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The effects of the beam-beam interaction on particle dynamics in a
synchrotron collider are investigated. The main highlight of this work is the in-
vestigation of collective effects of the beam-beam interaction in a self-consistent
approach that naturally incorporates the correct single particle dynamics. The
most important target of this simulation is to understand and predict the long-

time ( 10® — 10° rotations) behavior of the beam luminosity and lifetime.

For this task a series of computer codes in one spatial dimension have
beén developed in increasing order of sophistication. They are: the ‘single
particle dynamics tracking code, the strong-strong particle-in-cell (PIC) code,
and the particle code based on the §f algorithm. The later two include the
single particle dynamics of the first. The third approach is used to understand

beam lifetime by trying to improve the numerical noise problem in the second.
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Scans in tune v and tune shift Ay show regions of stability and
instability which correspond to the regions predicted by a linear theory. Strong
resonance beam blowup is observed just above vy = 1/2 and v = 1/4, where

the rate of beam blowup drops with the order of the resonance.

In both the strong-strong code and §f code using the reference pa-
rameters of the SSC (Superconducting Super Collider), oscillations in the tune
shift, Av, are observed. The odd moments of the beam are increasing in os-
cillation amplitude with rotation number, while the amplitudes of the even
moments either decrease or remain constant. The “fip-flop” effect is observed
in the strong-strong code simulations and is found to be sensitive to the initial

conditions.

In studying slow particle diffusion in the phase space of the beams
away from resonances, the trackiﬁg code shows no diffusion of particles from
the beam-beam interaction after 10° rotations. The §f code shows all par-
ticles diffusive after 10° rotations. The diffusion coefficient is an exponential
function of the action. An attempt to understand the diffusion process based
on the spontaneously generated beam offset model has brought an agreement
between analytic theory and the tracking code with random beam offsets. The
exponential behavior found in the self-consistent §f code, however, remains
unexplained, although the order of magnitude as well as the behavior at large
tune shift are in agreement with the theoretical model. A possible cause of this

discrepancy might be the presence of KAM surfaces in low tune shift regi'mes.
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Chapter 1

Introduction

The key goal of high energy particle accelerators in addition to achiev-
ing high energies is achieving a high number of collision events from high energy
colliding beams. In circular accelerators or synchrotrons this is accomplished
by colliding two focussed beams which are travelling in opposite directions.
The beams can be either of the same or opposite charge sign. The number of

collision events depends on the interaction rate, R [23]:
R = Laint) (1.1)

where L is the beam luminosity and ;. is the interaction cross section of the
particles in the beam. The luminosity of the colliding beams is defined as:

N2
4rro?

L=f

(1.2)

where N is the number of particles, & is the rms beam size, and f is the
frequency of collisions. To achieve a large interaction rate, it is necessary that
the luminosity to be as high as possible. High luminosity is achieved by high
collision frequencies, a large number of particles per beam, and small beam
sizes. However, higher IV increases collective effects, higher f results in multi-
bunch instabilities, and lower o places more demands on focusing systems and
beam sources. Typically the luminosity L is a number between 10%° and 103

cm~%sec™! for contemporary high energy accelerators. At high energies the

1



interaction cross section oj,; tends to be small on the order of 10732 to 1033
cmz,Aas it is inversely proportional to the square of the beam energy. A large
number of collisions is necessary to achieve a statistically significant amount of
data. For example, in the Superconducting Super Collider (SSC) the projected
storage time in the main ring is 24 hours. In this amount of time the bunched
beams will undergo approximately 108 rotations and collisions. Therefore, the
beams need to remain coherent for a long period of time. The major concern
with circular colliders is long term beam stability. Beam instabilities can lead
to beam spreading which reduces beam luminosity and beam lifetimes. Beam

instability is caused by many factors:

e longitudinal ._a,nd transverse momentum spread of the beam
® noise in thé system

e magnetic field gradient errors

® resonances

o steerin‘g errors

e focussing errors

e beam-beam interaction

One of the principle limitations on beam intensity is due to the beam-
beam interaction via their collective electromagnetic fields [6, 16]. For the
hadron colliders the beam-beam interaction is expected to be even more crucial,
since there is no synchrotron radiation damping to stop beam blow-up as in

electron storage rings[16].



