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Abstract

The problem of a weak source of particles that forms a distribution function that is
unstable to a discrete number of modes with the electrostatic bump-on-tail instability
taken as a paradigm is considered. Over a wide range of parameters the system pro-
duces pulsations, where there are relatively brief bursts of waves separated by longer
intervals of quiescent behavior. There are two types of pulsations; benign and explo-
sive. In the benign phase, valid when particle motion is not stochastic, the distribution
function is close to that predicted by classical transport theory, and the instability
saturates when the wave trapping frequency equals the expected linear growth rate.
If the field amplitude reaches the level where orbit stochasticity occurs, the particle
diffusion leads to a further conversion of the distribution’s free energy to wave energy.
This leads to a rapid quasilinear relaxation (a phase space explosion) of the distribution
function. Hence the overall response of the system is characterized by a relatively long
time interval where the source needs to build up the distribution to its unstable shape
as well as provide a sufficient amount of free energy for the instability to grow to the
stochastic threshold of particle motion. The parficle distribution is then flattened by

the quasilinear diffusion in a relatively short time interval to regenerate the cycle.
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1 Introduction

When energetic particles are present in a plasma their distribution is either readily pre-
dictable from classical collisional slowing down and scattering processes or, if instability is
sufficiently virulent, the distribution is drastically different from the one that is predicted
from classical theory. To assess when anomalous transport arises when there is instability,
one has to study a self-consistent nonlinear problem for the evolution of unstable modes
simultaneously with the evolution of the fast particle distribution. This generic problem has
been a subject of extensive theoretical studies and one of the motivations for developing
quasilinear theory!? and weak turbulence theory.3~®

This problem has applications to a topic of current interest, the confinement of alpha
particles under ignition conditions when Alfvén instabilities are present.’~'? A steady-state
alpha particle distribution forms as a result of the balance between the weak source of high
energy particles (produced by the fusion reaction) and the slowing down of these particles by
drag with the background plasma. This steady-state distribution has a destabilizing shape
that can cause the excitation of Alfvén waves, via the free energy drive of the universal
instability. The Alfvén waves that are excited are discrete eigenmodes.

With the motivation of the alpha particle problem, we discuss in this paper the following
aspects of the wave-particle interaction: the discreteness of the mode spectrum, damping of
the waves from dissipation of the background plasma, the presence of a particle source, and
the effects from collisions which bring particles to or take them from the resonant region in
a phase space where the particles interact with the waves.

A dominant nonlinear effect in our consideration will be the flattening of the particle
distribution function near the resonances. This means that we will neglect the wave-wave

nonlinear interactions between the modes and will take into account only the mode interac-



tion with the resonant energetic particles. Another interesting part of the problem is whether
one should expect the saturation of the instability at a stationary level or quasiperiodic bursts
of waves.

To attempt to understand this problem clearly we will consider a simpler physical problem
as a paradigm. We study the bump-on-tail instability, where we include the physical features
mentioned above. Namely, the energetic particle distribution is fed continuously, and the
modes have discrete phase velocities approximately given by v,, = w,/kn where w, is the

plasma frequency and k,, = 2rm/L with m an integer and L the plasma length.

2 Saturation of Isolafed Modes

The first question we address is whether to expect a steady or bursting response when only
a single mode is unstable. This problem has been studied in Refs. 10 and 13. In this section,
we reproduce the essence of the arguments preéented there.

The bump-on-tail instability requires the slope of the energetic particle distribution, F',
be positive in the vicinity of the Cherenkov resonance between the particle and the excited

wave, 1.e.
OF(v)

Em >0 (1)

at kv = w, with & the wavé number, w the wave frequency, and v the energetic particle
velocity.

