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DRIFT WAVE COHERENT VORTEX STRUCTURES
IN INHOMOGENEOUS PLASMAS

Publication No.

Xiang Ning Su, Ph.D.
The University of Texas at Austin, 1992

Supervisor: Wendell Horton

Nonlinear drift wave vortex structures in magnetized plasmas are studied the-

oretically and numerically in the various physical environments.

The effects of density and temperature gradienté on drift wave .vortex
dynamics are analyzed using a fully nonlinear model with the Boltzmann den-
sity distribution. The equation, based on the full Boltzmann relation, possesses
no localized monopole solution in the short wavelength (~ p;) region, while in
the longer wavelength (~ (p,,)'/?) region the density profile governs the ex-
istence of monopole-like solutions. In the longer wavelength regime, however,
the monopoles can not be localized sufficiently to avoid coupling to propagat-
ing drift waves due to the inhomogeneity of the plasma. Thus, the monopole
vortex is a long lived coherent structure, but it is not precisely a stationary

structure since the coupling results in a “flapping” tail. The tail causes energy
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of the vortex to leak out, but the effect of the temperature gradient is to reduce

the leaking of this energy.

Nonlinear coherent structures governed by the coupled drift wave -
lon acoustic mode equations in sheared magnetic field are studied analytically
and numerically. A solitary vortex equation that includes the effects of density
and temperature gradients and magnetic shear is derived and analyzed. The
results show that for a plasma in a sheared magnetic field, there exist the
solitary vortex solutions; however, the solutions are not exponentially localized
due to the presence of oscillating tail that connects to the core of the vortex.
The new vortex structures are dipole-like in their symmetry, but not the modon
type of dipoles. The numerical simulations are performed in 2-D with the

coupled vorticity and parallel mass flow equations.

The vortex structures in an unstable drift wave system driven by
parallel shear flow are studied. The linear instability is analyzed. The nonlinear
solitary vortex solﬁtions are given and the formation of the vortices from a
turbulent state is observed from the numerical simulations. A scenario for the
self-organization processes in the turbulent state has been established. The

effect of magnetic shear on the self-organization process is also investigated.
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Chapter 1

Introduction

1.1 Historical Review and Overview

For decades, the fluid in a rotating environment has attracted a great
deal of attention from many geophysicists and astrophysicists. It was J. G.
Charney [1948] who first studied the low frequency dynamics of the atmo-
spheric and oceanographic planetary waves on a rotating planet with planetary
rotational frequency being much higher than the wave frequency. He derived
the so-called Charney equation in geophysics. The planetary waves described
by the Charney equation are called Rossby waves, named after the Swedish
geophysicist C. G. Rossby, who first. showed that the waves play an important
role in global atmospheric circulation process [Rossby, 1939]. The Charney
equation, which is also called the barotropic vorticity eqﬁation, has an exact,
localized, and finite amplitude solution first found by Larichev and Reznik
[1976). This solution also is called a modon and has the form of a stationary
dipole vortex traveling in the direction perpendicular to the equilibrium inho-
mogeneity. The solitary vortex structures have been observed in the oceans and
in planetary atmospheres, for instance, synoptic vortices in the earth’s oceans
and so called blocking structures in the atmospheres. The most phermenal
example of a localized long-lived planetary vortex is the Great Red $pot on
Jupiter.' This atmospheric vortex, which is significantly larger than the earth

in diameter, has been observed for about 300 years. In terms of 10.5 hours day




of Jupiter this is a life time of 250285 rotations. The vortices also have been
successfully simulated in many rotating water tank experiments in laboratory
[Philips, 1965; Platzman, 1968; Holton, 1971; Antipov et al., 1982 and 1983;
Nezlin, 1986; Sommeria et al., 1988; Meyers et al., 1989].

In 1977, Hasegawa and Mima noticed the similarity between the
Rossby wave in the atmosphere and the drift wave in magnetized plasmas and
derived the so-called Hasegawa-Mima equation [Hasegawa and Mima, 1977 and
1978; Hasegawa et al., 1979). The H-M equation has exactly the same form
as that of Charney equation. Physically the drift waves in a spatially non-
uniform magnetized plasma are analogous to the Rossby waves. The analogy
will be demonstrated in the next section of this chapter. It is perhaps to be
expected from this analogy that the Rossby wave vortices observed in nature

and experiments should exist in a magnetized plasma.

Since finding the modon solution for the Charney-Hasegawa-Mima
equation, many physicists have found similar modon solutions for various col-
lective modes in magnetically confined plasma [Makino - [, 1981; Taniuti
and Hasegawa, 1982; Meiss and Horton, 1983; Pavlenko and Petviashvili, 1983;
Mikhailovski et al., 1984; Shukla et al., 1985; Horton et al., 1986; Liu and
Horton, 1986]. However the systems dealt with in all these works are homoge-
neous or quasi-homogeneous plasma systems. In the late sixty’s, Buchel’nikova
et al.[1967] and Hendel et al. [1968] experimentally showed that for low tem-
perature plasmas (7 < 1ev) produced under the condition of Q-machine the
development of the drift wave instabilities results in regular drift wave struc-
tures of a form of saw-toothed shape like a train of solitons. However the

experimentally observed drift wave structures appear to be monopole vortex



form. These observations can only be explained in an inhomogeneous plasma
system. Petviashvili [1977] analyzed the nonlinear drift wave with the inclusion
of a temperature gradient and showed that the monopole solitary solution can
be found when the temperature gradient is included. It follows, from his works,
that the necessary condition for the existence of such monopole structures is
the presence of an electron temperature gradient. However the Buchel’nikova
et al.[1967] and Hendel et al.[1968] experiments showed that such monopole
vortex structures still exist in the absence of the temperature gradient. (In
the Q-machine the uniformly heated end plate maintains constant electron
temperature over the radius of the plate.) This paradox remained unsolx}ed
until about 10 years later. In 1987, Lakhin et al.[1987 and 1988] and Hori-
hata et al. [1987] carefully studied Petviashvili’s model [Petviashvili, 1977] and
found that the model is incomplete and inconsistent with Ertel’s theorem [Er-
tel, 1942; Pedlosky, 1979], the basic conservation law of potential vorticity.
The authors showed that monopole vortices exist only when the drift velocity
is non-eonstant, that is, has spatial variation. The spatial variation of the drift
velocity adds a shear to the diamagnetic drift velocity and the shear flow causes

the formation of monopole vortices.

However all the previous works failed to consider the effect of the cou-
pling between the vortex and propagating drift weves. The coupling is a natural
result of the inhomogeneity in the plasma. In this dissertation, the author will
extend the previous theory, study the mechanism of formation of monopole vor-
tices, and re-investigate the effect of inhomogeneities in the plasma on the drift
wave vortices, especially the coupling between the vortex and the propagating

drift waves.




For a long time, the effect of magnetic shear on vortex has been
considered a difficult problem. In 1983, Meiss and Horton [1983] have studied
the problem. However they considered the weak magnetic sheared field limit
and treated the shear as a linear exterior perturbation to the vortex structure.
In fact, even though there are many nonlinear vortex solutions for various
collective modes today, there are still no solutions that include the magnetic
shear of order unity. In this dissertation, the author will explore the problem
theoretically and numerically and give a new coherent vortex structure governed
by the coupled drift wave and ion acoustic wave equations in non-uniform

plasmas with sheared magnetic fields.

The dynamics of nonlinear drift waves has been subject of inten-
sive studies since these waves are regarded as responsible for the anomalous
transport in plasmas. Hasegawa and Mima used the H-M model [Hasegawa,
and Mima, 1977 and 1978] to explain the high level of density fluctuations
and the broad frequency spectrum observed in a tokamak [Surko and Slusher,
1978]. Since then, many properties of drift wave turbulence have been revealed:
the spectrum evolution is characterized by an inverse cascade [Hasegawa and
Wakatani, 1983], and the wavenumber spectrum of energy obeys the Kraichnan

k=% law [Kraichnan, 1967], as examples.

On the other hand, the H-M equation, as stated earlier, has exact
dvip<.)le vortex solution referred to modons. These modons have been shown to
be fairly stable against collisions and perturbations [Makino et al., 1981; Seyler
et al., 1975]. Thus the H-M equation is anticipated to link strong turbulence to
self-organized motions. Similar phenomena of the self-organization have been

demonstrated in two-dimensional hydrodynamic turbulence [Seyler et al., 1975;



Hasegawa, 1983] and in MHD turbulence [Montgomery et al., 1978; Hassian
et al., 1985). Another approach to the description of the drift wave turbulence
was given in Hvorﬁon [1976], in which the dissipation in the electr’o.n response
provides both the sources of the turbulence through the dissipating drift wave
instability and the nonlinear saturation through the so-called E x B nonlinearity
in the continuity equation. The dissipative drift wave turbulence is analyzed
in Horton [1986] where it is shown that the structures of dissipationless H-M
type are recovered when the dissipation parameter (¢6;) vanishes (or becomes

sufficiently weak).

In this dissertation, the author will pursue the subject and study the
formation of a coherent vortex structure through turbulence in the course of the

nonlinear development of the toroidal or parallel shear flow driven instabilities.

1.2 Analogy between Rossby Waves and Drift Waves

There is a profound analogy between Rossby waves in shallow rotating
fluids and drift waves in plasmas, confined transversely by a strong longitudinal
magnetic field. In the dissipationless limit the basic model equatlon for drift
waves in plasmas is the Hasegawa-Mima equation, given by Eq. ( ?4.’/) in the
next chapter. The same basic nonlinear wave equation describes the slow,
nearly incompressible motions of shallow rotating fluids. In the case of drift
waves the Lorentz force plays a role analogous to that of the Coriolis force on
rotating system. The fundamental correspondénce follows from low frequency
disturbances where the vector cross-product forms of the accelerations, V x B
and 2V x §2, respectively, dominate the dynamics. The drift waves appear as

a result of the transverse (relative to the magnetic field) non-uniformity of the




Table 1.1: Analogy between drift wave and Rossby wave

Drift Wave

Rossby Wave

H-M equation:
(1=V)% + 0,52 —[p, V2] =0

(1

Charney equation:
Vz)ah + vR —% —[h, V3R] =0

Electrostatic potential: L,o(x y,t)
o(z,y,t) = (52)e®(%, L, 1)/ Te

ps’ ps?Th

Variable part of fluid depth: A(z,y,1)
h(z,y,t) = (%ﬁ‘

Z ¥ Cg
pr’ PR’ LR

)6h( t)/H

Lorentz force: m;ws,vy X Z

Coriolis force: pfvy x 2z

E x B drift flow: V, =(5)2xV®

Geostrophic flow: V; = (3‘?,-)2 x V8h

where T, is electron temperature.

Cyclotron frequency: we; = CCTET Coriolis parameter: f

Drift coefficient: r;* = —;—xenno Rossby coefficient: L7 = %Kn(-}é)
Larmor radius: p; = = Rossby radius: pp = Efg_

Ion acoustic speed: ¢, = (Z=)/? Gravity wave speed: ¢, = (¢ H)'/?

where H is depth of fluid layer.

Drift velocity: vy = ¢, psz%fnno

Rossby velocity: vg = cng;—zZn(-}f;)

Dispersion relation:

kyrg

Y= TrRe

Dispersion relation:

_ _kyvr
w= l+k2p§R




electron temperature or plasma density, just like Rossby waves appear owing to
the transverse (relative to the local angular rotation velocity € of the system)
non-uniformity of the Coriolis parameter f = 2 -+ Z or depth of the fluid H.
The spatial scale of the dispersion of drift waves is the “Larmor radius, p,, of
the ions at the electron temperature,” analogous to the Rossby radius pg, and
equal to the ratio of the ion acoustic speed ¢, to the ion cyclotron frequency w;,
while the w,; is analogous to the Coriolis parameter f. Here the ion acoustic
speed ¢, is analogous to the gravity wave speed ¢,. The analogy of the drift
: vélocity vy 1s the characteristic Rossby velocity vg. Based on these facts, it is
understandable that the dispersion relation for drift waves is analogous to the

relation for Rossby waves. : I

It follows from the indicated analogy between the two types of waves
that, analogously to the hydrodynamic Rossby solitary vortices observed ex-
p,érimentally, the drift wave solitary vortices should also exist in a magnetized
plasma. The detail corréspondences of the analogy are listed in Table 1.1. Tt
should be noted that in plasma physics the direction of inhomogeneity is taken

in z, while in geophysics it is taken in y.

1.3 The Drift Wave Mechanism and Vortex

To illustrate the drift wave mechanism, we éonsider a dense an;l colli-
sionless ion column confined in a constant and uniform magnetic field B = Byz
as shown in Fig. 1.1. The positive charged ion column causes a radial electric
field E = —V®. The background plasma has density gradient along negative
x-direction. The radial electric field E and the magnetic field B cause the ion

column to produce a E x B rotation Vgyp = (¢/BZ)E x B around the axis of




Y Vno(x)

Figure 1.1: The demonstration of drift wave mechanism.

the column. The rotation rate can be calculated by Qf = (¢/ Bo)kyky®y for a
structure characterized by wave numbers (k,, k,) and amplitude ®;. We call
this rotation rate characteristic nonlinear frequency since it depends on the

amplitude of &, the electric potential of the structure of size 7 /k.

On the other hand, the non-uniform background plasma causes linear
drift waves that propagate along the y-direction and have linear drift wave
frequency wy = kyva/(1 + k*p2). The ratio of the nonlinear frequency or vortex
rotation rate Q5 to the linear frequency wy is defined as the dissipationless

E x B Reynolds number Rz and is given by

i QE(]C) C‘I)k
RE = Tk— d kzrn(-i—) .

Therefore it is understandable that when Rg < 1, the dispersion of the wave

packet dominates and only when Rg > 1 vortex structures can be formed.



Figure 1.2 is an example comparing the linear Ry << 1 behavior with the
stroﬁg nonlinear Rg ~ 10 >> 1 propagation of the same size initial disturbance
which clearly shows the self-binding effect. Figure 1.2 shows that in contrast to
émall amplitude drift waves that spread out and lose strength as they travel as
seen in Fig. 1.2(a), the solitary drift wave vortices are coherent, self-sustaining

packets that retain their strength over long time intervals and distances as they

travel as seen in Fig. 1.2(b).

The most commonly seen vortex structures are monopole and dipole
vortices. The monopole vortex represents a net excess in the local charge
density and is the natural, finite amplitude solution in the presence of a sheared
flow, and the dipole vortex represents a local charge polarization in the local
plasma density and is the natural, finite amplitude solution in the absence of a
sheared flow. The dipole is usually seen to be produced in the turbulent wake of
a 2-D fluid flowing past an obstacle and can be also formed through pairing or
coupling of two monopole vortices with oppdsite rotational orientation [Couder
and Basdevant 1986; Horton 1989]. The properties and interactions of both the
monopole and dipole vortices-have been studied previously”by many authors
[Seyler et al. , 1975; Makino et al., 1981; McWilliams and Zabusky, 1982;
Horton, 1989]. It is believed that the interactions of the long-lived and particle-
trapping vortex structures play an important role in anomalous transport of

plasmas.
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Chapter 2

Effect of Temperature Gradient Induced KdV
Nonlinearity on the Modon Vortex Solution

2.1 Introduction

It is well known that the dipole vortex is an exact solitary wave
solution to the dissipationless Hasegawa-Mima (H-M) drift wave equation
[Hasegawa and Mima, 1977 and 1978], which in the fluid mechanics literature

is referred to as the Rossby wave equation

0 0 '
(1-V)5 +vd5§ — [0, V¥g] = 0 (2.1)

where
dp V%  dp V3
2 T — — e —
[, Vil = dz Oy dy Oz

is the Jacobian between the electrostatic potential ¢ and the vorticity { = V2.
The Jacobian is also called as the Poisson-bracket or véctor nonlinearity. This
type of nonlinearity is known to facilitate the formation of robust monopole
and dipole vortices [Makino, 1981]. Recently, there have been numerous stud-
ies of this type of nonlinearity and the resulting vortex dynamics [Makino
et al., 1981; Taniuti and Hasegawa, 1982; Meiss and Horton, 1983; Pavlenko
and Petviashvili, 1983; Mikhailovski et al., 1984; Shukla et al., 1985; Horton

et al., 1986; Liu and Horton, 1986]. However, a more comprehensive theory

11
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includes the nonlinearity as given in Eq. (2.1), together with KdV or scalar
type nonlinearity, a term proportional to ¢ d¢ /0y as given in Eq. (2.2) in the
next section which was first introduced by Petviashvili [1977] in the case of drift
waves. The Petviashvili model has recently been criticized by several authors
[Lakhin et al., 1987 and 1988; Horihata and Sato, 1987; Laedke and Spatschek,
1988; Nycander, 1989] because of a lack of consistency with Ertel’s theorem
[Ertel, 1942], the basic conservation law of potential vorticity of the flow. This
issue will be addressed in Chapter 3. But more recently, Spatschek et al. [1990]
used a new space/time scale ordering and amplitude scaling to develop a model
that has the same form as the Petviashvili model. Therefore it is worthwhile to
use the Petviashvili model to further study vortex dynamics since this model
~ is simple and clear for investigation and demonstration of the effect of scalar
or KdV nonlinearity on the dipole vortex and the stability of the dipole vor-
tex structures. In this chapter, we will use the model to investigate how this
scalar nonlinearity affects the evolution of the dipole vortex. Due to the pres-
ence of the scalar nonlinearity, the dipole vortex is no longer an exact solution.
We will analytically and numerically show that the modon-type vortices of
Larichev and Reznik [1976] are structurally unstable to the addition of a small
amount of the scalar or KdV nonlinearity which arises from the electron tem-
perature gradient. We will demonstrate numerically that even a small amount

of the scalar nonlinearity can have important consequences for the vortices.