In this paper we will concentrate on the beam-beam interaction with
emphasis on the beam-beam kick and beam-beam plasma collective effects. In
the beam-beam interaction each beam imparts an impulse on the other beam at
the interaction point where the beams cross. This impulse may be treated as a
kick, as the interaction time is much shorter than the beam particle dislocation
time due to collisions. The kick can include both the impulse acting on whole
beams and impulses acting on individual particles within each beam. Beam-
beam plasma collective effects include plasma instabilities or “soft” collisions.
These instabilities modify the beam profile and can contribute to increasing
beam size. Collective instabilities have the most effect in the interaction region
where the beam densities are highest in the accelerator. Omne of the fastest
growing collective instabilities which can occur in a plasma is the filamentation
instability. However, in typical high energy heavy particle colliders the beam-
beam interaction times are very short relative to the filamentation instability
growth rate. In the SSC the interaction time is about 2% of the maximum
growth rate time. The relative importance of collective effects in plasmas is

determined from the plasma parameter g :
g =1/(nAp) (1.3)

where n is the density and Ap is the Debye length. If g < 1, collective effects
play an important role. For SSC type parameters g = 2.66. So collective effects
are not dominant for a single beam-beam interaction. However, the effects of

a large number of successive interactions have yet to be determined.

The objective of this study is to determine beam-beam interaction
effects on particle dynamics using a collective plasma model at the interaction

point. A one dimensional model is emplt;yed at the interaction point so that



4

oscillatioﬁs in only one transverse direction due to the counterstreaming beams
are studied. The rest of the machine is treated by simple harmonic transport
(betatron oscillations). By employing a fully self-consistent model at the inter-
action point, an assessment of the relative importance of collisions as a whole
and individual “soft” collisions (collective effects) can be determined. Specifi-
cally; we will examine the contribution of self consistent effects on beam blow

up and particle diffusion after a large number of interactions.



Chapter 2

Basic Accelerator Physics

In this section we describe the basic equations and terminology of
particle motion in modern circular accelerators or synchrotrons. The simplest
configuration of a typical modern accelerator is shown in Figure 2.1. The basic

components are[57]:

o A charged particle source
e Main Storage Ring
o Accelerating system

e interaction regions

The charged particle source consists of a small volume of ionized hy-
drogen gas from which charged nuclei (protons) are accelerated. These charged
particles are accelerated by an electric field before entering the main ring. A

kicker makes these particles enter the main ring. -

In the main ring the particles are confined by magnetic fields. The
confinement system conmsists of two parts: (1) the steering magnets and (2)
the FODO cells. The steering magnets are the dipole magnets which keep the
particles bent in the plane perpendicular to the magnetic field so as to keep the

beam within a nearly circular path. The FODO (focus-drift-defocus-drift) cells



Charged
Particle Source

' FODO Cells

RF Cavities

FODO Cells

Interaction Region

Figure 2.1: Modern Accelerator Configuration




consist of a sequence of quadrupole magnets and drift regions (no magnets).
The FODO cells cause net focussing of the beams and will be described in
Section 2.2. Radio frequency (RF) cavities are used to accelerate the particles

to high energies. The generated electromagnetic fields are resonant with the

particles.

In the next sections we concentrate on the basic equations describing
the motion of particles perpendicular to the accelerator path (transverse mo-
tion) and the net transverse focussing of particles. The longitudinal motion

will be left out of this basic discussion.

2.1 Transverse Particle Motion

An equation of motion for the transverse motion of particles travelling

around a collider ring is obtained from the Lorentz force equation:

dp . =
%—qva/c (2.1)

. The following approximations can be made [23):

1. The design trajectory of machine is a straight line or a single planar closed

curve.

2. The field of the magnet is assumed to be two dimensional. That is, ignore

the components of magnetic field along particle trajectory.

3. Assume that transverse velocities are much smaller than longitudinal ve-
locities. This is known as the “paraxial” approximation where v =~ v,

where v, is the velocity of the particle along the particle trajectory and



v is the total velocity. The “paraxial” approximation is used in most if

not all particle acceleration designs.

4. Restrict the fields of the magnet to be linearly dependent on transverse

. displacement of the particles.

5. It is a planar accelerator so there is no radial component to the magnetic

field.

6. Derivatives of transverse field components in the directions of the com-
ponents are assumed to be zero, allowing one to neglect coupling between

the two transverse motions.