In Ref. 10 a steady-state nonlinear wave was predicted when classjcal relaxation of en-
ergetic particles is accounted for. The solution allows for a balance between the nonlinear
particle instability drive and plasma dissipation. As it was shown in Ref. 13, such a solution
requires the background damping to be sufficiently weak whereas for stronger background
damping rates, the steady-state nonlinear solution is unstable. In this case a new nonlin-

ear scenario emerges. The system no longer maintains a steady-state solution. Instead the




response is that of pulsations.

In what follows we will concentrate on the limiting case where the instability manifests
itself most clearly. Namely, we assume 71, > (74, Ver), Where -z, is the linear growth rate
associated with the distribution function formed from classical relaxation processes in the
absence of excitations, 74 the dissipation rate of the excited wave caused by the background
plasma, and veg is the rate of reconstruction of the unperturbed distribution function after
it has been flattened in phase space by a nonlinear wave. Several mechanisms determine veg.
Frequently, pitch angle diffusion is the dominant process, and in this case veg ~ vw?/w?,
where v is the 90° velocity pitch angle scattering rate, and w; the bounce frequency of
resonant particles trapped in the wave. If drag determines v.g, then veg ~ vyw/w, with
vy the drag rate; while if particle annihilation determines veg , then veg = v,, with v, the
particle annihilation rate.

Let us first suppose that veg > 4. In this case the steady-state solution is appropriate.
In steady state a wave is found where the power, P, which is transferred from the fast

particles to the wave, is given by

Pry (X2 wWE 2)
W

where WE is the energy of the wave. (For electrostatic plasma waves, WE = [§E[?/4,
where the bar refers to time average, 0E is the perturbed electric field, and equal energy
contributions are taken into account for perturbed electric field energy and perturbed kinetic
energy).

Generically, wy is proportional to the square root of the wave amplitude and specifically
for plasma waves wf = (e/m)k|6E|. This power is absorbed by background dissipation,
P; =24, WE. Hence, with P — P; = 0, the saturated wave amplitude satisfies

Wy A w . (3)
Yd



As we assumed 74 < veg, We see that the relaxation process pumps the wave to an amplitude
that gives a bounce frequency higher than the linear growth rate.

If veg < 74, the predicted bounce frequency in Eq. (3) is lower than 4;. In this case '
the nonlinear steady-state distribution function found in Ref. 10 is unstable, basically to the
same linear instability that exists in the unperturbed state. This observation readily follows
from closely examining the response of linear theory. The linear growth rate, 4z, is given by

the following expression:

—2wT €2

1
= Tem Im [ dv = kvav ()

For a smooth distribution function formed in the absence of nonlinear waves, 1, reduces to

2wn? e?
= d 6 kv) . 5
=2 [ o Gos(o - k) (5)
In the case veg < 74, the nonlinear distribution function found in Ref. 10 only differs from
the unperturbed one in a small resonance region where particles are trapped in the wave.

There the distribution is flattened over an area
5Uwa/kEU5. (6)

Outside this region virtually the same F' is obtained as in the unperturbed case. Hence, if
one attempts to evaluate v (w) in Eq. (4), with this locally flattened distribution function,
one finds that though v(wo) — 0 with wq the real frequency of the background oscillation,
the value for « is hardly changed from the value «, found in the smooth case (the difference is
O(ws/vL)). Hence the steady-state solution is unstable for sufficiently large vy, viz., ¥4 > ves.

This result indicates that the nonlinear response i.n the 44 3> veg limit cannot be a steady
state. Instead the following pulsation scenario is envisaged. Suppose the linear bump-on-
tail instability with the smooth F' distribution develops at the rate 7. The distribution

function would initially look like the thick solid line in Fig. 1, just when instability begins.