Hydrodynamic experiments by many scientists [Antipov et al., 1982
and 1983; Nezlin, 1986] have shown that there is a rather rapid transition from

a dipole vortex pair to isolated monopole vortices. This transition we argue
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arises as a result of the competition between the vector and the scalar non-
linearities. From the analogy between the Coriolis force dynamics describing
Rossby waves [Rossby, 1939] in rotating hydrodynamics and the Lorentz force
dynamics describing drift waves in a magnetized, inhomogeneous plasma, we
expect that the splitting process of the dipole vortex into monopoles should
also occur in a plasma for solitary drift waves. It is, therefore, worthwhile
to numerically simulate the dynamics of dipole vortices incorporating a small
scalar nonlinearity, and thus to investigate how the scalar nonlinearity splits

up the dipole.

This chapter is organized as follows: in Sec. 2.2, we give the equation
of the simulation model and present its conservation laws. Exact monopole so-
lutions are presented in Sec. 2.3. In Sec. 2.4, we describe how the dipole vortex
splits up and give simulation results on the evolution when the dipole vortex
pair is the initial state. Section 2.5 gives the summary and the conclusions for

Chapter 2.

2.2 Model Equation and Conservation Laws

We consider a plasma in a uniform external magnetic field in the
z—airection. The gradients in pIasma density dfnno/dz and the electro‘n tem-
perature 7 = dén T, /dén n. are along the z-axis, the diamagnetic drift velocity
vg = —(cT./eBo)dinno/dz is along the y-axis. To describe the dynamics of

the potential drift waves in such a plasma, we consider the contribution of

‘the electron and ion polarization drifts to the density equation and we use the
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condition of quasi-neutrality of perturbations. One can thus derive the follow-
ing simplified model equation [Petviashvili, 1977 and 1980; Williams, 1978 and
1985]

Jp Op
— 2 — ———
(1°)m+ww

+ awg—j +[Vp,0] =0 (2.2)
where a = vgne = ps/rr. , ¢ = e®/T. , ® is electric potential in volts, p, is
the ion Larmor radius with electron temperature T,, rr, is the characteristic
length of the plasma temperature inhomogeneity, space and time variables are
normalized by p; and the ion cyclotron frequency, respectively. All the terms in
Eq. (2.2) except the KdV term ay 0p/0y are order of unity and the ap dp/dy
term is order of p;/rr.. The analyses in the later sections of this chapter shows
that existence of a small amount of KdV term makes the dipole vortex solutions
of H-M equation structurally unstable and gives rise to a new type of vortices,
the monopole vortices. Therefore, as a consequence, the KdV term is kept in
Eq. (2.2). For — 0 the time scale associated with the nonlinear dynamics
from the KdV term becomes long as txg4v ~ vg/pmax. For sufficiently small «

this time scale can be longer than the lifetime of the experiment or the viscous
damping time scale.

Rossby waves in rapidly rotating shallow neutral fluids also satisfy
Eq. (2.2) with the scalar nonlinearity which arises from variations in the depth
of the fluid and the [VZy, ] nonlinearity which arises from the convective

acceleration v - Vv of the fluid.

For weakly inhomogeneous plasma, p,/rr, is small compared to unity

and thus the scalar noulinearity, i.e. the « term is typically neglected, where-
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upon Eq. (2.2) reduces to Eq. (2.1). If we keep the scalar nonlinearity, then
the ﬂipole vortex is no longer an exact solution. For small p,/rr,, however,
the dipole vortex is a good solution over short period of time. In the following
we show that this small & term splits the dipole vortex into two monopoles of

opposite sign.

Consider now the conservation laws of Eq. (2.2) after the scalar non-

linearity is added.

1. Equation (2.2) can be rewritten as

dp _0Vyp ap® ozl (,.
b v [ v +<udso+ P )5+ (Voxa) Ve =0, (23)

Equation (2.3) represents the conservation of mass in the two-dimensional

system. The net excess mass is proportional to [ ¢dzdy.

2. Multiplying Eq. (2.2) by ¢, we derive the following equation

e 15 1 3\o O 2 [= @ _

where

e(z,y,t) = % [¢* + (V)]

is the local energy density. Equation (2.4) gives the energy conservation
law.
3. Multiplying Eq. (2.2) by z, we get another constant of motion,

I(zy) { e\ ap®\ | |Vel*l, O
g TV o\ )X e et o | Y g v

_ O(zV) .

S+ a( Vi a)v%a] -0 | (2.5)
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giving the conservation law for the = coordinate for the center of mass.

The above three constants of motion are used in the simulation to

observe the accuracy of the numerical integration of Eq. (2.2).

We also notice that the conservation of the potential enstrophy which

is defined as
U=((Ve) + (V%))

is broken for o # 0. Here we use the angular bracket < --- > to define the

area integral over the relevant domain,

<F> = [ [ dzdy F(z,y).

In some cases it is convenient to normalize the area integral.

2.3 Exact Monopole Solutions

In order to interpret our results we first present exact monopole solu-
tions to Eq. (2.2). Assuming a traveling steady-state solution ¢ = ¢(z,y — ut),
Eq. (2.2) becomes

0 0 0
—u(l— VZ)-a—Syo + vdéi;— + a(,oa—(; + [VZp,0] = 0. (2.6)

For axisymmetric monopoles, @o(r,0) — o(r) and [p(r), VZp(r)] = 0, leaving

1d [ do) a
rdr (TE;) _4k90_2 ? (27)

where

B = i- (1-%). (2.8)
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(Introducing of the factor 4 is , of cause, somewhat arbitrary. We follow this
convention since it was introduced in the literature.) Defining ¢ = pm1(£),

where ¢ = kr, Eq. (2.7) becomes the following in terms of %:

%  1dyp 9
i o woe. (2.9)

Here we have set
_ 12yuk?

[0

O (2.10)

where « is a constant that remains to be determined.

We compare Eq. (2.9) to the analogous equation for one-dimensional
solitary drift waves that are solutions of the regularized long-wave equation

[Meiss and Horton, 1982; Morrison et al., 1984],

P — ¢yyt + 'Ud¢y + a¢¢y =0. (211)

This equation is the one-dimensional restriction of Eq. (2.2). Inserting ¢ =

om¥ (k(y — ut)) yields

dp o
Pl 4eh — 69 (2.12)

where ¢ = k(y — ut), k2 = 1 (1 —vs/u) and pm = 12uk?/a. For k* > 0

Eq. (2.12) possesses the well-known soliton solution

¥ = sech *¢ .

It is apparent that the monopole speed-width relation, Eq. (2.8), is
identical with that for the one-dimensional case. But, the amplitude relation

of Eq. (2.10) differs by the presence of v, which also occurs in Eq. (2.9), the
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equation for the shape of the monopole. This later equation, together with the

boundary conditions

ﬁilb_(f =0)=0 lim —— = -2 (2.13)

dg
and the condition ¥(¢ = 0) = 1 defines a nonlinear eigenvalue problem for 4.
Physically, the eigenvalue is the amplitude of the monopole. Nurnericélly we
obtain v = 1.5946; the shape of the eigenfunction defined by this procedure is
shown in Fig. 2.1. In our computations we set 4 to unity and then vary the
value of 1 and dy/d¢ at large values of £, consistent with the second equality
of Eq. (2.13), until dip(§¢ = 0)/d€ = 0 is achieved. This yields (¢ = 0) = 7.
Fihally, scaling ¥ (¢ = 0) by v then gives the desired result.

The above calculation is only valid for k2 > 0, which implies u > vy
or uvy < 0. In light of Eq. (2.10) positive velocity (uvg > 0) monopoles have
@m > 0. These are called anticyclones since they are regions of high density and
pressure. The negative (uvg < 0) velocity monopoles have negative ¢,, and are
called cyclones and have low pressure center. In the case k? < 0 neither the two-
dimensional Eq. (2.9) nor the one-dimensional Eq. (2.12) possess exponentially
localized solutions. When k% < 0 the wave structure propagates energy with
speed u where 0 < u < vy, and in two-dimensions, there is a weakly localized
oscillatory (outgoing radiation) solution where the amplitude decays as £-1/2

to conserve the flux of wave energy in two-dimension.
~ In Fig. 2.2 we plot solutions to Eq. (2.9). All of these solutions have
dp(€ = 0)/dé = 0. For ¥(é = 0) > « the solution diverges to —oco. Solu-

tions with 0 < %(£ = 0) < v are homoclinic to ¢ = 2/3. These nonlinear
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b

- Figure 2.1: Plot of the solitary wave solution of Eq. (2.9)
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Figure 2.2: Solution of Eq. (2.9) with ¢/(0) =

Curve 1 has #(0) = 1.35. Clurve 2 has ¥(0) = v (as in Fig. 2.1); it is homoclinic
to zero: (r = o) = 0. Curves 3 and 4 have 1»(0) = 1.3 and ¥(0) = 0.1,
respectively. These, like all solutions withy > w(0) > 0, are homoclinic to 2/3.
When lowered by 2/3 these represent wave-like or radiation solutions. Curve 5

has y(0) = -0.1.
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oscillatory solutions are the radiation solutions mentioned above and describe
finite amplitude cylindrically symmetric waves propagating with speed u such
that 0 < u < vg, that is, k? < 0. Mathematically, these finite amplitude wave

solutions can be “pulled down” by the following symmetry relation:

8uk?

P(=k?r,0) = p(k*r,0) — —

If o solves Vi — 4k%p + ap?/2u = 0, then P solves V*@ +4k*G + o /2u = 0.
Thus, Fig. 2.2 compactly displays both the localized solitary wave and the finite

amplitude radiation solutions.

Additional symmetries of Eqs. (2.1) and (2.2) are as follows: For every
solution of Eq. (2.1) ¢(z,y,t) there is a solution — ¢(—z,y,1) (ie., Eq. (2.1)
has the symmetry ¢(z,y,t) — —¢(—=z,y,t).) This symmetry is lost when the
scalar nonlinearity is added to the equation. This antisymmetry in z is the
property possessed by the dipole vortex solution given in Eq. (2.14). When the
scalar nonlinearity is added there is no symmetry for a given ¢, but for the two

different equations with « and —a there is the symmetry relation

(P(_a;may’t) = —Lp(a,—x,y,t) ‘

Thus a small, finite « lifts a degeneracy in the o = 0 equation.

2.4 Dipole Vortex Splitting into Monopoles

The dipole vortex solution [Larichev and Reznik, 1976; Flierl et al.,

1980] possessed by Ecq. (2.1) in the absence of scalar nonlinearity (a = 0) is
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given by
k*ry Jy(pr) k?
[’"pzrm+ 1-}-;5 urcosf (r < ro)
o = (2.14)
[(1(1{:7')
urol{l(kro) cos 8 (r > ro)

where r? = 2% + (y — ut)?, u = vy/(1 — k?), z = rcosf, and y = rsinf. The
parameters p and k are related by

_L.[(g(k’l‘o) _ 1 Jz(pro)

kro Iy (kro) B pro Ji(pro) ’

which follows from continuity of the flow velocity v =2 x Vi across r = ry.

Previous simulation studies of Eq. (2.2) by Mikhailovskaya [1986],
with Eq. (2.14) as the initial state, indicate that when « # 0, the dipole vortex
rapidly separates into pieces moving in opposite directions away from their
initial positions. The radius of the anticyclones (¢ > 0) increases slightly, but
the amplitudé decreases and approaches a circular shape. Cyclones (¢ < 0),

are observed to gradually decay into small vortices that finally disappear.

We find a different result. From our calculation and simulations,
we conclude that when a # 0, the dipole vortex pair splits into both the

anticyclone and the cyclone monopoles, which maintain their integrity.

In order to interpret our results and to understand the discr‘epancy
with Mikhailovskaya’s results [Mikhailovskaya, 1986] we use the amplitude and
width-speed relations defined by Eq. (2.10) of Sec. 2.3. From Egs. (2.8) and

(2.10) we obtain the following speed for anticyclones:

w=uy+ ag’:”' (2.15)
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while for cyclones, ¢,, < 0, and the speed is given by
i = vy — 2Pml (2.16)

where exponential localization requires a|¢,| > 3vyvys. The anticyclone and

cyclone propagate with different speeds, the relative speed is

Cuy —u_ = alphl/(39) + alenl/(3y) -

This result explains why the initial dipole vortex pair will split apart into two
isolated monopoles with opposite signs. The time scale for the breakup of the

dipole vortex can be estimated from

At ~ 3rov/(2epm|) - (2.17)

-

~ This relation is observed by our simulations.

To solve Eq. (2.2), we use high order Runge-Kutta time stepping and
the Fourier transformation (z,y) < (kz,ky) at each time step on a uniform
grid over k; and k, in 85 x 85 k-space with 3612 complex ¢x(t) modes using
" the 128 x 128 FFT. The constants of motion in Sec. 2.2. are used to monitor
the accuracy of the numerical integration of Eq. (2.2). They, in fact, remain
~constant within the fraction 10~3 during the simulation experiments. The
initial perturbation ((z,y,0) is taken to be the dipole vortex given in Eq-(2.14)
with ro = 6(ps), u = 2vg and vy = c,ps/rn. Typical simulations use twenty

minutes CPU on the CRAY-2 for At =100r,/c,.

We studied two cases with o = 0.01 and a = 0.1, and observed the
same results, except that the time scale of breakup for @ = 0.01 is about 10

times larger than that for o = 0.1.
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Figure 2.3 shows the streamlines ¢(z,y,t) = const. at times tc,/r, =
0, 2, 10, and 100. Observe that at tc,/r, = 10, the initial dipole vortex splits
into the two completely isolated monopoles and the two monopoles approach
circular shape. We also observed that the amplitudes of the vortices increases
slightly, but the radius of both the vortices does not change much until ¢ ~ 30.
The observed speed of the anticyclone is u ~ 2.0v; and that of the cyclone
is u >~ —0.3v4, and amplitude of the anticyclone is ¢} ~ 52 and that of the
cyclone, @, ~ —62. These results agree with the analytical results Eq. (2.10)

obtained in Sec. 2.3.

Moreover, when we turn off the vector nonlinearity and re-do the same
experiment, we observed that the radius of the cyclone decreases significantly
very rapidly and its damplitude increases a significant amount and then forms a
very localized monopole vortex or solitary wave, while the radius of the anticy-
clone doesn’t change much and its amplitude increases slightly. The evolution
of the processes are illustrated by Fig. 2.4. In the case of an anticyclone, this
result appears to be in accordance with the simulation studies of Eq. (2.2) made

by Pavlenko and Tazanov [1986] in the long wavelength limit.

Now we consider whether the anticyclone and cyclones can naturally

evolve from the one-dimensional solitary waves described by Eq. (2.12).

For k; =~ 0, we know that Eq. (2.2) has the one-dimensional soli-
tary wave solution given by Petviashvili [1977], Meiss and Horton [1982] and

Morrison et al. [198:]

: 1/2
Y= —B(u — vg)sech ? {—1— <1 - E) (y — ut)} , (2.18)
o 2 U
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Figure 2.3: Splitting drift wave dipole vortex into monopoles

Dipole radius o = 6p,, amplitude of scalar nonlinearity a = 0.1 (7. ps/7), and
vortex velocity u = 2uy (vg = 1). Att = 0, (a) shows the contours for the exact
dipole vortex solution, Eq.(2.14), of Hasegawa-Mima—Rossby wave Eq. (2.1).
The solid lines represent positive value of potential ¢, and the dashed lines,
negative value. The contours for ¢ have contour interval Ay = 4.0.
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where u, as before, is the speed of the solitary wave.

However, the one-dimensional solitary wave is unstable to a finite
k; filamentation instability shown as follows. Taking Eq. (2.18) as the initial
condition, we find that computer solution of Eq. (2.2), without the vector non-
linearity, evolves to the two-dimensional, nearly circular symmetric monopole

vortices. The results are shown in Fig. 2.5.

The solution (2.18) is possible only when u > vy or vyu < 0. For
u > vy, we find that the positive solitary wave eventually evolves into two-
dimensional anticyclones, as shown in Fig. 2.5. For u < 0, we also find that

the negative solitary wave,

. 3 ) 1+ 54 ’

Y= —;(|u| + vg)sech Y (2.19)
evolves into two-dimensional cyclones with k, ~ k,. From Eq. (2.16), we can
see that @, < 0 occurs for alp,|/3y > vy where u < 0. With Eq. (2.19) as

initial data, we find that cyclones evolve out of the one-dimensional negative

solitary wave.

As noted in Sec. 2.4, Mi  ilovskaya [1986] did some simulation stud-
ies of Eq. (2.2). Her results indicate that when o is large enough, that is,
the scalar nonlinearity is dominant, the dipole vortex rapidly separates with
monopoles moving in opposite directions away from their initial positions. The
radius of anticyclones (¢» > 0) increase slightly. The amplitude decreases and
it approaches a circular shape, but cyclones (¢ < 0), they find, gradually decay
into + sall vortices and finally disappear. In general, we find a different result,

both theoretically and numerically.
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Figure 2.4: Splitting dipole vortex without vector nonlinearity

Everything is the same as in Fig. 2.3, except that the vector nonlinear term in
Eq. (2.2) 1s dropped out.
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Figure 2.5: One-dimensional solitary wave traveling along the y-axis tears with
finite k; and forms two-dimensional solitary waves.

