenomenology.

We have shown that a point-vortex discretization like that of hydrody-

namics is possible in general for MHD. The discrete-vortex model has spawned
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a very wide variety of research (See Hefs. [88, 89, 90, 91] for examples of avenues
of analysis not expounded herein). Quantum-mechanically too, vortex lattices
[92, 93] have received attention for their application to high-temperature super-
conductors [94, 95], as have “anyons” [96, 97, 98, 99], which can be interpreted
as a charged particle attached to a magnetic flux tube. Given the great volume
of research having to do with filamentary objects and vortices, a description of

general MHD in terms of them seems increasingly natural.

In addition, computational constraints provide another motivation. Be-
cause of the tendency of high Reynolds-number neutral fluids to form small-
scale vortical structures, a collection of discrete vortices can serve as a more
economical representation of a turbulent fluid than a usual spectral code [57],
and the fluid thus represented need not necessarily be inviscid. Taylor [100]
has shown that the small-scale diffusive processes in a viscid fluid can be repre-
sented by a point-vortex model if thg vortex strengths are chosen appropriately,
and Carnevale et. al. showed that, with appropriately derived rules for close
encounters between finite-size vortices [40], a discrete vortex model works well
at representing a viscid fluid. Taking an analogous approach to MHD simula-

tions could lead to similarly efficient numerical models of magnetic turbulence.

In constructing a statistical theory, careful account must be made of the
invariants of the system’s evolution, as failing to account for one of the constants
of the motion can completely alter the form of the expected states. For an ideal
fluid, great care must be taken, for there are an infinite number of invariants
of the motion, but most do not survive discrete truncation of the system. In
two-dimensional MHD, three invariants which do survive truncation are the
total emergy, cross-helicity, and mean squared magnetic potential, although
no proofs exist which guarantee that these are the only three. Additional
headaches arise if one wishes to study MHD in the low magnetic-field limit,
in which the magnetic invariants approach zero identically, but the enstrophy

begins to change slowly enough that it should also be counted as an invariant.
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Throughout, of course, careful attention must be paid to time scales. If one
waits long enough, any non-zero magnetic field will destroy the constancy of

the enstrophy, while at the same time, viscous and ohmic dissipation whittle

away at the energy.

We have presented a filamentary model for two-dimensional MHD which
is a Hamiltonian system. The Hamiltonian is equal to the difference between
the (bulk, not thermal) kinetic energy and the magnetic energy, a parameter
that has proven critical in determining behavior in previous theories, and not
unlike the usual plasma §. When this quantity is large and positive, the velocity
field exhibits large-scale structure in the form of two oppositely-rotating vor-
tices at the system’s longest wavelength. In this state, the magnetic field has no
large-scale structure. Conversely, when the Hamiltonian is large and negative,
the stream-function switches roles with the magnetic potential, and the mag-
netic field is organized into two larg::-scale magnetic islands, while the velocity
field does not display long wavelength correlations. As the magnetic field is
reduced in strength, this Hamiltonian approaches that of the hydrodynamical

point-vortex theory, something that is not true of Fourier-based theories.

In three dimensions, a mean-field statistical calculation of singular dipoles
shows that a turbulent magnetic fluid possesses a statistically favorable state
in which there is no net fluid velocity, but a mean magnetic field does arise.
This is reminiscent of Parker’s argument [101] that the formation of filamentary
fields in the convection zone of the sun is energetically favorable. Simulations
bear this out, showing cylindrical concentrations of magnetic field in the com-
plete absence of any driving forces. This statistical theory could help explain
the formation of magnetic flux ropes which form in the strongly turbulent,
high-# plasma of the solar photosphere, and then are carried outward by the
bouyancy force. To the extent that vertical flux ropes in the photosphere can

be represented two-dimensionally, our 2-d filamentary theory could explain the




tendency of these ropes to group together in granules, super-granules, and sun-

spots without resorting to convective forces.

Another link may be made to a recent calculation [102, 103] which shows
that the fluctuation-dissipation theorem applied to a plasma gives rise to zero-
frequency magnetic fluctuations, i.e., magnetic fields which are not necessarily
constant throughout space, but which persist in time. What is remarkable
is that the field does not arise from any driving force, but is simply a natural
feature of the fluctuations around equilibrium in a plasma. In the low-frequency
limit, a kinetic plasma may be descﬁbed by fluid equations, and we can expect
a coupling between the particle temperature and the pseundo-temperature of
the vortices, which can be thought of as a temperature for long-wavelength
magnetic modes. Since the discrete-dipole model also indicates that non-zero
magnetic fields are statistically favored in a randomized plasma, we find this
encouraging. The question of how ffmall magnetic structures come together to
form very large-scale cosmological magnetic structures is also applicable to our

model.
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