Then, as basic and straightforward arguments indicate, the wave amplitude will grow until
the bounce frequency of the trapped particles reaches the linear growth rate ;. The wave
flattens the distribution function in the resonant region, which destroys the resonant particle
drive in the manner described by O’Neil** and Mazitov,'® and it is depicted by the thin solid
curve in Fig. 1. However, with background dissipation present, this wave will now damp
according to the equation dWE/dt = —2v,WE. Simultaneously, the classical transport
mechanism attempts to reconstitute the unstable distribution function in the flattened region,
§v/v = wy/w = gL /w, at a rate veg. Thus the time for the wave energy to disappear is 1 /74,
while the time for reconstitution is 1/veg. After a time 1/veg the distribution is again ready
to excite waves to an amplitude where wy ~ 7. During intermediate times 1/vy <t < 1/vg,
precursor instability may arise, for example when the distribution is shaped like the dashed
curve in Fig. 1. Low amplitude saturation will then occur due to particle trapping with a
trapping frequency wp = YrVesgt < 7. However these precursor waves do not destroy the

free energy of the distribution in the velocity range

Wpi w IL
— < |v——< ==
k ‘” kl k

Thus, low level precursor waves are expected prior to the largest “crash.” After the largest
crash, when wy = i, the distribution is again flattened over the interval év ~ |dvy|, with
vy ~ v1/k, and then the process described repeats itself with an overall period v}

The need for a pulsation scenario can also be explained in terms of energy balance, which
shows that it is energetically impossible to sustain a steady excitation level if veg < 4. Over
a long time scale, the average background dissipation can be estimated as y;,WE, with WE
the time-averaged wave energy. This dissipation must be balanced by the free energy that is
brought to the resonant region by collisions. In a time 1/v.g the free energy of the particles
is built up and then converted to the maximum wave energy W Epax determined from the

condition wy = . This free energy comes from the particle distribution and is equal to the



difference in kinetic energy in the distributions (a) and (c) in Fig. 1. Hence the estimate

for the feed power into the wave is veg W E,La. Equating the feed power to the average

dissipative power gives

WE = (”“‘) W B - (1)
"\ | .
Since veg is assumed to be much less than 74, the average wave energy is much less
than the maximum. Such a condition can only be achieved with relaxation oscillations, as
depicted in the solid curves in Fig. 2. However, as previously discussed,'® for veg/vs > .1,

the wave energy saturates at a stationary level WE* = (Vet/Y4)W Emax, as depicted by the

dashed line of Fig. 2.

3 Multiple Modes and Phase Space Explosion

It follows from the previous section that a single unstable mode can only modify the particle
distribution function locally. A different picture may arise when there are many unstable
modes in the system with the fluctuation level exceeding the stochasticity threshold. This
is because particles now really diffuse in phase space and there are no longer barriers to
maintain an overall “inverted population“ in the vicinity of the resonance region. This
regime of the bump-on-tail instability is illustrated in Fig. 3. Below the critical amplitudes
for mode overlapping, the situation is depicted in Fig. 3a, where the distribution flattens
locally in the shaded regions, with an energy release proportional to N S s the number of
modes. The picture changes drastically, as shown in Fig. 3b, when the resonances overlap.
Then all the free energy of the inverted gradient is available to pump the waves to yet higher
levels, and to cause strong particle diffusion.

When the amplitudes of excited modes exceed the threshold of resonance overlap, the

effect of the waves on the particles is described as quasilinear diffusion. The corresponding



diffusion equation for the particle distribution function then has the form:

OF 0 _OF
—67-—%1)—3;-%}74-@(”)- (8)
Here, the diffusion coefficient, D(v), is related to the spectral density of the wave energy,
W(k), by
472 €
D) = T Wiay/). ()
The function W (k) is normalized by
./W@Mk=U (10)

where U is the wave energy per unit volume. The second and third terms on the right-hand
side of Eq. (8) describe the source and the annihilation of the fast particles. We choose
the source, @(v), and the annihilation rate, v,, to meet the requirement that the “classical”

stationary solution of Eq. (8)

p=90 (11)

has a sufficiently large positive derivative 0F/0v to drive the bump-on-tail instability in
the presence of a background damping. In order to simulate the feature that all potentially
unstable modes are in a certain interval of phase velocities ranging from vmin t0 VUmax, We set
D = 0 outside this interval.