(a) shows the contours for the initial 1-D solitary wave solution with k, = 0.
(b)-(c) show the reconnection of the flow lines to form four strong, nearly
circular vortices. Here o = 0.1 and u = 2vy for the initial 1-D solitary wave,

Eq. (2.18).



29

Now we ask if the cyclone will disappear eventually; in other words,

if the cyclone can be the solution of Eq. (2.2).

~ From Sec. 2.3 the solitary wave solution of Eq. (2.7) does exist, which

has the form,

o= 2w —va)] (k) (2.20)

according to Eqs. (2.8) and (2.10), where r = [z + (y — ut)2]1/2. So for u > vy,
we get a solitary solution for positive amplitude and the amplitude can be small
by having u > vg. For uvy < 0 we get for negative amplitude and positive k?
provided a|¢,| > 37vs. Thus, the cyclone can only occur if there is sufficient

energy in the initial structure.

This means that both the cyclones and anticyclones can exist and

A stay stable in the system after the initial dipole vortex pair breaks up if the
amplitude ©m-of the dipole pair is large enough so that ca@n | > 3y vgy where vy =
1.5946 has been determined in Sec. 2.3. This condition requires a substantial
amplitude and energy for the solitary wave to form the cyclone. If one uses
the approximate formula ¢4, = 1.28v4ro for the amplitﬁde of the dipole vortex,
the condition for the onset of a cyclone can be re-expressed as the condition

Tg > 374:/0[

2.5 Summary and Conclusions

In this chapter, we have studied analytically and numerically the effect
of KdV or scalar nonlinearity on the evolution of dipole vortex solutions of the

nonlinear drift wave—Rossby wave equation. The study shows that the lifetime
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of the dipole drift vortices depends on the magnitude of the scalar nonlinearity.
For plasmas, the magnitude of the scalar nonlinearity is associated with a
gradient of the plasma electron temperature [Petviashvili, 1977 and 1980], 7.,
in the field of a drift wave and is described by the parameter o = NePs/Tn-
In the Rossby waves the scalar nonlinearity arises from the variation of the
depth of the fluid with wave amplitude, as in the classical KdV equation for
shallow water waves. The lifetime scale of dipole of radius ry is estimated
from 7 ~ ro/cpm, where ¢, is a measure of vortex amplitude. We note
that there is a critical amplitude for the formation of the cyclone. Above the
critical amplitude we have shown that both the anticyclone (¢ > 0) and cyclone

(¢ < 0) exist and do not disappear after the dipole vortex pair breaks up.

The question of the existence of the cyclone solution is important
for the interpretation of the rotating water tank experiments. In the early
experiments of Antipov et al. [1982 and 1983] only anticyclones were reported
to be long-lived vortices. In the work of Antonova et al.[1983] with a larger
tank it is reported that both cyclones and anticyclones are formed. We suggest
that cyclones, although requiring sufficient amplitude to form, are a natural
solution of the nonlinear drift wave-Rossby wave equation. The cyclones may be
especially important for anomalous transport because of their low propagation

velocity.



Chapter 3

Drift Wave Vortices in a Plasma with Temperature
Gradient and Drift Velocity Shear

3.1 - Introduction

In this chapter, we consider a generalization of the H-M drift wave
equation that includes a general density profile no(z) and temperature profile

T.(z).

Petviashvili [1977] first studied the problem with a temperature gra-
dient and an exponential density profile. The Petviashvili model became well
known and stimulated numerous theoretical studies. However, the model he

proposed has been criticized by several authors [Lakhin et al., 1987 and 1988;
Horihata and Sato, 1987; Laedke and Spatschek, 1988; Nycander, 1989] be-

" cause of inconsistency with Ertel’s theorem [Ertel, 1942], the basic conserva-

tion law of potential vorticity. Some of these authors [Lakhin et al., 1987
and 1988; Horihata and Sato, 1987] showed that monopole vortices exist only
when the drift velocity in Eq. (2.1) is nonconstant, vg = v¢(z). More recently,
Spatschek et al.[1990] used a new high ordering with long wavelength scaling to
develop a model that is essentially same as Petviashvili’s model [Petviashvili,
1977]. These authors argue for the existence of a monopole vortex solution
in the very long wavelength region (~ p,/€), even with constant drift velocity
vg. Here ¢ is the usual drift theory expansion parameter ¢ = p,/r,, where

ps = c(m;T.)V/?/eB is drift wave dispersion scale length and r, is the density

31
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gradient scale length. We also define 5. = r,/rr, as the ratio of the density-
to-temperature gradient scale length. The Spatschek et al.[1990] proposal to
retain the Petviashvili model, while correct in terms of the special orderings
involved, is of limited applicability since it requires vy(z)=const. over the large
scales of p,/e. Thus it is of considerable practical interest to study the regime

of general vy(z) and T.(z) addressed in this chapter.

It is well known that there exists a large class of vortex solutions for
nonlinear drift waves. These solutions arise because of an arbitrary function
F(¢ — uz) that appears in the equation for traveling wave solutions. Usually
this function is chosen such that the solution vanishes as r — co. The function
F determines the relationship between the generalized potential vorticity, which
to the first order is V2p—p/T(z)—£€n no(z), and the stream function, ¢ —uz, in
a frame traveling with speed u. For the well known dipole vortex solution, the
choice of this relationship is piece-wise linear with a jump in the slope dF/dp.
In spite of the presence of this jump the solution is consistent with the H-M
equation [Meiss and Horton, 1983; Laedke and Spatschek, 1988]. Alternatively
one can demand F' to be analytic. In this chapter we show for a model that
includes an arbitrary temperature gradient and a constant logarithmic density
gradient, that the attempt to make the choice of F analytic makes it impossible
to have a binding effective potential, thus showing that no local vortex solutions
occurs for analytic F. Here the density profile is strictly exponential, but
the result is independent of the temperature profile. However, with a more
complex background plasma; i.e. with nonconstant drift wave velocity v(z),
the monopole vortex is found in the p,/¢!/? wavelength region with an analytic

F. Physically the nonconstant vs(z) adds a shear to the diamagnetic drift
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velocity. Since it is well known (Sagdeev et al. [1981] and Horton et al. [1987])
that shear flow causes the formation of monopole vortices, it is perhaps to
be expected that the shear flow from nonuniform vy(z) will create monopole

solitary waves.

Also we show that the monopole vortices mentioned above in inho-
mogeneous plasmas are not strictly localized soliton-like monopoles. The effect
of inhomogeneity in the background plasma on vortex dynamics is shown to
give rise to an oscillating tail; the inhomogeneity forces a coupling of the vortex.
core to the tail of a radiative wake of drift waves, which thus causes radiative

damping of the vortex core.

. This‘chapter is organized as follows: in Sec. 3.2, we derive the model
equation for nonlinear drift waves in piasmas with density and temperature
gradients. The steady state traveling wave equation of the model is given and
solutions of this equation are discussed in Sec. 3.3. The subject of Sec. 3.4 is to
study interaction of vortices with drift shear flow and mechanism of formation
of monopole vortices. In Sec. 3.5 we investigate the effect of inhomogeneity
on the drift wave vortex and give analytical results. Section 3.6 describes the
results of the numerical investigations. Summary and conclusions are given in

Sec. 3.7.

3.2 Model Equation of Drift Wave in Inhomogéneous
Plasma

We consider a plasma in a uniform external magnetié field in the

z-direction, where the electrons move freely along the magnetic field. The
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dissipationless equation of motion and continuity equation for the ions are

dv e ~

'E'i' = —'EV@ + WiV X Z (31)
on
—+ V. = .
=+ V() =0, (3.2)

where d/dt = 0/0t + v -V and Q = eB/m;c = w,Z is the ion cyclotron
frequency. The ion fluid Eq. (3.1) of motion can be rewritten in terms of the

vorticity w = V x v by Baking curl of Eq. (3.1):
VY
r a\\ e -
Qﬂn+wwwﬂ+wv~w=m+wyvV (3.3)
Combining Eq. (3.3) with the continuity Eq. (3.2) , one can derive Ertel’s

theorem [Ertel, 1942] by neglecting the parallel compression V j,

d Wei + W, ;. i
E( - )-m (3.4)
where
Ov Ov c
=3 (V =9 OV €
w z-(V xv) e 5y BV d

with v = E x B/B?. Equation (3.4) states that the potential vorticity

H=[Q+w}2

n

is conserved by the flow. When Vv # 0, that is, there exists compressible
pa_ra.llel motion, the potential vorticity will be no longer conserved and s_olita,ry
drift waves will experience the radiation damping due to the coupling of drift
waves to ion acoustic waves. This subject will be studied in detail in the next

chapter.

With the ordering,
19 vV
€ =

= e—
we; Ot Wei

<<1’
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to the lowest order in ¢;, we have

€

v = ( Z X VO,

mile;
W, = wcip—gvz(e@) ,
T,
and
d 0

8 P2
@t oi TweT [e2, ]

where p; = ¢,/we; and ¢, = (To(z)/m;)*?. Now we define T'(z) = T.(z)/To
(where Tp is a constant), ¢ = (_rn/pso)eQ/To, and €, = pso/Tn. Equation (3.4)

9 (14 €,V 146, Vipl
'az(—n“)*[% B (35)

where [f , g]i =7z -V f x Vg. The space and time variables are normalized by

becomes

pso and 7, /cgo, respectively, where r; ' = —dlnny/dz, and ps and ¢, are the
ion Larmor radius and ion acoustic speed at the reference electron temperature
Ty, respectively. Equation (3.5) states that the potential vorticity is conserved

on each fluid element moving with the velocity v =2z x V(z,y, ).

The local vorticity w, = Z- V x v is a measure of the rotational part
of the flow velocity V(X,-t), as opposed to the compressional V - v part of the
flow. Being the rotation of v, the vorticity is similar to a local spin of the fluid

“although it is not the same as the local angular momentum r X v. In a patch of
plasma with solid body rotation at the angular frequency € the local velocity
sv=rxQ =700 and w, = 20. In such a patch of plasma of radius R
the potential disturbance is parabolic with ® = (R2QB/2¢)(r?/R* — 1) so that

= (¢/B)(8®/dr) = rQ and w, = 20. Here Q < 0 is a cyclonic and 2 > 0 is

an anticyclonic disturbance.
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To close Eq. (3.5), we assume that the particles satisfy the condition of
quasi-neutrality with the electrons obeying the Boltzmann density distribution.

Thus, the ion density is given by

where no(z) and T'(z) are assumed to be analytic functions. Due to the fact

(3.6)

that €, is a small parameter, for the numerical calculations in Sec. 3.6 the
exponential in Eq. (3.6) is expanded to first order in €,. For certain strong
monopole solutions with large negative , however, the expansion can lead to
negative density states. Thus, whenever the expansion is performed we require

that e, < T for all z.

3.3 Traveling Wave Equation and Solutions

Now we look for stationary traveling wave solutions of Eq. (3.5) of
the form ¢ = cp(xi,y — ut). Such solutions travel with the velocity u in the
y-direction. Equations (3.5) and (3.6) together give the following:

oG

where
146, Vip
no(z) exp(enp/T(z)) -

Equation (3.7) gives the condition for stationarity as

G =

[p—uz,G]=0, (3.8)

which requires that
I + e, V2p

e (o T F(p — uz) (3.9)
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where F'is an arbitrary function of its argument.
If we choose F' to be an analytic function determined by the density
profile ngo(z), that is,

1
nol(uz — @)/u] ’

F(p —uz) = (3.10)

then Eq. (3.9) becomes

no?:(f)ﬁ) expl( ;f(‘:)) -1, (3.11)

€, Vip =

With this choice of F' the right hand side of Eq. (3.11) approaches zero as |z| —
oo and ¢ — 0, which corresponds to the untrapped flow region. It is possible
that there exist other analytic choices for F' that satisfy V%p — 0 as |z| — oo
‘and 0 — 0, which may lead to localized solutions for reasonable density profiles

no(z). But for the strictly exponential profile no(z) = exp(—e¢,z) and the F

of Eq. (3.10), bound solutions do not exist. To see this, we insert the density .

profile ng(z) into Eq. (3.11) and write the equation into the following nonlinear

Poisson equation for ¢:

€, V20 = exp [en(ﬁ - 21;)4 -1
0] epleal/T(@) = 1/u)g]
= 5% o~ T T | (312

The effective potential for Eq. (3.12) is then

Vinlp,0) = p - SRBLTEI 2R (3.13)

It is easy to prove that this effective ("time” dependent) potential

Ver(0, z) [Eq. (3.13)] for any temperatufe profile T'(z), is simply not able to




38

form a soliton well, and thus bind a local disturbance to form a solitary vortex
(monopole or dipole). Therefore, the choice of F specified in Eq. (3.10) does
not produce any solitary wave solutions with any kind of temperature profile
T(z).

However, the fact that this choice for F' does not produce a localized
solution does not exclude the possibility that the dynamics of the plasmas in
relaxing from a turbulent state finds another choice of F(yp — uz) with a new
structure that allows binding. One example for a binding F' structure is to
follow the modon construction [Makino et al., 1981; Meiss and Horton, 1983]
for the dipole vortex by choosing F(¢ — uz) to be piecewise linear. For the
dipole vortex, F' is the same as Eq. (3.10) in the untrapped region r > ry and a
different interior function Fin(¢ —uz) with opposite signed slope dF'/dy in the
trapped region r < ro. To see the relationship with the dipole vortex solution

we consider the logarithm of Eq. (3.9)

In(l+ €, V%) =n F(p —uz) 4+ nng + ;’E:) (3.14)

With ng(z) = exp(—e,z), in the exterior or untrapped region

Fext(so - ’U,.’E) = exp[en(a: - (p/u)]

as defined by Eq. (3.10), and the ordering

6@ Ps0
Te Tro

=6, ~e< ], (3.15)

u~vg = =0)=1,

Eq. (3.14) to lowest order in ¢ yields

1
Vi, = (T(:B) - _Uz_o) @ for r>ro. (3.16)



39

For the interior (r < ro) solution we choose
fn Fy(p — uz) = —€a(1 + p*)(p — uz) , (3.17)
so that, to the lowest order in ¢, Eq. (3.14) reduces to

1
Vi + (1 +p’ — ﬁf"_)> Y= [u(l +p?) — 1] z  for r<ry. (3.18)

Equation (3.18) for the interior vortex structure is driven by a source term
which measures the mismatch between the vortex speed u and the linear wé,ve
speed 1/(1+4p?). The constant p? > 0 is determined by continuity of ¢, dp/0r ,
and V?p at 7 = ry. In the case where T' = constant this choice for F(¢p —uz) )
produces dipole solutions [Meiss and Horton, 1983] of radius ro with an am-
plitude that increases as vgoro. Thus, while we have shown that the simﬁlest
analytic choice of F/(p —uz) forbids the existence of monopole vortices for the
strictly exponential density profile, the plasma dynamics in relaxing from a tur-
bulent state in which trapping takes place may naturally produce a F(¢ — uz)
with nonanalyticity at the point of transition between the trapped and un-
trapped regions. An example from turbulent particle simulation that demon-
strates an abrupt change in the slope of F(p — uz) as plotted versus vofticity
is shown in Horton et al. [1987]. However, the dipole vortices have been shown
[Su et al., 1988; Spatschek et al., 1990] to be structurally unstable, in partic-

ular, a small term of KdV type nonlinearity can split them into monopole-like

vortices, an effect to which we now turn.

In most magnetic confinement systems both T,(z) and vy(z) vary on
the scale of r,. We define the dimensionless parameters kr = p;od(1/T)/dx ~ €
and v}, = psodve/dz ~ €,v40. In the case of a nonconstant drift velocity vai(z),

with or without a temperature gradient, the analytic choice of F(¢ — uz) in




40

Eq. (3.10) can lead to the possibility of trapping and the formation of solitary

vortices. Taking the logarithm of Eq. (3.11)

In(1 + €, V?p) = Inno(z) — fnno(z — %) +

and expanding the density profile as

/

Inng(z) = —€,(vgox + %wz +...)
yields
In(l + e, V%) = e k*(u,z)p + en%goz + ...
where
k(u,z) = T(la:) - vdix)
and

va(z) =1+ vz
Observe that vy = 1 follows from the choice of space-time units.
With the ordering

ed 0
pﬁOV2~—~/€T~vgo~pLEen~e<<l, and u~wvg =1

e Tn0

and keeping only the terms of order €? in Eq. (3.21), we get

< v
Vi =kt 5a¢"

where we have expanded

K (u,z) = k2 + az + ...

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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and considered

k2 = (1 —vgo/u) ~ € and a = (kp — vl u) ~ €.

Notice that Eq. (3.25) has the same form as the Petviashvili equation
for the steady state [Petviashvili, 1977]. But the crucial difference is that in
the Petviashvili equation the nonlinear term arises due to the temperature
gradient, while in the present case the nonlinear term is caused by the gradient
of drift velocity. However, the gradient of the drift velocity also gives rise to
a linear damping term —(v},/u)ze on the right side of Eq. (3.25), which is of
the same order as the other terms. The important thing is that although the
temperature gradient does not contribute to the nonlinear term, its existence
can balance the linear damping term caused by the gradient of drift velocity
v}o. In this way the linear damping term is made smaller and exact monopole

vortex solutions are possible when &7 = vjy/u or a = 0.