The equation describing the transverse linear motion of particles trav- -

ellihg in the static magnetic field of the collider is then of the form:
"+ K(s)z =0 (2.2)

where z” = d%z/ds?, z is either direction perpendicular to the particle motion,

s is the direction along the accelerator path, and K(s) is similar to a spring

constant in harmonic motion which is a function of s. This equation is known as

Hill’s equation and was studied in the 19th century. In circular accelerators the
function K (s) is periodic, that is K(s+C) = K(s) where C is the circumference
" of the accelerator. A general solution to Equation 2.2 can be obtained of the

form:
T = Aﬂl/z(a)cos[ﬁl(s) + 6] ' (2.3)

where ¥(s) is the phase advance of the particle as a function of distance along

the collider s

v = [ 45 (24)




B(s) can be interpreted as the local wavelength of the oscillation divided by
2w or the betatron oscillation length. A storage ring normally is designed and
operated with [ < @ where [ is the beam bunch length. The betatron oscillation
length ((s) and K(s) are related through the differential Equation [23):

288" — " + 48°K = 4, (2.5)

where 8’ = d3/ds and " = d?[3/ds*.
The phase advance of the particle per turn around the collider is called

the “tune” v and is defined as:

1 ds
v = v m (2.6)

The tune v can be thought of as the rotation in phase space due to betatron

oscillations.

One can construct a transfer map from entrance of magnet section
to exit of of the section by writing the equations of motion in the form of a

transfer matrix[17]:

( > )nﬂ _ ( cos(2v) + axsin(2my) B sin(27v) ) ( > ),,(2'7)

T -5 sin(2rv)  cos(2wv) — asin(2wv)
where @ = —('/2 where §' = df3/ds, and the indices n and n + 1 refer to the

turn number. One can define another parameter:

7_1-}—012
B

and then the transfer matrix can be written in the form:

(2.8)

M = Icos(2mv) + Jsin(2nv) (2.9)
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where

J:( y ’6‘ ) (2.10)

and I is the identity matrix. The quantities a, 8, and « are called the Courant-

Synder parameters [17].

2.2 Transverse Focussing

The existence of radial electric fields from the accelerating fields of
the RF cavities, space charge forces between individual particles, and forces

on the particles due to image charges in the vacuum chamber contribute to

the transverse expansion of beam particles. Due to these effects, transverse

_ focussing is necessary. Net focussing in the transverse plane is accomplished
with quadrupole magnets. In quadrupole magnets the Lorentz force acts as
focussing in one coordinate and defocussing in the other (Figure 2.2) The effect

of the quadrupole magnet in the focussing direction can be represented by a

<:'>n+i=("1% 2)(;); - (2.11)

where f is the focal length of the magnet. The paraxial and thin lens approxi-

matrix of the form:

mation has been made [47]. In the defocﬁssing coordinate the focal length is of
the opposite sign. A linear focussing design is possible using transfer matrices
for the field free drift regions and the magnetic impulse sections. A drift region

is represented by a matrix of the form:

(). =G )2, e



P

Figure 2.2: Fields of a Quadrupole Magnet
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where L is the length of the drift region. Net focussing is achieved by creating
a lattice consisting of a focussing lens, a drift region, and a defocussing lens.
The transfer matrix of this lattice is of the form:
1-L—(Ly 20+ % |
M = ( foe o (2.13)
—F 1+ %
where stability is achieved when L/2f is less than unity. Thus net focussing is

achieved when the focal length f is greater than half the lens spacing L.




Chapter 3

The Beam-Beam Interaction

In this chapter we will review the basic concepts of the beam-beam
interaction. The beam-beam interaction is an important factor in beam dy-
namics. It puts practical limits on the yield of the storage ring and prevents
many existing storage rings from achieving design parameters [34]. Substantial

use of the review article by Chao [13] is made in this chapter.

When two oppositely directed beams in a synchrotron meet at the
interaction point of the collider, they give each other a kick. Consider an
idealized collision event where cylindrical beams with radius a, length [, and
N particles collide head on. Figure 3.1 shows the geometry of the beam-beam
interaction where a test particle at radius r of one beam is passing through
the other beam. We neglect space charge forces, since the force that a particle
sees from an oncoming beam is = 2v? times larger than the force from the
other particles in the same beam where v is the relativistic factor. So for
ultrarelativistic machines the space charge effect is relatively small. With a

uniform cylinder of charge there is a radial electric field E, of the form:

Ner
E,. = 2W (3.1)

where N is the number of particles in the beam, r is the distance from the

center of the beam, a is the beam radius, and [ is the length of the beam. In

the relativistic limit v &~ ¢ where v is the beam velocity the magnetic field By

13



Figure 3.1: Géometry of the beam-beam interaction for a test charge

14
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produced by the beam is of the form:

Ner
— = 2— .
By = E. 2 (3.2)

These combined fields produce a net force F,. on the test charge:

F. = e(E, + By) (3.3)
4Ner
i (3.4)

The impulse received by test charge upon passing through the beam is:

_ F.,.At _ 2N7‘0
T ymc  va?