After discussing Eq. (8) we will also consider a modified version of this equation in which
the annihilation term is replaced by the collisional slowing down term and the source is

localized outside the area of quasilinear diffusion (at a velocity vy larger than vyay)

OF 0 _O0F 0

In this equation, the effective collision frequency v will be taken to decrease with increasing v
faster than 1/v, to provide an instability of the “classical” stationary solution corresponding

to a constant particle flux in the velocity space ¢, so that Q(v) = ¢é(v — vp):

-2
F=—. (13)
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To Eq. (8), we add the equation for evolution of wave energy,

oW (k)

5 = 27 W(k) =29 W(k) (14)

where the first term with
2,2
y= 2 O
describes the wave excitat.:ion by energetic particles, while the second term takes into account
background damping. The damping rate, 74, is assumed to be much less than the typicdl
linear growth rate produced by the unperturbed stationary distribution (11) at the iﬁterval
(Vmmin, Ymax)- Thus the distribution (11) is strongly unstable. The stable stationary solution

of Eqgs. (8) and (14) differs from (11) due to quasilinear diffusion and is determined from the

following equations:

22 e?v? OF

me, B0 1T 0 (15)
0 _OF
2o D5~ F +Q(v) =0, (16)

By integrating Eq. (15), F(v) is obtained to within a constant. This constant is found by

integrating Eq. (16) from vmin—¢ t0 vmax+€ with the boundary conditions D(v) %—f v=vmate =
D(w)2E| _, _, =0, and we obtain
min .
Umax Ymax
/ voF dv =/ Qdv . (17)
Umin Ymin

With this condition taken into account, the solution for F'(v) is

F = F1 + Fz (18)
where .
Q dv
F = —Zgin —— (19)
/ v, dv
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v dv [vmax vmax
/ Y — / Vo dv — /
mwyp v v Uyt v,

min min min mi

= 2 .2 Umax
2rle / v, dv
v,

min

v d
Vg dv / ~d —1;1
Ymin v

P, L (20)

The ratio of F to Fj is roughly of the order of /4 where vz, is the linear growth rate for
the unstable “classical” distribution function (11). When 4z, is assumed to be much larger

than 44, one can neglect the velocity dependent contribution to F' and then the distribution

/,, 0 dv

F=—m—: (21)

/ v, dv

mi

We now combine Egs. (15), (16), and (9) to find

mv® v
Wiwn/o) = 5o [
D Ymi

mi

is nearly constant,

(Vo F—Q)dv . (22)

For the simplified distribution (21) we obtain

/vaxQd

3 U1

muv Ve

W(w,/v) = Vs o — @ | dv . 23)
’ 2wp Ya /"max / - Ve dvy (

This equation shows that in quasilinear theory the wave energy density W scales linearly
with ). However, when the source is very weak, the wave energy is insufficient to provide
mode overlapping and Eq. (23) is not applicable. In this case, each unstable mode forms
a separate island in the phase space and quasilinear diffusion really does not arise, since
island-to-island transitions are strongly suppressed.

Let us then study more carefully the cases when most of the time there is no mode
overlap. Let E; be the electric field amplitude of the i-th discrete mode. Then the energy

density of this single mode, E?/87, can be estimated as

E} W,
ot NP 2 24
8 ouN w (24)
where NV is the total number of modes. To overlap the neighboring resonances one needs
Av 1
ERE (25)
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where Av is the velocity perturbation of the particle that resonates with the 7-th mode. For

Av we have

Av = v b . (26)

mw
By combining Eqgs. (24)-(26) we find the following criterion of resonance overlapping:

m? v?

Taking into account Eq. (23) we rewrite Eq. (27) as a restriction on the particle source

2
Y4 Mw,

4re? N3y (28)

Q >

We then conclude that quasilinear stationary solution (21), (22) breaks when the intensity of
the source is below the critical value given by Eq. (28). The “classical” stationary solution
(11) is also inappropriate since we have chosen it to be strongly unstable. This indicates
again that the system does not reach a étationary state but rather creates bursts W-hiwch
explosively release the free energy built up by the particle source.