The quadratic nonlinear Poisson Eq. (3.25) has monopoie vortex solu-
tions [Horihata and Sato, 1987; Su et al., 1988] when k& = (1/T — va/u)o > 0.
The solutions can be approximately [Horihata and Sato, 1987; Petviashvili,

1980] written as follows, for small r,

A0S

o(z,3,t) = 4.4/%(%) [cosh (%ko\/zz . ut)2>] . (3.26)

Figure 3.1 is 3-D plot and contour plot of the solution for v}, = 0.05 and
u=1L5. | |

From Eqs. (3.25) and (3.26) we see that the sign of the vortex ampli-
tude no longer depends on the sign of velocity u as is the case for Petviashvili

monopoles [Petviashvili, 1980]. Instead it depends on the sign of v},. From
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X/Pso

Figure 3.1: Stationary monopole solution given in Eq. (3.26) for v/, = 0.05 and
u=1.5.

(a) 3-D plot of the monopole. (b) Contour plot of the monopole.
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Eq. (3.25), we recognize the symmetry relation

(P(_vzlio; T, y) = —QD(‘U&O; z, y)a

which we test in the simulations. The simulation results will be discussed in

Sec. 3.6.

We have also tested the new monopole vortex solution given here for
soliton-like behavior upon collision. Initially we put a strong vortex behind
a weaker vortex with the both vortices moving in the same direction. The
numerical results show that the stronger vortex overtakes and passes through
the weaker vortex. After the collision, both the vortices nearly restore their
shapes, that is, the overtaking collision observed is largely elastic. The result
is showed in Fig. 3.'2. We also did numerical experiments on point vortex-
like interaction of the monopole vortices. We used two nearly equal strength
monopole vortices with the same signs in a range of 15p,. The results in Fig. 3.3
show that the two strong monopole vortices interact like point-vortices rbtating

around one another.

The following amplitude-velocity relation is obtained from Eq. (3.26):

vgo £ /vy + 0.83|v)00ml

5 (3.27)

u =

where @, is the amplitude of the monopole vortex given by Eq. (3.26). How-
ever, the monopole vortex solutions given here must propagate in the direction
of the drift wave (uvy > 0) since the negative velocity (uvg < 0) monopoles
have k2 - 1+vgo/|u| > 1, which violates the ordering in Eq. (3.24) required for
localization. In this short wavelength region, ro ~ pso, there are no localized

monopole solutions as discussed in the beginning of this section. Therefore we
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Figure 3.2: Nearly elastic overtaking collision of a strong monopole vortex with
a weaker monopole vortex.

The profile of 1/T(z) = exp(0.046z) gives a variation of 1.6 over the core of
the vortex. The gradient in the drift velocity is vg(z) = 1 — £/20. The speeds
of the two vortices are u; = 1.1 and u; = 1.7 giving the expected collision
time Al/Au = 20/0.6 = 33 compared with observed overlapping at ¢ =22in
frame(b). After separation showed in (c) and (d) frames, the weaker vortex
still has 5 closed contours.
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Figure 3.3: Point vortex type of interaction of two strong monopole vortices.

uy = 1.3, and u, = 1.35. Although merging might be expected here, instead
the vortices rotate around one another after pulling together from the initial
separation of 15p,.
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can only take the positive sign in Eq. (3.27) and the monopole vortex speed is

vao + 1/v2, + 0.83|0)00m
(o) = do \/ do ; v ]’ (3.28)

which clearly reduces to the usual drift wave when

, . e®,  (dno/dz)?
|vd090ml < V4o or Te < dzno/dxz :

(329) .

We can use the amplitude ,, to estimate the maximum or minimum

density of the vortex

) 486n
n/ng = exp(—;(—:)) R exp(€,pm) = €xp (— = u(u — vd0)> . (3.30)
do

Deriving Eq. (3.25), and therefore Eq. (3.26) from Eq. (3.21) implies that we
have expanded the Boltzmann density distribution of Eq. (3.6) to first order in

¢, and dropped all the higher order terms. For consistency of the expansion,

4 8¢,
€n)iom| = m“(u —v40) <1

We therefore get the interval condition for the velocity u

vao + /vy + 0.83]v/|/€n
2

vgo S u < (3.31)

required for the validity of the expansion. Equation (3.31) shows that u must

be the same order as vg. This implies that we consider v}, ~ .
Spatscheket al. [1990] ordering:
Using a multiple-scale method and a different ordering, namely taking

p§V2~g~£~nT~k§~e2, and ——1—g~55, (3.32)
e Cs Wei OF
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Spatschek et al. [1990] developed a model in which the steady state equation
has a form similar to Eq. (3.25), but with a coefficient of the last nonlinear
term in Eq. (3.25) proportional to kr = —(1/T')(9¢nT/0z).

| Although both the equations (our Eq. (3.25) and Eq. (5) in Spatschek
et al. [1990]) have been shown to have monopole solutions [Petviashvili, 1977
and 1980; Su et al., 1988; Spatschek et al., 1990], in reality the vortex wave

function will extend into the region where
k(u,z) =k +az+..<0. (3.33)

When this happens outgoing drift wave propagation occurs. The matching
analysis in Sec. 3.5 shows that the amplitude of the outgoing wave is of order

Ovortex (T = Terit) Where qi¢ is the point at which
E*(u, Terit) = 1/T —va/u=0.

For large scale vortices with core size 7o ~ kg' > ps0/€¥?, in inhomogeneous
plasma, the coupling to outgoing drift waves is a strong effect that-eliminates

the existence of the monopole vortex.

3.4 Interaction of Vortices with Drift Sheared Flow
and the Formation of Monopole Vortices

In the last section, we have derived the solitary vortex solutions in
inhomogeneous plasmas and found that such solutions behave like monopole
vortices and that the sign of vorticity of the monopole vortex depends on the
sign of drift velocity gradient v},. Physically the finite drift velocity gradient

v), adds a shear to the diamagnetic drift velocity and the interaction of the
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sheared flow with vortices gradually destroys one pole of dipole vortex struc-
tures which are characterized by two poles with opposite signs of vorticity.
Therefore monopole vortex structure becomes dominant form of vortex in such
an environment [Sagdeev et al., 1981; Horton et al., 1987; Horton, 1989]. Fig-
ure 3.4 is the simulation results for the interaction of the dipole vortex with a
sheared flow. As seen in Fig. 3.4 the dipole first separates into two monopoles,
a cyclone ¢ < 0 and an anticyclone ¢ > 0, as reported in Chapter 2. Finally,
only one monopole survives, which is determined by the sign of v/,. If v}, > 0,

only the cyclone survives, while if v/; < 0, only the anticyclone survives.

The mechanism of the interaction of dipole vortex with sheared flow
and the formation of monopole vortex can be understood from Figs. 3.5 and
3.6. Figure 3.5 shows the configuration of the sheared flow supérimposed upon
the dipole vortex shown in Fig. 3.4(a). The sheared flow places a stagnation
point (x point) in the flow at a distance Az = /v, on the side of the dipole
vortex with opposing flows, where u is velocity of the dipole vortex. When
the stagnation point is within the distance u/v}, < 2ry from the vortex center,
where g is the dipole vortex radius, the peeling and/or reinforcing processes
of the vortex demonstrated in Fig. 3.6 will be taking place. From Fig. 3.6(a)
one can see that the flows at the left and right sides of the positive pole of
the dipole vortex oppose to that of the sheared flow. The sheared flow of
background causes the outer layer of fluid in the positive pole to peel off as
shown in Fig. 3.6(b). The "peeled-off” section of the positive pole can reinforce
the sheared flow of background [Drake et al., 1992]. The positive pole or lobe
of the dipole vortex continues to peel until it is entirely destroyed. On the other

hand, the negative pole of the dipole vortex, which has the v.  city opposite
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Figure 3.4: Interaction of dipole vortex with drift shear flow.

(a) Contour plot of the electrostatic potential ¢(z,y,t) of Eq. (3.47). The
dipole vortex (solution of the H-M equation) is taken as initial condition with
T(z) = exp(—=cyz), ¢; = 0.046, u = 1.1, 7o = 6.0, and v, = 0.05. The solid
lines represent positive values of potential ¢, and the dashed lines are negative
values. (b) The dipole vortex is first split into two monopoles, cyclone (¢ < 0)

and anticyclone (¢ > 0). (c) Only the cyclone is seen to survive.
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Figure 3.5: Configuration of sheared flow.

to that of the positive pole, has the flows at the left and right sides reinforced
by the sheared flow as seen in Fig. 3.6(c). Therefore, the remaining negative
pole eventually evolves into a shear flow driven monopole vortex as shown in

Fig. 3.6(d) with the form given in Eq. (3.26).

3.5 Radiation Damping of Solitary Drift Wave Vortex
in Inhomogeneous Plasmas

In the small amplitude region exterior to the vortex core the wave

field is given, from Eq. (3.21), by

%oy, (z) l v4(z)
—t— 4
dz?

) = k| oi(2) = 0, (3.34)
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Figure 3.6: Interaction of vortex with sheared flow

(a) The positive pole in sheared flow. (b) The sheared flow of background
causes the outer layer of fluid in the positive pole to peel off. (c) The negative
pole in sheared flow. («{)The flow of the negative pole is reinforced by the
sheared flow and eventually evolves into a shear flow driven monopole vortex.
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with ¢k, (z) the Fourier transform in y of ¢(z,y,t) such that

99(2:1 ?!,t) = /dkygoky(x)eiky(y—ut) )

Equation (3.34) has turning points at ¢ = zr where the z7 are determined
by va(zr)/u — kI = 1/T(zr) = 0. For k2 — 0 the z7(ky) — Tai, defined by
k*(u, Zerie) = 0 in Eq. (3.33). '

For |z| > x¢ in the exterior region, where z; is the length scale of the

vortex core given by kozo = 1, the WKB solutions of Eq. (3.34) are

( A, Q5 wwyexp (i [ Q= u)da') Qu,(2,4) > 0
2k, (Z) = °r . . ’
Aky(_Qky(‘r‘ u))—1/4 exp <— /IT(—Qky(l‘/, u))l/sz:’ et %) N Qky(z:Y u) <0
(3.35)
where

@k, (z,u) = v4(z)/u — 1/T(z) — kz

and the amplitude Ay, will be determined by matching to the vortex solution.
Equation (3.35) with Qx, > 0 describes the outgoing radiation wave in the high
density gradient and high temperature region. In the region where vq(z)/u —
1/T(z) < k2, we again expand vy(z)/u ~ 1/T(z) ~ —kZ —az > 0. Then
zr ~ —(k§ + k2)/a for k2 > 0 and

(=0 (2 ) 724’ = [z = (2/3la)(kE + KDI(KE + K2)

zr

for |zo] << |z| << |z7].

The approximate exterior vortex solution can be obtained by neglect-

ing the nonlinear term in Eq. (3.25),

2(z,y,t) ~ omKo(kor) (3.36)
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where

r=[2? + (y — ut)?]/?, and ¢, = —4.8k2u?/v),

is the amplitude of the vortex. The Fourier transform of Eq. (3.36) in y is
[Magnus and Oberhettinger, 1949]

 om OXP (—[m{,/k?, + kﬁ)
Pk, (z) = D) \/m : (3.37)

Matching Eq. (3.37) and Eq. (3.35) with @k, < 0, we can obtain the radiation

amplitude formula

Pm X 2 2 2\3/2
R T — — (ks + k2)7* .
A, 2(kg+k§)1/4 exp [14 3|al( o + k) ] ) (3.38) .

which is to be used in Eq. (3.35). Therefore the monopole vortex solution of
Eq. (3.25) is coupled to a radiation wave with significant amplitude unless the

condition |a| << 2k3/3 ~ €/? is satisfied.

We point. out that for the case discussed in Spatschek et al.[1990],
where the stationary equation ‘is similar to that of Eq. (3.25) but with the
longer wavelength ;scaling ky ~ e and a ~ €3, the monopole vortices should have
oscillating tails with the substantial amplitude ~ ((2/5)1/2¢m/4) exp(—2/3) as
seen from Eq. (3.38). The numerical solutions given in their work do not show
the oscillating tail since their equation (Eq. (8) in Spatschek et al.[1990]) does
not explicitly contain the inhomogeneity. Their numerical results, therefore,
are only for the very special case of Kk = vi/u, i.e., & = 0. Therefore the
solutions which the authors give are essentially those given in the previous

chapter for the Petviashvili equation.

The decay rate of energy of the solitary drift wave can be computed
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by using the energy conservation law,

%’S—Jrv S=0, . (3.39)
where
£ u,t) = & | + (V)? (3.40)
x7y3 "'2 T(:U) 90 ’ .
and
I VORI Je) PN " e ¢
S-( 5 399)}' goVat \Y (ZXVZ (3.41)

are the local energy density and the energy flux, respectively. Integrating
Eq. (3.41) over the space volume, with the help of Egs. (3.25), (3.26) and

(3.36), we obtain the energy for the monopole vortex

8.2r L.u*k? 4

W(3 YR (3.42)

E, = / £z ~

where L, is the length scale in z of the coherent vortex structure.

The outgoing wave propagation given by the matching of Eq. (3.37) to
Eq. (3.35), leads to the decay of the vortex energy E,. Integrating the energy
balance Eq. (3.39) over the space volume / d*z, neglecting the last term of
Eq. (3.41) proportional to ¢, since ¢ is exponentially _sma,ll for z >> zo, and
using Parseval’s theorem and Eq. (3.35) to evaluate the outgoing wave energy

flux, gives the decay rate of vortex energy

L

dE =/ d%_ ;= dydz[ 5m8t]x_-L

ul,
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N JAG I, (3.43)
0]

s

=L

/_:o dky t k, [‘P:y(m)axsoky (z) — px, (2)39:(,01:(33)]

=L




1)

which is independent of L, for L, >> z, .

Using Eq. (3.38) for Aky‘we perform the k, integral to obtain the

vortex decay rate

dE, uLep? [
B 4 /o dk

‘Cy ( 4 2 2 3/2)
————=€X —_—— ]C + k
Y r—————kg k; p 3| I( (0} y)

dt
B [ s
:_g_bl_/B/b dtt™Y3 exp(—t)
B 1

where B = uL.pZ [4m, b = 4k3/3|a|, t = b(1 + kz/kg)if/? and
['(¢,¢) = /:o dr exp(—7)7¢?

is the incomplete gamma function [Abramowitz and Stegun, 1965]. For large

£, one can write
D(¢,€) ~ ¢ exp(—¢)

Therefore for small a << 4k3/3, i.e., large b, the decay rate of vortex energy is

dE, _ uL.p? |
dt = 167k3

43
XP(_M) ) : (3'45)

valid for k2 > 0. Thus the damping is exponentially small provided k§ > 3a/4,

or in terms of the vortex length scale,

1/3 2/3

pso << To ~ kgt << (4/3a)3pso ~ pso /€ .

The damping time scale 7, for the decay of the vortex can be estimated by

E 2.872 4 43
= s — 4k —. 4
L= R d S el 3 T ) exR(3ry)) (3:46)
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The theory for the effect of the inhomogeneity in Eqs. (3.34)-(3.46)
is based on the observation [Horton, 1989] that for strong vortices (ones with
Og/wy >> 1 where Qg is the rotation frequency in the core of vortex and
wy =~ kyu), the inhomogeneity causes a leakage of wave energy from the vortex
core, but does not strongly alter the interior solution. At some stronger level of
inhomogeneity the core of the vortex is changed, and non-perturbative solutions

exhibiting the effect of inhomogeneity are required.

3.6 Numerical Simulations

In this section we present the numerical simulation results to give

insight into the dynamics of the vortices.

In order to facilitate the numerical solutions of Eq. (3.5), we first
expand the equation according to the ordering in Eq. (3.24) and consider ¢; ~ e.
Keeping only the terms of order € and €2, we derive from Eq. (3.5) the reduced

dynamical equation

1 %72 8_90 ! _ai_ 2. —
(T(:L‘) \ ) ot + (de + UgoT K’T(P) ay [907 \% (P] =0 ) (347)

which is valid only when the condition of Eq. (3.31) is satisfied.