Ar'

r (3.5)

where At = 5’; and 7o = ;:—:~,- the classical radius of the particle with mass m.

Note that Equation 3.5 is independent of the beam length /. Equation 3.5 can

be rewritten in the form:

A‘I‘” = —-}: (36)
1 2N
? = —WTO (3.7)

The form of Equation 3.6 makes the impulse look like a quadrupole error where

f is the focal length. Keeping this in mind, one can define a beam strength

parameter ¢ due to the beam-beam interaction:
1 6*

=—— 3.8

e= 22 (3.5)

where §* is the betatron oscillation length at the beam-beam collision point.

Using Equation 3.7 the beam strength parameter can be written in the form:

i ]V’l"()ﬂ’.l

= . 3.9
2mya? (3:9)

¢
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Typically in proton-antiproton colliders, ¢ = 0.005 and in an electron-positron
collider, ¢ is as large as 0.05 [53]. The beam strength parameter ¢ is related to
the tune shift Av as we shall describe below. The tune shift Av indicates how

much the tune v is shifted by the beam-beam interaction.

In realistic cases the beams are not uniform cylinders of charge. In
- general the beam-beam force is nonlinear in  and y. Most often with large
numbers of particles the beams are Bigaussian where the widths in z and y
direction are characterized by o, and o,. The kicks that particles get from
such a beam may be expressed in the form [13]: |

BU(:B,y) '

Ag' = YY) 3.10
oU(z,y) iy
Ay’ — J 3.11
= -2 (3.11)
where
-} ewp[_ :2 - a'y2 ] -1
Ulz,y) = —r0 [* g 07 A3 _ T30 (3.12)

7 Jo V(@2 +8)(e2 +¢)

The equations representing the kicks are both nonlinear and are cou-
pled. For small values of y/oy, < 1 and z/0, < 1 the force is linear and the

two motions are decoupled :

Az = — . 3.13
I, (3.13)
Ay' =2 (3.14)
fy
where
i — _ZNT.‘_?___ ’ (3 15)
fz voz(0e +0y)
1. (3.16)
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This holds for only a small number of particles in the beam. For values of
:z;/am- ~ 1 and y/oy, = 1, the forces are highly nonlinear. It is found that the

optimum design occurs when ¢, = £,. Equivalently this can be expressed as

Pe _ Py |
=1 (3.17)

where 32 and 3} refer to the betatron oscillation lengths in z and y, respectively,

at the interaction point.

Two models are used to study the beam-beam interaction. They are
the weak-strong and strong-strong models. Both models are important. For
the weak-strong model the internal structure of the so-called strong beam is un-
perturbed. This type of model involves a rigid nonlinear lens at the interaction
point (IP) and becomes a problem of a nonlinear map. Particles in the weak
beam are perturbed by this map. For the strong-strong model both beams are

perturbed.

The procedure in principle for solving the beam-beam problem is:

o Let the unperturbed distribution ¥, be, for example, a Gaussian. With
the strong-strong perturbation, ¥, must be solved self-consistently. The

perturbed beam steady state distribution ¥y is not Gaussian.
e Given the perturbed distribution ¥, let

‘I’]_ = ‘I’o + A‘I’l (3.18)

Are the infinitesimal perturbations AW, , stable under mutual interac-

tions 7
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Neither of these steps is easy. So far only bits and pieces have been done.

Simple schemes have been developed to solve the beam-beam problem.

3.0.1 Dynamic beta

A simple model which has been developed to study the stability of
the beam to an idealized beam-beam perturbation is the dynamic beta model
[1]. The main assumption of this model is that the beam-beam force is linear.
So the model is valid for uniform cylindrical beams or for small values of z and
¥ in nonuniform beams. The dynamic beta model is the simplest Weak-strbﬁg

‘or strong-strong model. The steady state distribution ¥y is still Gaussian after

the perturbation. Except that the tune, vy, goes to v, the betatron oscillation ~

length at the interaction point, 35, goes to 0*, and the rms beam sizes, 0, and

Oyo> 80 to 0 and oy. The variables with the zero subscripts are the unperturbed-

quantities. The motion of small amplitude particles is analyzed by using matrix
techniques. We start with the Courant-Synder matrix in Equation 2.7 which
gives: _ 7
T cos(2rv)  B*sin(2mv) z '
( z' ) - ( —gesin(2my)  cos(2mv) ) ( z' ) (3.20)
n+1 ‘ : n

where 2’ = dz'/ds, s is the coordinate along the collider, the indices n and
n + 1 refer to the turn number, and for simplicity we have taken a = 0. A
similar matrix can be written for the y direction. The matrix in Equation 3.20
representing the perturbed matrix can be expréssed in terms of perturbed and

unperturbed quantities:

(ot L) (e ) )5,



TUT w= 27w, po = 2w, and ¢, is the beam strength parameter:
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where:

1 0
B:(_z_,ﬂ,ﬁ 1), (3.22)
0

€e = Nrofg/2my0.(0r + 0y). (3.23)

The matrix B represents beam-beam kick through half of the interaction point.
There is a similar expression for y transfer matrix. From these transfer matrices

the following relations can be derived:

cosp = cos g — 2mé, sin g (3.24)
FIB = sinp/sin po (3.25)
Note that for ¢ < 1 Equation 3.24 reduces to:
B po + 2mE, (3.26)
which can be rewritten as: |
vy €, (3.27)

where ¢ is equal to the beam-beam tune shift parameter Av = v — . In
the weak-strong case Equations 3.24 and 3.25 are the same. However, since
the strong beam, which kicks the weak beam, is unperturbed, £, is defined in

terms of unperturbed quantities:
b0 = NroBi/2m10ea( 720 + 730) (3.28)

Stability of the particle motion is achieved, when | cos 4| < 1 in Equa-
tion 3.24. The stability conditions are:
¢ < cot(po/2)/2m (3.29)

éo < cot(po/2)/27 (3.30)
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where the first equation is for the strong-strong (coherent) case and the second
equation is for the weak-strong (incoherent) case. The stability diagram from
these equations is shown in Figure 3.2. This figure shows the stable and un-
stable regions in ¢ — v space [13]. In the weak-strong case £ would be replaced

by & in the figure. Note that resonances occur at

7

— =V

£ (3.31)

n
’57
where n is an integer. The beam strength parameter ¢ and the tune shift Av

are related by :

cos(2mv) — cos(2m(v + Av))
27 sin(27v) '

¢(Av) = (3.32)

When |€| < 1, then Av = €.

In the strong-strong case the perturbed quantities are interdependent,
that is, o is proportional to v/B* and not /B5. The perturbed betatron
oscillation length G* depends on ¢, which in turn depends on o,. This implies
that 0., 8%, &, ¢, and L (luminosity) need to be found self-consistently for given
N.

For example for a round beam o, = oy, and pzq = py, = po. Defining

po = 2méy, we get from Equations 3.25 and 3.24:

(g%)z =1+ 2po cot #og% - Pz(%)z- - (3.33)

~ From Equation 3.33, we get an equation for the perturbed betatron oscillation
length B* in terms of unperturbed quantities:

*

Bs

— = (1 + [po/ sin uo]z)l/2 — po cot . (3.34) '
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Figure 3.2: The stability of a uniform cylindrical beam to beam-beam pertur-
bations where ¢ is plotted versus vy
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Also, all other perturbed quantities can be calculated using the fact

thatg
{60 = 03" = 63/8* = L/ I, ()

where quantities with subscript 0 are the unperturbed quantities. We have
-assumed that the beam-beam interaction does not change the phase space area

occupied by the beam particles.

The dynamic beta model can be generalized by allowing the two

beams to behave differently,

(857 = 1+ 20 cot s — A GE  (3.36)
(.ggl)z = 1+ 2po cot “°"g§ - pg(%)2 ‘ (3.37)

where
Bs/BL = o3/l (3.38)

One solution is 8}. = B*. There is another set of solutions with B # pr:

pr_ 1
By pi-1

The two different solutions for 8* implies that one beam is statically blown up

2 tz 2 _ 3 2 __ 2 ’
pO Cco l‘l’o(poz )+ (po 1) . (3.39)
po+1

(B1), the other pinches (8*). This solution with different 3* is a model for
“flip-flop” [34]. ‘

3.0.2 Steady State Distribution

The dynamic beta model is good only when the beam-beam force is

linear in z and y. A linearized beam-beam force is inconsistent with a Gaussian
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distribution where the force is nonlinear for large amplitude in z or y. There

may be two ways to proceed:

e Include nonlinear beam-beam force in z and y for Gaussian beams, but
consider only the second moment. This approximation is still not self-

consistent[26].

o Restart with the Vlasov equation and take into account self-consistency.