In order to estimate the energy of a burst, we first neglect the particle source and the
wave damping. As long as the excited discrete modes do not overlap (Fig. 3a) each of them
saturates when the bounce frequency of a resonant particle trapped by the mode reaches the

linear growth rate 4. In this regime, one has

Av_2o, (29)

v Wy
As time progresses the source causes the slope of the distribution to build up so that v
increases and Av/v eventually reaches the value 1/N. At this critical value of v, the total
free energy of the unstable distribution becomes available for the burst (Fig. 3b). This energy

can be estimated as the energy that is released through global flattening of the distribution

X w
with v = yee = —]\%:

2,.2 1

m-w.
£ (vmax - vm.in)3

2472 e2 N (30)

Ubu.rst ~ —_——,
Umax + Umin
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This consideration shows that a weak source is unable to build up a particle distribution
with a free energy exceeding the value 'given by Eq. (30).
By comparing Egs. (27) and (30) we may note that the wave energy required for mode

overlapping is much less than Upymst:

Ubu:st (3 1 )

Uoverlap ~ _NT .

Therefore, the burst is well described by quasilinear theory. This theory predicts complete
flattening of the particle distribution within the time of the inverse critical growth rate w,/N.
During a relatively short time the wave ehergy builds up to the level given by Eq. (30). Then
the waves damp at a rate -4, with the distribution function remaining flat since the source is
too weak to change the particle distribution within the damping timescale. The third, longer
phase, is building up the free energy required for the next burst. The time interval, 7, of
the restoration, is determined by the energy balance. Hence, 7y is inversely proportional to

the intensity of the source:

Trst ™~ Qv
It is interesting to note that when vyqiy < 71 the average power transfer from the particles to
the waves is rather insensitive to whether the system reaches quasilinear stationary state or
creates bursts. This result is straightforward to observe when one writes the average power
transfer to the waves, P, as a difference between the power supplied from the source and

the dissipation from annihilation:
— 1 T vmax 2
sz—/ dt/ ™ (Q - v, F)dv
T ) 2 (Q — v, F)dv (33)

where the averaging period, T, is over many burst periods. This expression only depends
on the particle distribution function which, when yai < vz, is close to plateau (19) in both
cases. The bursts of the wave energy are obviously easier to observe than the corresponding

small deviations of the particle distribution function from the plateau. It should also be noted
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that, most of the time between bursts, the distribution function is metastable. Therefore, if
an appropriate triggering mechanism is available, the system bursts before the accumulated
free energy reaches the critical value given by Eq. (30). Such a mechanism occures naturally
in the “slowing down” model described by Eq. (12), as we will now show. |
Proceeding to the analysis of the “slowing down” model, we note that, as the “classical”
solution (13) of Eq. (12) is assumed to be strongly unstable, the constant flux solution of

this equation must incorporate the quasilinear flux:

oF
D—a—v——i-VvF—q. (34)

This equation must be solved together with Eq. (15), and the solution must satisfy a bound-
ary condition that F(v) is a continuous function at v = Ui since otherwise the flux would

be singular at at v = vp,. Then we obtain

F=——2__ . [ w& (35)

" V(Vmin)Vmin 272 €2 v?

2n2e?vlyq ) vvd v dv
D—————————<1—y( ) / Ty (36)

m7d Wy 7-7min)vmin Y min

Using the same arguments as for the annihilation model, we can neglect the last terms

in F and D when the factor va/7z is small. Thus, the solutions (35) and (36) simplify to

- q '
F= (o) o (37)
D= 2r2elviq 1 Vv ‘ (38)
my4 Wp V(Vmin)Vmin

and we note again that the distribution function is almost flat in the range vy < v < Upgax
due to quasilinear diffusion.