Rewriting Eq. (3.47), we get the conservation of mass in the two-

dimensional system,

56% (ﬁ) +V. {—85—;” + ('Ud(l')‘f’ - KT;2> ¥+ (Vo x E)Vzw} =0.
' (3.48)

Multiplying Eq. (3.47) by ¢, we can derive the energy conservation law given
by Egs. (3.39), (3.40) and (3.41) in the previous ction. The constants are

subsequently used to monitor the solutions.
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To solve Eq. (3.47), we use a uniform grid over z and &, in 85 x 85
zky-space with 3655 complex @k, (t) modes. Since the first term of Eq. (3.47)
depends on z, transforming Eq. (3.47) into k,k, space would lead to a difficult
convolution integral in k, for the linear problem. Leaving the equation in z
space and using the second order central difference formula for 92, gives a
tri-diagonal system to solve for each Oyp(z, k,,t). We use the Ahlberg-Nilson-
Walsh algorithm for cyclic tri-diagonal systems [Temperton, 1975] to reduce
the operator (1/T'(z) — V?) to a cyclic tri-diagonal matrix and then compuf:e
Op/0t for each mode, in which process the nonlinear convolution terms in
Eq. (3.47) are evaluated by first transforming ¢ in k;k, space to get derivatives
of ¢, then transforming ¢ and its derivatives into zy space to calculate the
convolutions and, after that, transforming the results back into zk, spaéé.
Finally, we use the fifth and sixth order Runge-Kutta time stepping and the
Fourier Transformation y < £k, at each time step. The code to do the time
integration is DVERK of commercial IMSL math package. The constants of
motion defined in Egs. (3.39) and (3.48) are used to monitor the accuracy
of the code. The approximate monopole solution Eq. (3.26) is taken as the
initial condition ¢(z,y,t = 0). The temperature profile is T'(z) = exp(—cyz),
which avoids the negative temperature problem that arises when expanding
T(z) as 1 — coz. For this profile k7 = ¢y exp(cez). Typical simulations average

15 minutes CPU time on the CRAY-2 for At=100 Tn/Cs, Which is about 10

rotations of the vortex core.
In the first case we used v}y = —0.1vgo, u=1.1vg and c; = —0.011,
which give k2 = (1 — vgo/u) ~ 0.1 and a ~ (¢; — v/)y/u) ~ 0.08. Therefore « is

the same order as k3 (£3/c ~ 0.34). We observe the forming of a oscillating tail




58

with significant amplitude and a strong damping process of the monopole vor-
tex. Figure 3.7 shows the streamline of ¢(z,y,t) = const. at times tc,/r, =0,
40 and 60, and the projections of their cross sections in the z and y direc-
tions. The particle density is, from Eq. (3.30), n/ng = exp(€,¢m) = 1.7 at the

maximum point of the vortex.

In the second case vy = 0.05v40, u=1.1v4 and ¢;=0.046, and thus
o ~ 0.0006 and k3 ~ 0.027 so that k3/c ~ 45. We can see in Fig. 3.8 that
the amplitude of the oscillating tail is so insignificant that the monopole vortex
keeps its shape for a long time without much damping. The particle density in
this case is n/ng =~ 0.58 at the deepest negative amplitude of the vortex. The
question of electron trapping in such vortices is addressed by Jovanovic and

Horton [1992].

Although in the first and second cases above, we discussed only the
anticyclone vortex (¢ > 0) in the first case, and only the cyclone vortex (¢ < 0)
in the second case, the same results are obtained for the cyclone vortex in the
first case and the anticyclone vortex in the second case, because Eq. (3.47)

possesses the following symmetry relation
SD(KTa Uéo? T, Y, t) = —90(—/€T, '—v:lo; -, Y, t) .

In Fig. 3.9, we used the same parameters and initial condition as
those in Fig. 3.8, but dropped the scalar nonlinear term with coefficient £7 in
Eq. (3.47). The monopole vortex in this case is seen to connect to a radiation

walke.

These numerical results support our arguments that when the drift

velocity depends on the space variable, monopole-like vortices can exist in the
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Figure 3.7: Contour plot of the electrostatic potential ¢(z,y,t) with strong

radiation damping.

(a) The’initial condition is a monopole defined by Eq. (3.26). (b) At t =
407, /c,, the monopole vortex core is coupling to an oscillating tail, .e. a ra-
diative wake of drift waves. (c) At ¢t = 60r,/c,, the monopole vortex has been
strongly distorted and the amplitude has been significantly decreased from
5.28(To/e)(pso/rr) at beginning to 3(To/e)(pso/Tn), due to the strong damping.
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Figure 3.8: Contour plot of the electrostatic potential yp(z,y,t) with weak
damping.

(a) the contours of i2(x,y.t) at t = 0 show the initial state given by Eq. (3.26).
(b) At t = 40r,/c,, the amplitude of the oscillating tail is too small to be
noticed. (c) and (d) At ¢ = 80r,/c, and 100r,/c,, :he monopole vortex keeps
its shape with very slight distortion in the exterior region and the amplitude
has no significant change.
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Figure 3.9:

Monopole vortex with a radiation wake.

The parameters and the initial condition are same as those in Fig. 3.8, but
the scalar nonlinear term with coefficient x7 in Eq. (3.47) is dropped. The

monopole vortex in this case is shown to connect to a radiation wake.
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wavelength ~ (p,r,)/? region. The simulations also verify that the stability
of the vortices is affected by the combined effect of temperature and drift
velocity gradients and that the vortices are stable or free of damping only

when o << (4/3)k3.

3.7 Summary and Conclusions

We have studied the effect of density and temperature gradients on
drift wave vortices, both analytically and numerically. The results show that
when the drift wave velocity vy does not depend on the space variable, local-
ized monopole vortices can not be formed in the long wavelength ~ (p,r,)/?
region for the choice of F' = 1/ng(z —¢/u) given in Eq. (3.10) by continuation
from the form of F(z) — no(z) as ¢ — oo and ¢ — 0, no matter what the
temperature profile is. When the drift wave velocity is not constant, monopole
vortex solutions can be found in the wavelength ~ p,/e/? region. However,
the important result is that the monopole vortices are not the strictly local-
ized monopoles found by many other authors [Lakhin et al., 1987 and 1988;
Horihata and Sato, 1987; Spatschek et al., 1990]. Although the gradient of
the drift velocity is responsible for the formation of the monopole vortices, its
existence also causes the formation of the oscillating tails or radiative wakes of
drift waves, which connect to the cores of the vortices. The results show that
as long as a = (kr — v)p/u) # 0, the wave energy of the vortices leaks out
from the vortex cores through the oscillating tails. The effect of the tempera-
ture gradient here is to reduce the energy leakage. The analytic and numerical
results also show that only when the combined effect of the temperature and

the drift velocity gradi- nts satisfies a = (k7 — vig/u) << (4/3)(1 — vao/u)%/?,



will the leakage be small and negligible.
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Chapter 4

Nonlinear Drift Wave Coherent Structures in a
Sheared Magnetic Field

4.1 Introduction

Since the solitary dipole vortex solutions, also called modons, were
found [Larichev and Reznik, 1976] for the Hasegawa-Mima [1977 and 1978] (H-
M) drift wave equation in a uniform plasma, numerous works have concerned
solitary vortex solutions in nonuniform plasmas. Petviashvili [1977] first sug-
gested that if the H-M equation is modified by including the effect of the elec-
tron temperature gradient, one can derive solitary monopole vortex solutions.
The derivation of the original Petviashvili model [Petviashvili, 1977], however,
has been shown to be incomplete recently by several authors [Lakhin et al.,
1987 and 1988; Horihata and Sato, 1987; Nycander, 1989; Su et al., 1991]. In
particular, the full analysis shows that non-locality of the linear wave operator
must be retained simultaneously with the KdV-type nonlinearity introduced by
Petviashvili [1977], in order to preserve the conservatioﬁ of potential vorticity.
The authors have shown that for a plasma with constant drift velocity vy, there
exist no monopole vortex solutions, no matter what the temperature profile,
T'(z); but monopole solutions can exist if the drift velocity is not constant vg(z).
In Chapter 3, we have considered a fully nonlinear model with a Boltzmann
density distribution and have concluded that the monopole-like vortices can

exist if the temperature and drift velocity are not constant. Such mounopole-

64
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like vortices are not exponentially localized soliton-like n’ionopole‘s since the
inhomogeneity also causes energy leakage from the vortex core through radia-
tive tails. This leakage will be negligible if the stréngth of the inhomogeneity
a = |T'/T? —vlyy/u| and size of the vortex 1/ko (where ko = \/r—_vM) satisfy
a < k.

In the previous chapters as well as all previous works by many authors
(for examples: Petviash{/ili, 1977; Makino et al., 1981; Lakhin et al., 1987 and
1988; Horihata and Sato, 1987; Spatschek et al., 1990), the spatial dependence
of k is ignored, and consequently the effects of magnetic shear are system-
atically eliminated. The present chapter extends previous chapters by taking
into account the nonlinear coupling of vorticity to the magnetic shear induced
parallel ion motion. Here a model that includes not only the temperature and
density gradients, but also the effect of magnetic shear is developed and an-
alyzed. Analytically we consider a quasi-one-dimensional model for the finite
amplitude coherent structures that exhibits a nonlinear localization mechanism.
With this model we are able to show that when the effect of magnetic shear is
included in the drift wave equation, even without the gradient of drift velocity,
the effective potential becomes a nonlinear trapping potential and, therefore,
there exist solitary solutions. The solutions are shown to be dipole-like solitary
waves. However, they e.Lre‘differe‘n_t from the well-known modons‘ which are ex-
act -solutions of the H-M equation. Due to the coupling of drift waves to ion
acoustic waves, the solitary structures; like those induced by nonconstant drift
velocity in a shearless field studied in Chapter 3, are not exponentially local-
ized soliton-like solutioﬁs; instead they have oscillating tails which connect to

the cores of the vortices. We also use two-dimensional magneto-hydrodynamic
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type of numerical code to simulate the coupled vorticity and parallel velocity
fields. The numerical results are consistent with the analytic results obtained

from the quasi-one-dimensional model.

This chapter is organized as follows. In Sec. 4.2 the model equations
are derived and the conservation laws are presented. In Sec. 4.3 the model
equations are analyzed. Section 4.4 is devoted to the studies of properties of
the coherent structures in sheared magnetic field. The numerical results are
presented and discussed in Sec. 4.5. The summary and conclusions are given

in Sec. 4.6.

4.2 Theoretical Model and Conservations

We consider a plasma of cold ions and massless electrons in a sheared‘
 external magnetic field B = By(z + S(z/L,)§) = Bob. The dissipationless

equation of motion and the continuity equation for the ions are

dv e
E_-—EV@-'-VXQ, (41)
%:;+V-(nv) =0, (4.2)

where d/dt = 0/0t +v -V, and @ = eB/m;c = wb is the ion cyclotron
frequency. Upon taking the curl of Eq. (4.1) and combining with Eq. (4.2), one

can derive the inhomogeneous Ertel’s theorem,

d<ﬂ+w):(9+“">.vv, (4.3)

E n n

where w = V x v.

Introducing the ordering,

1 8 v.-V V“U”
Et_——N ~ . <<

Wey at Wei Wei

1,
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we obtain from Eq. (1) to lowest order in ¢,

V=VJ_=( )EXV@

miWe;
P2
w= wciTsVi(eq))E
e

and the convective derivative becomes

d 0 0 P2
d—t—a—i—vl-v—a-l—wcii[e@,] y

where p, = ¢;/we and ¢, = (To(z)/m:)Y?. Now we define T(z) = Te(z)/To
(where Tp is a constant), r;? = —dlnng/dz, €, = pso/Tn, Pso = Coo/Wei =
(To/m;)?/w,; and the magnetic shear strength S(z) = (rn/pso)S(psom/Ls);

The parallel component of the vorticity equation from Eq. (4.3) can now be

written as
d 146, Vip 146 Vie d )
E€n<T + @, in —T——— = -a—;-l—S(m)% &
(4.4)
and the parallel component of the momentum equation from Eq. (4.1) is
8v” 0 d :
Dilo, ul=-(g+5@2]e. (45

For the massless electrons, we assume the Boltzmann distribution

n = no(z) exp (—;I)-) = no(z) exp (—E}—SD) . (4.6)

In writing Eqs. (4.4)-(4.6), we have used the following scaling transformations

to dimensionless variables:
T, y=2z/pso, Y/pso;

z=2z[r,;
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t= coot/rn ;
v = (ra/ps0)(vj/cs0) 5
¢ = (rn/ps0)(e®/To) .

Upon substitution Eq. (4.6) into Eq. (4.4) and considering the order-

ing
rn O 9 w2 ed v Ps0
Cso ot Pso VL " ] T Cso Tn ¢ ¢ ( 7)
we can rewrite Eq. (4.4) to order € and €? as
1 2) ) O o 9 d 0
S v £ Bt TPt At = (= — 4.8
(T V?) ity e g, Lo Viel 5z 7@ g, Ju (48)

where vy(z) = —dlnno/dz ~ O(1) and kr(z) = —(1/T)d¢nT/dz ~ O(e).

Now the conservation law for mass is evident by rewriting Eq. (4.8)

as

_3_( P )+V.[_§g¥£+(vd(m)¢—f%)ﬁ)?

+ (Vi x 2)Vp + v”B} =0, (4.9)
and momentum conservation by rewriting Eq. (4.5) as

0 . ~
Erad +V. [(Vga X Z)y + @b] =0. (4.10)

The conservation law for energy can be obtained by multiplying Eq. (4.5) by
v| and Eq. (4.8) by v and then combining the two equations to get

% va(z) 5 kr(z) ) o O 2 (= p*
8t+v'[( 5P T T y—¢V—5?—ch z><V'2

<

+ (L,ou,,)B} ~0, (4.11)
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where the energy density £ is defined as

@y t) = & |2 4 (V) + 02

Therefore, Egs. (4.9), (4.10) and (4.11) show that the dynamical system con-

serves mass, momentum and energy to the second order in e.

Equation (4.4) describes the advection of the generalized potential
vorticity and its change caused by‘ parallel compression Vjjv;. The compression
from the parallel motion eliminates the conservation of potential enstrophy,
defined as

U= /(Vup)2 +(Vie)dzdy .
However, the generalized cross helicity appears as constant of motion. To sys-
tematically construct the invariants, the so-called Casimir noncanonical Hamil-
tonian structure is developed in Appendix A. Here we observe that if we in-

troduce the antiderivative of the shear

such that [o(z), v)] = S(z)0v/0y and the potential vorticity ¢ = VZp —
/T (z) —£nno(z), then it is straightforward to show that the conserved helicity
is ' . o

h = /q (v” - a(m)) dzdydz . (4.12)
A generalization of this invariant in the case where z-dependence is neglected

is given in Appendix A.

4.3 Analytical Stationary Solitary Wave Solutions

Now we look for traveling wave solutions of Egs. (4.4) and (4.5) by
assuming ¢ = @(z,y — ut) and vy = vy(z,y — ut). Equations (4.4) and (4.5)
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become
0 1+ e, Vip 146, Vip vy,
—uggl,’ ( ) + [ , Zn( ~ = ¢,5(x) 3y (4.13)
6’0” 3(,0
ugy * [0, v = -S(=)7, (4.14)

Equation (4.14) gives

i LdYS(z)/de(*1)
R Y e B
= nlu
which has the general solution
51-’13 S] 2
o= =t og e =Glp-ua), (4.16)

where G is an arbitrary function of its argument. In writing Eq. (4.16), we

have expanded

S(z) = So + S1z + Soz? + ...

with Sp = 0 and noticed that the higher order derivatives of S(z) are signifi-

cantly smaller than the first order derivative for the magnetic shear problem.

For localized solutions ¢ — 0 as r — 0o and we assume the boundary
condition v| — v. = constant as r — co. Assuming G(c0) = v, v can be
written as

51&3 51

e P S S 4.17
v == 5 T Ve (4.17)

where we see that the magnetic shear introduces an important nonlinearity into

the dependence of v on .

Substituting Eq. (4.17) into Eq. (4.13), we obtain another condition

[‘P —uz ,fn (1 * enV'z(p) + 512" - 3en Sy ©* + 5

31
n w2 7T Tyl 2ut ¥ =0. (418)
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which has the general solution

€n €, 5222 3e,5%z
n (1 -+ enVZ(P) —Inng — T(:) u12 ©— 2u; 992
St
+ €2u41 ©® = Fp —uz) , (4.19)

where we have assumed quasi-neutrality with the electrons obeying the Boltz-
mann distribution of Eq. (4.6). Again we see that the presence of magnetic
shear introduces important strong nonlinearities into the system.

To insure localization for ¢ we select .

UT — @

F(p —uz) = —fnng( ) - (4.20)

For a simple exponential density profile, no(z) = exp(—¢,z), and constant:”

- temperature (T = 1), Eq. (4.19) with Eq. (4.20) becomes

2 3
o z 3z @
V' = exp [ (1-%)o—est (W “oe? t E)] -l (42

where vy = 1 follows from the choice of units.

Considering the quasi-one-dimensional case in which /9y <« 9/dz

and introducing the new variables

2 _t vy o S - |
k*=1 u,:z:—k,cp—k\ll,‘s—2u2k4,eo—uken,
we obtain
€0 Al = exp [eo (\I! — 32(2t2¢1 — 302 + \Ils))] -1. (4.22)
ot? R '

Here, note that for small k%, corresponding to large coherent structures, the

-effective shear parameter s? is considerably enhanced over the original shear

2
parameter Sj.




72

The boundary condition:
U(t — +oo) = 0
and the initial conditions:
U(t=0)=0 and  d¥(¢t = 0)/dt = const.
or
¥ (¢ = 0) = const. and d¥(t=0)/dt=0

together with Eq. (4.22) define a nonlinear eigenvalue problem for the unknown

constant values at ¢t = 0.

In the new variables we can calculate the nonlinear rotation rate [Hor-
ton, 1989] Qg = (c¢;/rn)k,de/dz compared to the vortex frequency wyy =

¢s/Tn)k,u in the laboratory frame as
K

Qg /wiap = d¥/dt .

Equation (4.22) can be written in the form of the Hamiltonian equa-
tions for an imaginary particle with coordinate ¢ = ¥, time ¢, and momentum

p = 0¥/0t in the effective potential

1 ¥ 2(042 2 3 v
V(0 1) = —— / dV exp [eo (¥ — 22620 — 310 + V%)) + —,  (4.23)
€0 €o
For u ~ vy =1, ¢g ~ €2 < 1 and the effective potential reduces to
2 4
Veg (¥, 8) ~ — [% — 2 (tzqﬂ — 03 4 %—)] . (4.24)

Although for simplicity in Eq. (4.24) we have kept only the lowest order of V.g
in €g, it can easily be shown that this approximation does not change the shape

of Veﬁ".
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The dynamical equations for a “particle” representing the system are

b= o VinlU,8) = U — (27 — 304° 4 ¥°) (4.25)

U =p. _ - (4.26)

In order for Eq. (4.22) to have localized solutions, the effective potential must
be a trapping potential. In the limit of s — 0 the effective potential has the

form

Ver(s =0) =¥ — (l/eo)e‘°‘p
or to lowest order
Veit(s = 0) = —(1/2)\112 ,

which is easily seen to not be a trapping potential. However, with existence of
small shear s, the situation is changed entirely. To realize this, one can examine

the properties of V.g. The extremal points of the potential are given by

Vet 2/042 2 3
— # —
50 =V —s*(2t°F — 3tV  + ¥°) =0
which yields
\Ijml—oa

Uma = (3/2)t — (1/2)4/t2 + 4/s%,
Uma = (3/2)t + (1/2)\/t2 4+ 4/s? .

The signs of second derivative 8*V,q/8¥? at the extremal points determine the
shape of the potential. Figure 4.1 is a sketch of the evolution of the effective

potential with “time” ¢. Figure 4.2 displays corresponding phase space portraits
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Figure 4.1: Evolution of effective potential V,g(¥,?) with the “time” ¢.

The “time” t corresponds to the distance kz from the shear reversal point.



5

Figure 4.2: Evolution of the separatrix in phrase space corresporiding to the
effective potential Viq(7, 1)
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showing the bifurcation of the origin from unstable to stable at ¢t = v/2/2s. It
is evident that the effective potential has two wells when ¢ = 0, indicated by I
and II in Fig. 4.1. Well I moves to ¥ = 0 and disappears as t — v/2/2s and
then a new trapping Well III appears and stays at ¥ = 0 for ¢ > v/2/2s, while
Well IT moves towards ¥ — oo as t — oo. For t < 0, Well II moves to ¥ = 0
and disappears as t — —/2/2s and a new trapping Well III appears and stays
at U =0fort < —\/5/23, while Well I moves towards ¥ — —oo as ¢ — —o0.
Therefore only a “particle” eventually trapped in Well III corresponds to a
solution satisfying the boundary conditions. The initial conditions determine

if the “particle” will be eventually trapped in the Well III.

The presence of the trapping well indicates that the existence of
magnetic shear changes the effective potential from nontrapping to trapping,
and therefore creates the possibility of solitary wave solutions with finite am-
plitudes. However, the presence of magnetic shear also makes the solitary
drift wave couple to the ion acoustic wave by changing the effective potential
Ve (¥, 1) at the critical “time” t, = £+/2/2s. The new trapping Well III that
appears when [t| > |to] actually is the potential well associated with the ion
acoustic wave. The coupling between the solitary waves and the propagating
lon acoustic waves leads to the formation of the oscillating tail emanating from
the core of vortex. This tail gives rise to the dissipation of energy from the
solitary wave core. Therefore, for a solitary vortex solution, the oscillating tail
must be far away from the core of vortex, that is, ¢, > 1 or o > 1/k, where

1/k is the size of the solitary vortex. This gives

s<V2/2  or S <|u—uvd, (4.27)
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which is consistent with the condition for a modon with small damping given

earlier by Meiss and Horton [1983].

Equations (4.24) and (4.25) are symmetric under the following trans-

formations:

Ver (U, t) — Veg(=¥, —1) ,

T(t) — —(—1) . (4.28)

These relations rule out the possibility of monopole solutions, since thes]er\;a,re
symmetric about ¢ = 0. However, localized solutions in the form of dipoles
are not ruled out. The shape of such a dipole is determined by the initial
conditions ¥(t = 0) = 0 and d¥(t = 0)/dt = constant corresponding tothe
strength of the core electric field or E x B flow velocity. Numerical integra-
tion of Eq. (4.25) yields the spectrum of eigenvalues for the initial momentum
dU(t = 0)/dt or equivalently (1/u)dp(z = 0)/dz. Solutions are constructed
by choosing the initial condition of zero coordinate and no;lzero momentum,
and then integrating beyond to = +/2/2s to determine if there is t.rapping as
-t — £oo in the ion acoustic potential well. Physically thé‘t&‘r’zlmpping implies the

radiative tail at large t.

Figure 4.3 shows an example of a nonlinear trapping solution for s =
0.06. Clearly the trapping solutions of this form only occur for certain initial
data , which depend on the shear parameter s. The magnitude of d¥(¢ = 0)/dt
and the initial amplitude ¥, of the vortex can be estimated with the help
of Eq. ‘(4.25). For small ¢t < t,, ~ € < 1, where t,, is the “time” at which
¥ assumes its maximum value or amplitude ¥,, = ¥(¢t = t,) and d¥(t =

tm)/dt = 0, the second and third terms on the right side of Eq. (4.25) are much
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Figure 4.3: A typical nonlinear eigenfunction with magnetic shear.

In this case s = 0.06 and dW¥(¢t = 0)/dt = 13.58, the eigenfunction appears to
be the dip -pe solitary wave solution.
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less than the first and fourth. Therefore for a nonlinear solitary solution, there
must be a balance between the linear and nonlinear terms on Eq. (4.25), that

is, U ~ 203 . This gives the scaling law for amplitude of the vortex,

1 Voulk

U, ~ — or P ~

s S
On the other hand, multiplying both sides of Eq. (4.25) by d¥/dt and integrat-

(4.29)

ing in time from ¢ = 0 to ¢ = ¢,,, we can approximately get
W(0) = (s*/2) ¥y, — T2, ,

where U/(0) = d¥(t = 0)/dt. Therefore the scaling law for the ¥'(0) is
d¥(t=0) 1 do(z=0)  v2u’k?

I or

(4.30)

A detailed study of the numerical spectrum yields the ¥'(0) vs. s
curve shown in Fig. 4.4. The curve shows the allowable initial momenta ¥’(0)
for the eigenfunction ¥(t) that are bounded as t — oo, versus the shear
parameter s. The shaded regions in Fig. 4.4 represent the allowable initial
values for ¥’(0). The lowest values of ¥(0) gives the minimum flow velocity
for the vortex core required for the formation of the coherent trapped structure.
Both the Figs. 4.3 and 4.4 consistently support the scaling laws presented by
Egs. (4.29) and (4.30). In addition, Fig. 4.4 shows that the existence of a vortex
for small electric fields ¥/(0) (or flow velocity) requires that s > 0.06, whereas

for large electric fields a vortex is formed for s > 0.02.

From the analysis, we conclude that when the magnetic shear param-
eter s < 0.02, the effect of magnetic shear on drift waves is small and the
coupling between the vorticity and parallel velocity fields is weak. The decou-

pled vorticity equation becomes the H-M equation and therefore we recover
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Figure 4.4: Spectrum of critical d¥(¢ = 0)/dt versus the effective shear s from
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The specfrum shows the allowable initial “momenta” d¥(¢ = 0)/dt in the range
of 0 — 50 for the eigenfunction ¥(t) to be bounded as ¢t — Foc. The shaded
regions represent the allowable initial values for d¥(t = 0)/dt.
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the modon solutions. With the increase of s, the coupling between the two
fields becomes important. When 0.02 < s < v/2/2, the new type of dipole
vortex errierges. The new vortices are localized solitary waves. However, when
s > /2/2, the strong coupling between the drift waves and ion acoustic waves
causes strong radiation damping of energy from the vortex cores and thus elim-

inates the existence of the solitary waves.

Although the above analysis is based on the one-dimensional model,
the main features given in the analysis have been shown to generally agree
with those of 2-D numerical solutions obtained recently [Horton et al., 1992~
(a)]. Figure 4.5 is a comparison between the 1-D and 2-D numerical solutions
for s = 1. It shows that the both solutions generally agree with each other,
except that the amplitude of the 2-D solution is slightly larger that of 1-D
solution. Figure 4.6 is 3-D plot and contour plot of the 2-D numerical solution
which clearly shows the new dipole vortex structure. The 2-D simulations of
Egs. (4.4) and (4.5) discussed in the following section show that the principle
features of the one-dimensional model are consistent with the simulation. As
the shear parameter increases the z-variation of the coherent structure becomes
stronger than the y-variation and the one dimensional model becomes more
accurate. The one-dimensional model is adequate qualitative picture, but does

not yield quantitative values for the amplitudes. -

4.4 Properties of the Coherent Structures in Sheared
Magnetic Field

It is important to note that the dipole solutions presented in the

last section are different from the Larichev and Reznik’s modons [Larichev.
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Figure 4.5: Comparison between the 1-D and 2-D numerical solutions with
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and Reznik, 1976]. The modon construction uses two different linear functions
F(¢ —uz) in the two different regions, namely, the interior and exterior regions
of a modon; thus, the equations determining the modon structure are two linear
equations. These two equations are solved separately in the two regions and
the solutions from the two regions are matched up to second derivatives at
the boundary. However, the construction of the new dipole solutions presented
in the preceding section uses only one single arbitrary function F(y — uz).
Therefore the derivatives of the eigenfuﬁction ¢ = (u/k)¥ are continuous to
any order in the whole z-y plane. Furthermore, the equation determining the
structure of the dipole is a nonlinear multi-eigenvalue equation. When the
parameters S; and u are given, one can find multiple eigenfunctions ¢,(z)
with different amplitudes and derivatives dy,(z = 0)/dz. The derivatives
dpn(z = 0)/dz of eigenfunctions form a banded continuous spectrum as a

function of the parameter s = S;/v/2(u — vgo) as shown in Fig. 4.4.

The new solitary waves, as pointed out in the last section, couple to
the ion acoustic wave due to existence of magnetic shear. The coupling leads
to the formation of the oscillating tail emanating from the core of vortex. This
tail causes the dissipation of energy from the solitary wave core. However,
when s < v/2/2 or Sy < |u — vy, the tail is small and the dissipation of energy

is negligible.

We also find that when the new dipole vortex interacts with the drift
sheared flow, one pole of the dipole will be destroyed and the other pole will
survive and eventually evolve into a monopole. Which pole of the dipole will
survive or vanish is determined by the sign of v/, or orientation of the drift

sheared flow. Figure 4.9 presented in the next section is an example of the
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interaction. The mechanism of the interaction is basically same as that of a

modon in a sheared drift flow as studied in detail in Sec. 3.4.

In the previous section, we have pointed out that the formation of the

new dipole structure in a sheared magnetic field requires an amplitude

V2u?k

Som ~ Sl )

and the flow velocity

, do(z =0)  2uk?

Therefore the critical E x B Reynolds number Ry can be given by

_ Qp(k) defde d¥ 1 . (4.31)

Wi (2P d_t S

Rg

For a well-localized dipole structure with negligible radiation damping, it re-

quires that s < v/2/2. Therefore we conclude that the formation of the well-

localized vortex structure requires that

do/dz

Ud

Rg ~ >14. (4.32)

- We know that the mixing length level is defined by
de/dz

Ud

Rg ~

~y

Therefore the new dipole structures can be formed in a sheared magnetic field
when the amplitudes of the flow vélocity dy/dz or internal electric field are just
above those of the mixing length level. Figures 4.7 and 4.8 in the next section
show the cases for Rg > 1.4 and Rg < 1, respectively. In the both cases,

we started with the same initial dipole vortex. when the time progresses, the
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dipole vortex in Fig. 4.8 with R < 1 soon spreads out into the whole space
due to the domination of linear dispersive propagation, while the dipole vortex
in Fig. 4.7 with Rg > 1.4 keeps its shape for a long time without much change

because of the domination of nonlinear self-binding.

From the analysis, we can sum up the properties of the vortex struc-
tures in sheared magnetic field as following: when the magnetic shear param-
eter s € 0.02, the effect of magnetic shear on drift waves is small and the
coupling between the vorticity and parallel velocity fields is weak. In this case
the decoupled vorticity equation becomes the H-M equation and therefore we
recover the modon solutions. With the increase of s, the coupling between the
two fields becomes important. When 0.02 < s < \/5/ 2 or the E x B Renolds
number Rg > 1.4, the new type of dipole vortex emerges. The new dipole
vortices are localized solitary waves. But when the dipole vortex interacts
with sheared flow, it will involve into monopole vortex. For strong magnetic
shear s > 1/2/2, the strong coupling between the drift waves and ion acoustic
waves causes strong radiation damping of energy from the vortex cores and

thus eliminates the existence of the solitary waves.

4.5 Numerical Simulation Results

In order to facilitate the numerical solutions of Egs. (4.4) and (4.5),
we first expand Eq. (4.4) according to the ordering in Eq. (4.7) and consider
Vo ~ kT ~ €, ~ €. Keeping only the terms of order ¢ and ¢?, we derive from

Egs. (4.4) and (4.5) the reduced dynamical equations

Bvl

1 Ve 6_90 / 8_90_ 2 — _ [}
(T(l‘) \% ) ot +(”d0+vdo$—'€:r80) ay [‘lpa \% ‘P} = S(II)) 63} ) (433)
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Ov I
_é)—tu [ﬂﬁ,vn} = —5(35)% +uVy) . (4.34)

Here vy = pyodvg/dz ~ (pso/Tn)vao at the core of the vortex. In writing
Eq. (4.34) we have included a viscous damping term to absorb energy trans-
ferred to |k| — oo.

To solve Eqs. (4.33) and (4.34), we use a uniform grid over z and k,

in 85 x 85 zk,-space with 3655 complex @k, (t) and vy, 4; (1) modes. Since

the first term of Eq. (4.33) depends on z, we leave the equation in z space

and use the second order central difference formula for 2, which yields a tri-
diagonal system that is solved for each Oip(, ky,t). We use the Ahlberg-Nilson-
Walsh algorithm for cyclic tri-diagonal systems [Temperton, 1975] to reduce

the operator (1/T(z) — V?) to a cyclic tri-diagonal matrix. Upon invertiné'

the matrix we obtain Oip(z, ky,t) for each mode. The nonlinear convolution
terms in both the equations are evaluated by first transforming ¢ and ) in
kzk, space to get derivatives of ¢ and v, then transforming ¢ and Yk and
their derivatives into zy-space to calculate the convolutions. Tile results are
then transformed back into zky-space. Finally we use the fifth and sixth order
Runge-Kutta time stepping to get o(z, ky, 1) for each mode at each time step.
‘The constants of motion defined in Egs. (4.9)-(4.12) are used to monitor the
accuracy of the code. The modon of Larichev and Reznik is taken as the
initial perturbation for ¢(z,y,t = 0), and Eq. (4.17) with v, = 0, for v The
exponential temperature profile T(z) = exp(—cyz) is used so as to avoid the
negative temperature problem that can arise when expanding T'(z) as 1 — ¢,z.
For the exponential profile x; = ~(1/T*)dT/dz = ¢, exp(czz). Because of
periodic boundary condition, we choose the magnetic shear profile as S(z) =

Smsin(2rz/L,), where L, = 207 pso is the length of periodic simulation box in
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the z-direction. Typical simulations use an average of 40 minutes CPU time

on the CRAY-2 for At = 100 r,/c, which is about 10 rotations of the vortex

core.

In the first case we used vy = ¢; = 0, g = 0.1 and S,, = 0.1 so
that S; ~ 0.01 and the effective shear s ~ 0.07, which give the parameter
|[u/vg — 1] = 0.1 > Sy, therefore the radiative damping of the vortex is small
and negligible. We start with Larichev and Reznik’s modon with u = 1.1vg4, and
ro = 6.0ps0, so that the center derivative of the modon ¢'(0) = (9¢/0z)s=0 ~
6.7 or ¥'(0) ~ 6.1 where t = kz. In this case, the E x B Renolds number
Rg = Qg/wi ~ 7. We observe that the dipole vortex structure for the ¢
field stays a long time without much change, and that the v field, though
experiencing some change, still keeps a rather coherent and stable structure
in the interior region of the dipole vortex. After a long time, the amplitude
of the dipole ¢,, ~ 13, the velocity u ~ 1.3, and the center derivative ¢'(0)
slightly increases. Figure 4.7 shows the streamline of ¢(z,y,t) = const. and

v)(z,y,t) = const. at times tc,/r, = tva/pso =0, 20, 40 and 60.

In the second case, we use same parameters as those in the first case.
The initial dipole vortex is also same as that in the first case, but with much
small amplitude, so that Rg <« 1. Figure 4.8 shows that the dipole vortex

spreads out very soon into the whole space with the progress of time.

In the third case, we show the interaction between the new dipole
vortex presented in Sec. 4.3 and sheared drift flow. We choose ¢; = 0, v/}, =
0.05, S, = 0.1 (S; ~ 0.0l and s ~ 0.07), u ~ 1.lvg and g = 0.1. The
same initial profiles as those in the first case are used for ¢ and v). As time

progresses, the positive pole of the dipole is destroyed and the negative pole
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survives and gradually involves into a monopole vortex. The results are shown

in Fig. 4.9,

Finally, we test the radiation damping of the dipole vortex due to the
strong coupling of the vortex with ion acoustic wave when s ~ 1 or |u/vy — 1] ~
S1. Weset [u/vg—1] ~ §; = 0.1, c2 = 0 and v/, = 0. In this case Rg ~ 3. The
results in Fig. 4.10 show that the dipoles eventually connect to oscillating tails
with significantly large amplitudes and the dipole vortices experience strong

damping of energy through the tails.