Using arguments similar to those used to obtain Eq. (28), we find that the quasilinear
solution breaks down when

< g = W,
1 qmt—7d47re2N3'

(39)
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In this regime, the wave energy comes out in bursts. However, the typical energy of a
single burst differs from that given by Eq. (30). There is a clear trend that the bursts are
initiated near v = vmay Where the time averaged distribution function shown in Fig. 4 has a
discontinuity. Though the distribution function shown in Fig. 4 always has positive slopes
outside the region Umin < ¥ < Umay, it does not excite an instability during a time interval
between the bursts since our model limits the phase velocities of all unstable modes to the
region Vmin < ¥ < Umax. However, the instability eventually starts as the discontinuity in the
distribution shifts to lower velocities due to collisions. The number of particles n* involved
in a single burst can be estimated from the condition of the nonlinear saturation of the mode
at the upper edge of the spectrum which interacts with this discontinuity and periodically

flattens the distribution function near v = vpa. This estimate gives

n*/n ~ (7—L) ” (40)

“p
where n is the plasma density. The burst spreads the particles down to v = vy, releasing

the energy of the order of
max . (41)

The excited waves then damp at a rate 44, and the instability “waits” until collisions bring
a new portion of particles close enough to v = vpacto create a new burst. As before, when
Yerit < YL, the average power transfer to the waves, P,, is insensitive to whether one has
bursts or a truly stationary quasilinear regime. For P,, we have

mu2 v

_— — muv2. vmax
Pw — max min __ / 2_ 7 dv . 49
1 2 1 Vmin my V(Vmin ) Vmin v (42)

It should be noted that the discontinuity which triggers the bursts only exists because the
particle source is located outside the region where waves resonate with particles. A source
located inside this region should not cause direct triggering. In this case a larger free energy,

up to the estimate of the annihilation model, can be accumulated between bursts.
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4 Conclusions

We have considered a system where the distribution of energetic particles is formed from
the balance of a weak source and a weak relaxation mechanism. The resulting steady-state
distribution is assumed to have a shape which tries to destabilize a discrete spectrum of
waves. In the absence of energetic particles these waves are supported by the background
plasma and are weakly damped. This is a generic problem for many physical cases, and in
this paper we discussed in detail the relatively simple case where the waves are electrostatic
plasma‘waves and the beam source forms a bump-on-tail instability.

The critical question in this class of problems is whether the stored energy of the beam
is close to the stored energy predicted by the transport properties in the absence of ‘waves.
Another interesting question is whether one sees a steady noise level or a pulsating re;ponse,
Several scenarios have been described where different noise patterns and stored energy are
obtained.

In one case we obtain a “benign” scenario where there can be bursting, but the stored
energetic particle energy is nearly the same as in the case without excited fields. Then the
discrete modes do not cause stochasticity and the distribution builds up to essentially the
level predicted by instability free transport theory. If the source strength is large enough
stationary steady waves are established. The energy that is being fed to the background
plasma through wave dissipation is coming from the particle source. The main alteration
of the energetic particle distribution function is in the resonance region. Though the dis-
tribution is flattened there, a flux of energetic particles flow through this region because of
classical transport processes.

However, if the source strength is too weak, the source cannot maintain a steady-sf;ate
wave, becaﬁse at perturbed field levels required for saturation too much energy would be

drained by dissipation to the background plasma. In this case “benign” bursts arise that
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only flatten the distribution function locally but the waves cannot tap the overall free energy.
source of the energetic particles. The waves only grow up to a natural saturation level wliere
the bounce frequency of particles in the wave equals the linear growth rate. At this stage, the
local free energy drive is saturated, and no further energy can be extracted from energetic
particles by the wave. Subsequently, the wave damps due to background dissipation, and
a time interval determined by classical transport processes needs to elapse before waves
re-excite. As the resonant particles cannot move beyond the island boundary of the wave,
the overall global distribution function is still close to the one predicted from the simplest
transport theory.