In all the simulations, we notice that the waves with small amplitudes
in the v)| field appear to be stationary and that the energy of the v field tends
to go into waves with small scale lengths. The reason for these phenomenayis:
that Eq. (4.34) does not have a linear wave term like v400¢/dy as in Eq. (4.33);
thus linear waves with small amplitude do not propagate. Since Eq. (4.34) lacks.
linear dispersion, the nonlinear steeping process cannot be effectively balanced
and the waves with small scale lengths tend to grow. Because of this fact,
we add a viscous term in Eq; (4.34) to dissipate the energy transferred to the

waves with the smallest scale lengths resolved in the system.

The results of the simulations show the general consistency with the
results of the analysis in the previous section. In particular, the simulations
show that the dipole-type vortex solutions of the drift wave-ion acoustic wave
system can exist in a sheared magnetic field when the electron temperature is
constant over the vortex. The d1pole type vortices are well formed and can last
a long time without much damping if s < 1 or [u/va — 1| > S provided the
kr — 0. For finite k7 we can estimate [Su et al., 1988] the life time of the

dipole vortex from #; ~ 1/kr@mk ~ 1/k7¢'(0)k2.
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Figure 4.7: Contour plots of the electrostatic potential ¢(z,y,t) and parallel
velocity v(z,y,t) with magnetic shear parameter S, = 0.1(s ~ 0.07), drift
velocity gradient v/, = 0 and Rg ~ 7.
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Figure 4.9: Interaction of the new dipole vortex presented in Sec. 4.3 with drift

sheared flow.
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4.6 Conclusion

Analytical and numerical studies of the effect of magnetic shear on
drift wave vortices in inhomogeneous plasmas have been reported. Analytically
we have derived a solitary vortex equation that includes the effects of density
and temperature gradients and magnetic shear, and we have used a quasi-one-
dimensional model to exhibit the main features of solitary vortices in sheared
magnetic fields. The analysis shows that in a plasma with constant temperature
and drift velocity, the presence of a small magnetic shear will cause the effective
potential to change from a non-trapping to a trapping potential, which indicates
the possible formation of solitary vortex structures with finite amplitudes. The
solutions are shown to have the dipole-type symmetry. However, they are
different from the well-known modon vortices, because the derivatives of their
eigenfunctions are continuous to any order in the whole plane, also, the value
of the center derivative ¢/(0) (measuring the internal flow velocity) and the

vortex amplitudes form a banded continuous spectrum.

It is also shown that the presence of the magnetic shear intrinsically
causes the solitary drift waves to couple to the ion acoustic waves. Thus the
dipole solutions are not monotonically decreasing functions, instead, they have
oscillating tails with monotonically decreasing amplitudes connecting to the
core of vortices. This behavior is similar to the monopoles induced by the
gradient of drift velocity in shearless magnetic fields studied in Chapter 3. The
oscillating tails cause radiative damping of vortex energy. The damping is
negligible if the amplitude @, (~ v2u?k/S;) of the dipole structure satisfies
Om > \/§u/k given by s < \/5/2 or S; < uk?. For a weak effect of magnetic

shear, this condition is consistent with that for the Larichev-Reznik’s modon.
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However, for shear above a small threshold value s > s. & 0.02 as given
in Fig. 4.4, we find that the nonlinearity of the v induced by the shear and
vorticity equations combine to produce a nonlinear restoring force proportional
to (52/2ut)e® which gives the new dipole vortex structures when s > 0.02 or
S1 > 0.03|u/vg—1]. The nonlinear structures in the weakly sheared field greatly

reduce the shear radiation expected in the linear drift wave-ion acoustic wave

theory.

The numerical simulations performed in 2-D with the coupled vor-
ticity and parallel mass flow equations consistently support the analysis. The
simulations show that for a plasma with constant temperature and drift-ve-
locity in a magnetic field with small shear, the well-formed dipole vortices:are
stable and can last a long time without much damping when |(u/vy) — 1| > S;.
However with the presence of a small temperature gradient, the dipole vortices
become structurally unstable and are rapidly separated into monopole vortices,
which is consistent with the results in previous chapters on the effect of finite
inhomogeneities across the core of the vortex. Therefore we conclude that
with constant temperature and drift velocity, the coherent structures of drift
wave plasmas behave like dipole vortices in either shearless or sheared mag-
netic flelds. But when the gradients of temperature and drift velocity exist,
the solitary coherent structures take the form of monopole vortex structures

rather than dipole structures.




Chapter 5

Formation of Drift Wave Vortices in Parallel Shear
Flow Driven Turbulence

5.1 Introduction

In the previous chapters, we have studied the solitary coherent vortex
structures of nonlinear drift waves in an inhomogeneous plasma background
and in a sheared magnetic field. The physical systems considered in the previ-
ous chapters are conservative. In nature, however, a physical system is always
associated with damping and/or driving forces. The solitary wave with finite
dissipation will dissipate away in a relaxation process if there is no energy
source. Thus studies of evolution of the coherent vortex structures in an un-

stable system is essential to understand the drift wave vortices and turbulence

In nature.

During the past decades there have been comprehensive studies of the
nonlinear dynamics of drift waves by various groups with different approaches.
From these studies, many properties of drift wave turbulence have been ob-
tained; for example: nonlinear saturation in an unstable system is initiated by
the E x B drift [Horton, 1976], the frequency spectrum has a broad frequency
component [Meiss and Horton, 1982; Terry and Horton, 1983], the wavenum-
ber spectrum evolution is characterized by an inverse cascade [Hasegawa and
Wakatani, 1983], the wavenumber spectrum obeys the Kolmogorov-Kraichnan

power law £~ [Kraichnan, 1967; Wakatani and Hasegawa, 1984], etc..

96
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On the other hand, as pointed out in Chapter 1, there exist many non-
linear drift wave models, which describe plasma dynamics in various regimes
and plasma geometries, that possess solitary vortex solutions. Thus it is ex-
pected that the nonlinear drift wave equations link strong turbulent motions to
self-organized motions. The transition process from the turbulent state to the
coherent structure has the following feature: the energy of the turbulent flow
characterized by iﬁcoherent motion of many small scale vortices experiences
the inverse cascade which appears as coalescing and pairing of the small scale
vortices into large scale vortices. It has been shown by rotating water ’é@nk
experiments [Sommeria et al., 1988] and numerical simulations [Overman and
Zabusky, 1982; Horton, 1989; Marcus, 1990; Tajima et al., 1991] that the 'cé_af
lescence takes place when two vortices with like-signed vorticities interact, a.xuld
the pairing is likely to happen when two vortices with opposite-signed vortic-
ities and certain polarity are within a short distance from each other [Couder
and Basdevant, 1986; Horton, 1989] . Thus it is anticibated that the contin-
uous processes of coalescing and pairing fnay cause the forfrlation of a single
large scale coherent structure. Recently there have been different approaches
proposed by several authors to explain the self-organization proéess [Hasegawa,
1985; Kadomtsev, 1987; Tsytovich and Shukla, 1991; Muhm et al., 1991 and
1992].

In this chapter, as a paradigm of unstable drift wave system, we
study the formatioﬁ of coherent vortex structures in parallel shear flow driven
turbulence. Analytically, we derive a model which incorporate the instability,
and demonstrate the existence of a electrostatic dipole vortex solution in such

a system. Numerically, we study the formation of the coherent vortex structure
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via turbulence in the course of nonlinear development of the instability, that

is, the so-called self-organization process.

The organization of this chapter as follows. In Sec. 5.2, we derive the
nonlinear drift wave model equation with parallel shear flow driven instability,
and then analyze the linear instability. The nonlinear solitary vortex solutions
of the model are given in Sec. 5.3. In Sec. 5.4 we present the numerical simu-
Jation to show the evolution of the linear and nonlinear waves. Section 5.5 is

devoted to summary and discussion.

5.2 Dynamical Equations and Analysis of Linear Insta-
bility

To derive the nonlinear evolution equation, we consider a physical

system which is basically the same as that considered in Sec. 4.2 of Chapter 4,

except now the mean ion flow velocity is no longer zero or a constant; instead

we consider the velocity is a function of spatial variable z. Following the same

procedure as that described in Sec. 4.2 of the preceding chapter, we are able

to derive the system of the equations,

08¢ 0bp 06
(1- Vi)w tug, Tt voy(7)(1 — Vi)-a—y— — (8¢, Vibe)|
= =V by — ,u_LVj_&p , (5.1)
0bv by Ovg) by
Y | + UOy(m)a—y - “3‘;% + [550 ,5'0”] = -—V”&p + VLVi6U|' ) (5.2)
where
.0 0
V,i=Xs—+¥=
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9
Vi =5, +5(2)9/0y ,

_0fdg 0Of g

wy and vy are dissipation coefficients.

) The non-dimensional variables are
T, y=z/ps, y/ps;
z=2z[ry ;
t=ct/ry ;
v = (ra/ps)(vy/ca) 5
o= (r/p:)(e?/T.) -

For fluctuations localized on a rational surface at ¢ = zo, the mean
ion flow velocity v;o may be expanded around the rational surface as

8V;O(CC = :130)

vio(z) = Vio(z0) + (z — 7o)

Now we keep only the first derivative term and assume

Vio(xo) =0,
3V0J_($ = z) ~ 0
Oz -
dvgy)(z = zo)
— g = vg = const.

that is, there exists sheared flow only in parallel mean ion motions. To further
simplify the model, we consider the 2-D case, that is, the case of single rational

surface.

~
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With these considerations, Eqs. (5.1) and (5.2) become

06 06

(1- V2)a—f + vd_a_ysg — (8¢, V6] = —Vybv) — u V460, (5.3)
O0bv 06

_8t_” - U(I)“"a_;' + [5(,0 ,(5‘0”] = —Vdp + I/J_V25'U|| ) (5.4)

where V| = S(2)8/0y and V? = V% = §%/9z% + 8%/ dy>.
The fluctuation energy balance equation associated with the set of
Eqgs. (5.3) and (5.4) is given by

o€ Vg . gn 06 2c sn bp? o
5 +V. [-—2—-590 y — 6oV 5 VZp(z x V 5 ) + (6pév))b

)
= v6“5v“£ — u1|V3|? — U_[_IV5U|||2 , (5.5)
where the fluctuation energy density £ is defined as
1
E(z,9,1) = 5 [6¢" + (V6)? + 60f]

and b =z + S(z)¥ is unit vector of magnetic field as defined in Sec. 4.2.

In Eq. (5.5), the term in the square bracket on the left hand side
(Lh.s.) is the energy flux, the term Vo 6v 6/ Oy on the right hand side (r.h.s.)
is the energy source of the system and the second and third terms on r.h.s. are

sinks or energy dissipations.

In studying the linear stability of Eqgs. (5.3) and (5.4), we only discuss
the local linear stability theory in which k) is a constant. For the nonlocal case
where kj is a function of z, one needs to solve the eigenvalue problem, which

is detailed in Hamaguchi and Horton [1992] and is not considered here.

In the local approximation, we replace V, and V| by constants ik, X+

tk,y and ik = iSoky, respectively, where So = (r,/L,)()A:)/ps) and A, is a
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typical wave length in the z direction. Then the dispersion relation of a linear

wave is obtained from Egs. (5.3) and (5.4),

B(k) + \/B(k)2 —4(1 + &?) [kgso(vg,“ — 80) — iovak,k? — azke]
2(1 + &2)

, (5.6)

w =

where

B(k) = vk, — 10k?*(1 + 2k?) , (5.7)
and it is assumed that ¢ = u, = v, for simplicity.

The linear instability growth rate is obtained by taking the imaginary
part of w, v(k) = Im(w). In Fig. 5.1, the growth rate v(k) is plotted as a
function of k, for various values of k, at ¢ = 0.01, S = 0.2 and v(’)“ = 0.7.
Figure 5.1 also shows that the wavenumber spectral structure of the growfch
rate is characterized by the finite bandwidth for the instability. Figure 52
shows the stable and unstable regions in So-vg, space for k; = 0, k, = 2.6

which is the most unstable mode in Fig. 5.1.

Without using the local approximation, the spectra of growth rate
obtained both by solving eigenvalue problem [Hamaguchi and Horton, 1992]
and by kinetic analysis of linear instability [Horton et al., 1992 (b)] are shown

to have similar structures as that-shown in Fig. 5.1.

5.3 Solitary Vortex Solutions

In this section we look for the stationary solutions of Egs. (5.3) and

(5.4) traveling with velocity u in the y direction,

&P(ma Ys t) = &P(ma y—- Ut) 3
(5.8)

by (z,y,t) = du(z,y —ut).’
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Figure 5.1: The growth rates y(k)(r,/c,) versus k,p, for given k.p, = 0-5 in
the case of v{,” =0,7, So=0.2 and ¢ = 0.01.
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Figure 5.2: The stable and unstable regions in So-vg, space for the mode

kzps =0, kyps = 2.6 with o = 0.01.
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For simplicity, we use the local approximation and consider the dissi-
pation to be small for large scale vortices, so that we replace V|| with S,0/0y
where Sy = const. and set gy = v, = 0in Egs. (5.3) and (5.4). Upon inserting
Eq. (5.8) into Egs. (5.3) and (5.4), we can write the steady state equations as:

35(,0 5(,0 85’0”
_a(1 o2\ 9% op 26 1 _ _
u(l — V*) By +vd3y [6 , V*6¢] So g7 (5.9)
Oy, Bbp _ 0y
u ay voH ay + [590, 5’0”] = So ay . (5.10)

Equations (5.9) and (5.10) have dipole vortex solutions which are

defined in two regions of x-y plane.
Interior region: z?+y* =r? <r?,

Exterior region: z?+y* =72 > r2 |
where ry is a constant parameter characterizing the size of the vortex. The
solutions must satisfy the following boundary conditions.
(1) In the interior region, 6p and v must be finite at r =0,
(2) In the exterior region, é¢ and éy; — 0 as r — oo,

(3) On the border between interior and exterior regions, where r = r,

b, 0,60, V*6¢ and év) must be continuous.
The simplest solutions to satisfy the conditions are given as follows.

In the interior region (r < rg):
V3o = —p*6p + a1z , (5.11)

bv| = dbyp + asz . (5.12)
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Substituting Egs. (5.11) and (5.12) into Egs. (5.9) and (5.10) yields
ay = u(l +p?) —vg—Sod, - (5.13)
ag = So — vy — ud . » (5.14)
In the exterior region (r > ro):
V26 = k*6p (5.15)
Su) = bdep (5.16)

where Eqgs. (5.9) and (5.10) together with Eqs. (5.15) and (5.16) determine

S — /
p= 2o | (5.17)

U

k2 — 1 _ :L_)E _ SO(SO - U(IJ”)
U u?

. -~ (5.18)

We remind that vy > So is sufficient condition for insta.biiity according to

Eq. (5.6).

Solving Egs. (5.11) and (5.15), we get the solutions for &

) 2
[_k ro Ji(pr) 4 (1 4 k—zﬂ urcosf (r <rg),

P Jy(pro) P
om (5.19)

Ki(kr)
K1(kro)

urg cos f (r > o) .

Imposing the matching condition (3), we obtain-

—or—uk?  So—vl
J U — vy — uk _ 2o ol _ ’ (5.20)
So u

Qg = 0 , (521)
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and parameters p and k are related by

1 I(Z(k’f‘o) _ 1 Jz(p’l‘o)

1 __L , 5.22
kro K1(kro) pro J1(pro) (5:22)

where J and K are Bessel and McDonald functions, respectively.

Equations (5.12) and (5.16) together with Eqs. (5.20) and (5.21) give

solutions for éy,

, k*ry Ji(pr) k?
(So — vg) [—;2—7‘—111(2”‘0) 1+ 7 rcosf (r <o),

6v|| = (5.23)
K, (kr)

(So — v{)”)———ro cos @ (r>rg) .

I(l(kro)

Equations (5.19) and (5.23) show that both é¢ and év have dipole
vortex solutions with core size ro and constant speed u moving in the y di-
rection. Figure 5.3(a) and (b) show 3-D plots and their contour plots of the

dipole vortices for ép(z,y) and §v||, respectively.

For the vortex solutions to be localized or isolated, it requires that the
speed u of the vortices to be within the bounds determined by £2(u) > 0, where

k*(u) is defined in Eq. (5.18) and is called as nonlinear dispersion relation, i.e.,
E(u)=1- =+ — (vg = So) > 0. (5.24)

The allowed regions of the speed u for the localized nonlinear solitary wave
solution are shown in Fig. 5.4 for given vp» and in Fig. 5.5 for given So. From
Fig. 5.5, we can see that when v(’)” > 1.43 with So = 0.2, the motion of the

solitary vortices becomes totally dominant in the system.

It should be noted that with the local approximation the dipole solu-
tions described in Egs. (5.19) and (5.23) belong to modon type, and without
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Figure 5.3: 3-D and contour plots of the stationary dipole vortex solutions
given in Eqs. (5.19) and (5.23) for u = —0.4, ro = 16, v = 0.7 and So = 0.2.