If at the estimated level of wave saturation, where the particle bounce frequency equals
the growth rate, the resonances of neighboring modes overlap, an entirely different scenario
is established. Then particles really diffuse in phase space as described by quasilinear theory.
When instability occurs, the particle distribution rapidly flattens to a new constant value over
the region of phase space that resonates with the allowable discrete modes. For a sufficiently
strong source the noise level can be steady as predicted by quasilinear theory. However,
for a weaker source the system is quiescent most of the time. The particle distribution
builds up from its flattened state until a certain point is reached where the saturated modes
are about to overlap. During this period there can be precursors, but they just lead to
the benign saturation previously described, with the overall increase in the distribution
function continuing as if there were no oscillations. However, near the point of criticality
often determined by mode overlap, the distribution will “explode,” and again relax to the
flattened quasilinear state, where the cycle repeats. Sometimes the critical point can be
determined by other trigger mechanisms.

The characteristic growth and damping rates are: +,; the damping rate of the background
plasma, 7 the growth rate of the instability as predicted from classical traﬁsport, and 7.

the growth rate when overlap occurs. For simplicity we have assumed v4 < vr. If 7. < 7L
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we showed that the average properties of the particle distribution is the same for the case
when steady-state quasilinear theory is applicable or when the bursting scenario applies.
However, if 4./7z is a finite number (less than unity) there can be considerable difference
in the average properties of the bursting scenario compared to the prediction of quasilinear
theory. We define the overall free energy, W F', as the difference between the energy stored
in a steady-state distribution and the stored energy of the flattened distribution (the latter
energy is essentially the energy predicted to be stored in the quasilinear calculations). If
mode overlap is the trigger mechanism, then the average free energy that can be stored
in the bursting scenario is roughly W F~./2vr. If v./v. < 1, very little free energy can
be stored. However if 4. & 71 the system can store an energy comparable to the classical
prediction, just before the explosion flattens the distribution function. Between explosions
the system builds up to the critical state.

The application of this picture to more complicated problems, such as Alfvén instabilities,
is clear. An analysis for the parameters of this problem has been discussed elsewhere.!® In the
Alfvén problem, the classical transport mechanisms involve drag and pitch angle scattering
in velocity space, whereas the quasilinear relaxation primarily involves spatial diffusion.
The phase space explosions then imply rapid radial diffusion, which can lead to direct and
rapid energetic particle loss to the plasma edge. Such an interpretation is quite compatible
with experimental observations.!”'® Specific predictions as to how alpha particles evolve
for a given case will require determining the detailed instability growth rates for the mode
spectrum as well as analyzing the mechanisms for particle resonance. Work is in progress
to develop quantitative models for the alpha particle confinement when Alfvén instabilities

exist.
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Figure Captions

1. Time behavior of the bump-on-tail distribution function near the resonant mode phase
velocity. The thick solid curve (a) indicates distribution just before its relaxation;
the thin solid curve (c) is just after the relaxation; and the dashed curve (b) is at an

intermediate time during which the distribution is being reconstituted.

2. Relaxation oscillations. If veg < 74, relaxation oscillations arise as shown by solid

curves. If veg > 74, the wave energy saturates in steady-state at a level WE* =

(Veff/')/d)WEmax-

3. Effect of resonance overlapping. In (a) modes do not overlap, and the relaxed dis-
tribution just has local flattening, with the general shape of the inverted equilibrium
distribution preserved. When there is mode overlapping as in (b), the distribution flat-
tens completely over the entire spectrum, with a much larger conversion of free energy

to wave energy.

4. Stationary distribution function formed by quasilinear diffusion in the “slowing down”
model (solid line). “Classical” stationary distribution is shown by the dashed line.
When the particle flux is very small, the discontinuity in the distribution function
at v = Umax triggers bursts of the wave energy. The shaded area corresponds to the

particles which initialize the bursts. The density of these particles is given by Eq. (40).
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