Solid and dashed lines in the contour plot represent the positive and negative
values, respectively. (a) for d¢(z,y) and (b) for év(z,y).
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Figure 5.4: Plot of speed u versus S, for vg = 0.7,

Allowed speeds for the solitary vortex solution are the unshaded regions. Linear
drift waves have phase speeds in the shaded region.
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Figure 5.5: Plot of speed u versus vy, for Sp = 0.2.

Allowed speeds for the solitary vortex solution are the unshaded regions. Linear
drift waves have phase speeds in the shaded region.
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using local approximation, that is, when magnetic shear exists, a new kind of
dipole vortex structure emerges. The detail studies of the new dipole vortex

are given in Chapter 4.

5.4 The Simulations

In this section, we report and discuss the results of numerical sim-
ulation of the parallel sheared flow driven instability and establish a scenario
for the instability evolution and formation of coherent vortex structures. The
model equations are based on Egs. (5.3) and (5.4) derived in Sec. 5.2. We nu-
merically solve the set of equations in the two cases, The first case deals with
the local mode in which k) and B, are constants, and the other case is for the
global mode in which kj and B, are functions of z, that is, a case with presence

of magnetic shear.

5.4.1 Local case

With the local approximation, in which & = Sok, =const., Eqs. (5.3)
and (5.4) become uniform in space. Therefore we can solve these equations
with a periodic boundary condition. We Fourier transform Eqs. (5.3) and (5.4)

with wavenumber vectors
k) =IAkX +mAkY ,
k‘” = SomAky ,

where [ and m are integers and Ak, and Ak, are the minimum wavenumbers

in the z and y directions, respectively. In the k;k, space, Eqs. (5.3) and (5.4)
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can be written as

96 A .

(14 F) 52 = —(ivgh, + wuk)ogn + {[&p , V25cp]}k — iSok,buyp , (5.25)
0év _

8t”k = iky (vg) — So)bpx — {[&p , 5v||]}k — v k2bu (5.26)

where the Poisson-bracket {[ f g]} is evaluated by first transforming the
k .

functions f and g into z, y space as follows,

af

1ke fr — == and ’ikyfk —_

Oz Oy
dg

. 0 .
1kogr — 29 and tkygy — =,

Oz dy

then calculating the Poisson bracket in zy space by

af o0 of o
P(m)y):[fvg]za_ia_;z—a_;;a_ia

and finally transforming P(z,y) into k;k, space by using FFT. During the

whole process, the truncation of & space is implemented.

The number of mesh points used in the simulation is typically 85 x 85
and Ak; = Ak, = 0.1. The method of the fifth and sixth order Runge-Kutta
time stepping is used to do the time integrations of Egs. (5.25) and (5.26). The
stability of the numerical scheme is ensured by monitoring changes in conserved

quantities of Eqgs. (5.25) and (5.26) without viscosity terms.

We first started with many small émplitude waves as initial profiles
for 6¢(z,y,t = 0) and dyy(z,y,t = 0), and confirmed that the observed growth
rate spectra in the simulation agree well with the theoretical linear growth rate

spectra obtained in Sec. 5.2. The simulation with a higher resolution (170 x 170

grid points) confirmed the results obtained from the simulation of 85 x 85 grid
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points, since as a result of the viscosity in Eqs. (5.25) and (5.26), short length
scale waves are heavily damped and play no significant role in the physical

system.

In the first case, we choose
§p(z,y,t =0) = by)(z,y,t = 0) = Asin(k,z + k,y)

as initial conditions in zy space, where

ks = 40k, , k, = 6Ak, , Ak, = Ak, =?:o.1

<
with the amplitude A = 0.1, v(’)“ = 0.7, Sp = 0.2, g, = 0.01, and v, = 0.02.
The evolution of contours of electric potential é¢ and parallel velocity dvy are
shown in Figs. (5.6) and (5.7), respectively. The wave initially launched grows
linearly first , followed by an excitation of higher k£ harmonic modes. At about
t = 230, when the amplitude of the initially launched wave exceeds a value of
about ¢, ~ v, ~ 0.2, the nonlinear interactions among the modes become
important and energy transfer to many modes erupts, which causes the wave
to break up into many small vortices. Then the small vortices start to interact
with each other and the coalescing and pairing processes emerge. As the result
of coalescence, the small scale vortices fuse into larger scale ones, which, from
the point of view of mode energy in k space, indicates occurring of inverse
cascade of wave energy. The evolution of a typical wavenumber spectrum of
energy is shown in Fig. 5.10. The continuous processes of coalescing and pairing
result in formation of a single, large, isolated and stable dipole vortex structure
with amplitude ¢,, ~ 30 which propagates towards negative y direction with

a speed u ~ 0.4 in a rotating manner. From Figs. 5.4 and 5.5 we notice that
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Figure 5.7: The time evolution of the contours of parallel velocity svy(z,y,t)
for ’06” = 07, By/Bo = So = 02, HL = 001, and v, = 0.02.

The solid and dashed lines represent the positive and negative values of the
parallel velocity v, respectively.
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the speed of the observed dipole vortex structure is within the zone allowed for

solitary vortex solutions.

In the second case, we start with a Gaussian monopole vortex for

both d¢ and dyj,

2, .2
bo(z,y,t =0) = by (z,y,t =0) = 0.7exp (_:c ;éy )

as initial perturbation and vy, = 0.6, So = 0.2, u;y = v; = 0.01.
ol

The initial monopole vortex is seen to break up into many small vor-
ticés and waves in the initial stage of the evolution during which the linear
instability is dominated. At around t = 100, nonlinear effect sets in and the
coalescing and pairing processes become the main processes of the evolution
and as in the first case, the small vortices fuse into larger ones. The evolutions

of 6 and v are shown in Figs. 5.8 and 5.9, respectively.

Comparing the first case with the second case, we notice that the
contours of 6 and 6y at around time ¢ = 800 in the first case shown in
Figs. 5.6(c) and 5.7(c) have same patterns as those at the same time in the
second case shown in Figs. 5.8(c) and 5.9(c), although the very different initial
conditions for ép and 5b]| are used in each case. We also notice that the fusion
process of smaller vortices into larger ones in the second case is significant
slower than that in the first case. The reason for this may be due to a larger
driven vy = 0.7 and damping p. = 0.01 and v, = 0.02 in the first case,
comparing with voy = 0.6 and py = v, = 0.01 in the second case. A larger
driven force may supply more free energy and therefore enhance the feeding
process of energy to coherent structure from random wave packets [Tsytovich

and Shukla, 1991]. A larger damping force will enhance the relaxation process.
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Figure 5.8: The time evolution of the contours of electric potential ép(z,y,t)
for v(’)” = 0.6, B,/By = So=0.2, and p;, = v, =0.01.
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The self-organization has been observed during the relaxation process in a 3-D

simulation study [Horiuchi and Sato, 1985].

The inverse cascade of energy during the fusion of small vortices into
larger ones in the second case is clearly shown in Fig. 5.10, which features in the
evolution of wavenumber spectrum of total energy, where time average energy
spectra are defined as

E(k;) = E(ks, ky) and E(k,)=3_ E(ks,k,) .
ky

ks

In the time interval of 50 < ¢ < 250 in Fig. 5.10(a) and (b), the peak
energy appears around k;p, ~ kyp, ~ 0.8 and the peak energy level is order of
1072, while later in the time interval of 2250 < ¢ < 2500 in Fig. 5.10(c) and (d),
the peak energy appears at k,p, ~ 0.4 and k,p, ~ 0.15 and the peak energy
level increases to order of 107!. We also notice that in the later time interval

the energy spectra have a steep drop-off at around k,p, ~ k,ps ~ 0.5.
In addition, the wavenumber spectrum of energy after a long-time

evolution is shown to obey a power law,

Y Ek) ~ k% and > E(k) ~ k%

kz ky
in the intermediate range (0.6 < k; < 2.0) and

Y E(k) ~ ky"e'ﬂ and ) E(k) ~ k7%

kz ky
in the inertial range (2.0 < k; < 5.0) with § ~ 0.2 to 0.3. Here k, ~ 2 is

the boundary between the two regions. We also notice that from Fig. 5.1 the

largest growth rate is around &, ~ 2.
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Figure 5.10: The wavenumber spectra of the time average total energy
for a early time interval 50 < te,/r, < 250 and a later time interval
2250 < tey/r, < 2500 for the case in Figs. (5.8) and (5.9).

The dots represent the values of time average over every 10 time step in the
last 50 time steps of the corresponding time interval. The circles represent the
values of time average over the whole corresponding time interval.
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In the zy space, the inverse cascade appears as coalescence of same
signed smaller vortices to form larger coherent vortex structures. Thus, part of
the free energy stored in the parallel sheared flow is transferred or fed into larger
scale vortex structures through random wave packets [Tsytovich and Shukla,
1991] or small scale field [Muhm et al., 1991 and 1992], and part of energy is
coupled to small scale waves where it is absorbed by viscosity represented by

py and v terms in Egs. (5.25) and (5.26).

5.4.2 Nonlocal case

In the nonlocal case, periodic B, is taken by allowing the tilt angle
to vary as
B 2w

By _ o 2T
B S sm(sz) ,

so that k (= Sm sin(27rz/L,)k,) depends on the space variable z, where L, =
207 p; is the simulation box length in z-direction. Fourier representation for the
y variable and a finite difference method for the z variable are employed. The
same numerical scheme as that described in Sec. 4.5 of the preceding chapter

is used to evaluate the nonlinear terms and to do the time integration.

In this third case, the initial conditions are chosen as
bp(z,y,t = 0) = by(z,y,t = 0) = Asin(k,z) cos(6k,y)

with the amplitude A = 0.1, k, = 27 /L, = 0.1 for v(’,” = 0.6, S, = 0.4, and
pr = vy = 0.01. The time evolution of §¢ and év| observed in this case is
similar to the previous case: a fast linear growth is accompanied by formation

of many small scale vortices, and followed by fusing of the small vortices into
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larger ones. The contour plots of electric potential ép(z,y,t) and the parallel

velocity évj(z,y,t) are presented in Figs. 5.11 and 5.12, respectively.

It should be noted that after the early nonlinear E x B trapping or
phase mixing at time of order t¢,/r, ~ 100 in the second case with a constant
By, a slow coalescence process continues and the vortices continue to merge
and grow in diameter. At the final time t¢,/r, ~ 2800 in Figs. 5.8(d) and
5.9(d), the diameters of the vortices are order of 10p,. However, in the present
nonlocal case with the sheared magnetic field, the growth of vortices stops at
around tc;/r, ~ 250. The length scale of the turbulent vortices in this case is
about order of 5p,. Thus the presence of the non-constant B, field significantly
reduces the strength of the turbulent mixing across the sheared flow layer of

plasmas.

We also notice that the non-constant B, field has a stabilizing effect.
In Fig. 5.13 we show the energies as functions of time for vy = 0.6, By/Bo =
0.4sin(27z/L,), and gy = v, = 0.01, where Eyr = E, + Eu" is total energy;
E, = [6¢* +(V§¢)*]/2; and E,, = évft/2. The total energy in this case clearly
is shown saturated after tc,/r, ~ 200. With the driven v @nd damping ., and
vy same as those in the case depicted in Fig. 5.13, and B, /Bq = constant = 0.2,
we redo the experiment and find that the total energy level reaches same level
at tc,/r, ~ 200 as that in Fig. 5.13, but in the current case the energy can not
be saturated. The time development of energies for the current case is shown

in Fig. 5.14.
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Figure 5.11: The time evolution of the contours of electric potential §¢(z,y,t)
for v(’)” = 0.6, B,/By = 0.4sin(27rz/L,), and p; = v; = 0.01.

The solid and dashed lines represent the positive and negative values of the
potential dyp, respectively.
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Figure 5.12: The time evolution of the contours of parallel velocity vy (z,y,t)
for vy = 0.6, By/Bo = 0.4sin(2rz/L;), and py = v, = 0.01.

The solid and dashed lines represent the positive and negative values of the
parallel velocity év), respectively.
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Figure 5.13: The time evolution of the energies for vy = 0.6,

B,/By = 0.4sin(27rz/L,;), and p, = v, = 0.01.

Er, E,, and Ev" represent the total, electric, and kinetic energy, respectively.
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and p; =v; =0.01.
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5.5 Summary and Discussion

In this chapter, we have studied the formation of a coherent structure
through turbulence in the course of nonlinear development of the parallel or
toroidal sheared flow driven drift instability. We have derived a model made of
the coupled vorticity and parallel mass flow equations with effects of sheared
flow and viscosity. The studies of linear instability show that the spectral
structure of the growth rate is characterized by the finite bandwidth for the
instability. Analytically, we have found the exact localized stationary dipole
vortex solutions for the nonlinear equations describing the parallel sheared
flow driven turbulence with finite constant By, or kj =const.. The dipole
vortex solution is shown to be a generalization of the modon type given first

by Larichev and Reznik [1976].

Numerical simulations based on the model equations are performed in
the two-dimension. A scenario for the instability evolution has been established
as follows. The initial exponential growth of a linear instability is followed by
the excitation of many modes through nonlinear interaction. At the same time
the waves break up into a random ensemble of many small scale vortices. Then
the inverse cascade of the wave energy sets in, which in zy space appears as
coalescing of same signed small vortices to form larger scale vortex structures
and pairing of opposed signed vortices to form dipole type vortex structures.
The coalescing process is repeated to give rise to a single large dipole type
vortex structure which is similar to a modon. The energy needed to form the
large vortex comes from the free energy stored in the sheared flow. Part of
the free energy is transferred through the collective drift modes into the large

vortex and part of the free energy goes to small scale modes by mode-coupling
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process, where the energy is absorbed by viscosity.

The energy spectrum shows a steep drop-off at critical wavenumber
kzps ~ kyps ~ 0.5 due to the strong inverse cascade and the formation of the
large and long-lived vortices. The wavenumber spectrum of energy is found
to obey a power law E(k) ~ k~?%%3 in intermediate range (0.6 < k£ < 2) and

E(k) ~ k=%%03 in inertial range (2 < k < 5).

The presence of magnetic shear significantly affects the instability
evolution. We have found that magnetic shear hinders the inverse cascade
process of the wave energy and thus the formation of large scale vortices. This
is because the strength of the turbulent mixing across the sheared flow layer of
plasmas is greatly reduced due to the shearing of the magnetic field structure
and so that the free energy is easily absorbed by viscosity in the small scale

modes before it is transferred to large scale structures.




Appendix A

Noncanonical Hamiltonian Structure

In this appendix, we systematically construct the invariants and de-
velop Casimir noncanonical Hamiltonian structures of the system described by

Eqs.( 4.4) and (4.5) in Sec. 4.2 of Chapter 4.

The vorticity Eq. (4.4) and the parallel momentum Eq. (4.5) with the
Boltzmann density distribution n given in Eq. (4.6) can be rewritten to order

€ and € for 3/0z = 0 as follows:

Ovy

Oy’
dp

Tt fo, m] = -sEg, (A2)

where the potential vorticity ¢(z,y,t) = Vi — ¢/T(z) — tn(no(z)).

% 4, g = S(x)

- (A1)

The Hamiltonian is, from Eq. (4.11),

H(g,v) = % / [% + (V) + vﬁJ dzdy

1 2
=3 / (—qc,o — plng + v”) dzdy, (A.3)
where surface terms are neglected. Upon variation of H,
§H = / (~8q + vybuy) dedy

and we obtain the functional derivative

6H  §H
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Equations (A.1) and (A.2) can be written in Hamiltonian form,

5? = {Q7 H} ) (AS)
Ov
6_t” = {v, H} , (A.6)

where the noncanonical Poisson bracket {F, G} is defined as
§F  6GY ‘ 0F  6G
{r, G}—/{Q[E, 5—q}+(vn—0(¢v)) ([m ”5}]

§F  6G
where o(z) = [* S(z')dz’.
It is easily shown that the Poisson bracket given by Eq. (A.7) is an-

tisymmetric,

{F,G}=—{G,F} ,
and one can prove it satisfies Jacobi’s identity,
{E,{F,G}}+{F,{G,E}}+{G,{E,F}}=0.
(A proof for essentially the same bracket can be found in Morrison and Hazel-
tine [1984].)
The Casimir invariants C of the Poisson bracket are defined by
{C.D}=0, (A.8)

where D is an arbitrary function. Substituting Eq. (A.8) into Eq. (A.7), we

obtain |
{c,D} :/{q [% i—ﬂ + (v = o(2)) (-[%’ %ﬁ;.]

6C 6D
" [.55 , 5”] ) }dody = 0. (A.9)
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Using the identity,
/f[g, hldzdy =/h[f,g]dxdy : (A.10)

we can rewrite Eq. (A.9) as

&l 5]+ |e-a@) 52

5]
by |

6C
(v” — a(x)) ) 5_q} }dzdy =0. (A.11)

Since D is arbitrary its coefficient must vanish, and we can find two independent

Casimirs, from Eq. (A.11)
Cy = /f[vn — o(z)]dzdy ,
Ca = [ aglyy — o(a)ldzdy ,

where f and g are arbitrary functions of their arguments. When 8/0z # 0, it

can be easily shown that
G, = /qd:vdydz ,
Cy = / (v” - O’(:L‘)) dzdydz
s = / ¢ (v) = o(z)) dedydz ,

survive.
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