The two beam distributions are coupled through (assuming flat beams):

8w, 0%, 8y,
2. TV 5, — Py )By’ =0 (3.40)
B‘I’Z 6‘1’2 611’2
—— +y—— — Fi(y,8)o— =0 3.41
83 +y ay 1(y7'9) ay, ( )
where
Fi(y,s) = K(s)y+ F (3.42)
2rNr oo
Bo= = 70519(8)/_00 dyH(y — 9)p;(3) (3.43)
2w N1y

= T [ arHl 1) [T are@.g,e) (349

with H(z) = 1if ¢ > 0, and —1 if 2 < 0, 8,(s) is a periodic §—function

with period s = L. The equal-beam steady state self-consistent distribution

satisfies: _
v, ,0%, 0%,
5. TV 5y — Fo(y,s )a - =0 (3.45)
where
Fo(yrs) = K(s)y+Fy (3.46)
2w Nr ° _ _
R, = Lﬂ°6p(s) f dyH(y — 7)p;(7) (3.47)
27rNro

- 6(s) [ dgHy-9) [ dy(sg,s) (3.48)

:B
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There are a few solvable cases. One solution is obtained when the
beam-beam force is proportional to §,(s)y and is similar to the dynamic beta
model. The solution does not give the assumed beam-beam force. It is also
not self-consistent except for uniform distributions. Another solvable case is
for two oppositely charged unbunched (continuous), round beams self-pinching
with line density Ap. The beam-beam force is independent of s. There is no

resonance structure. Then

e)o exp (— 224y )

_ 202 .
0 — 27r20"2A2(1 + %yi)z (3.49)
where
o'? = Aoro /7 - (3.50)

and A is an arbitrary constant [13, 32].

These solvable cases have limitations. The linearized 6,(s) beam-
beam force sees only vp = 1/2 resonances. The smoothed beam-beam force

S€€s 110 resonances.

In general ¥g is “transverse potential well distorted”([13] and is in gen-
eral difficult to solve. Note that unlike the longitudinal potential well distortion
due to wake fields this potential well excites resonances vy = p/q where p and
q are integers. The periodic delta function, 6,(s), is not in the longitudinal

potential well distortion.

3.0.3 Dynamics about the Steady State

The key is to determine whether the motion is stable against small

perturbations from the steady state. Table 3.1 shows the steps which have
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Case steady state perturbation
1 unperturbed rigid center-of-mass
2 unperturbed perturbation on rms beam-sizes
3 dynamic beta perturbation on rms beam-sizes
4 unperturbed higher order modes
5 dynamic beta higher order moments
6 potential-well distorted distribution repeat cases 1-5
7 | potential-well distorted and flip-flop repeat cases 1-5

Table 3.1: Cases which have been studied in coherent beam-beam dynamics in
increasing complexity

been taken to study the beam-beam interaction problem [13]. The cases are
listed in decreasing order of confidence. Case 1 represents the simplest coherent

beam-beam model which includes dynamics [11, 33, 48].

For case 1 we assume rigid round beams. Let the unperturbed distri-
bution be ¥(r) and the center-of-mass coordinate be Y. The center-of-masses

exert beam-beam kicks on each other for small Y’s is [26, 63]:

G

AY; = -Z(%- 1) (3.51)
, G
AY = -Z(% - ¥) (3.52)
where f is the focal length for incoherent motion, for example, Ay’ = —y'/f,

and 1/f = 4ré/B;. The beam-beam kick is averaged over ¥(r) where G is the

form factor:

a— Jo2 dr r W(r)

~0(0) [ dr 7 U(r) - (3.53)

G = 1/2 for a round Gaussian beam and 1 for a round uniform disk. Consider-

ing one bunch per beam the transformation for (Y3, Y/, Yz, Y]] from interaction
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point to interaction point is:

1 0 0 0
~G/f 1 G/f 0
o 0 1 olX R (3.54)
G/f 0 -G/f 1
where
COS Lo B3 sin po - 0 0
— L sin cos i 0 0
R— | B SRHe ° .. (3.55)
0 0 COS U By sin po
0 0 - 510.— sin g C€OS Lo

By performing eigenmode analysis it can be shown that there are two modes:

the O-mode and the 7w-mode. With the O-mode the two bunches move up and

down together (or left and right). There is no coherent beam-beam force, and

i = fo the tune maintains the unperturbed value. This mode is always stable.

For the m-mode the two bunches are out of phase. The effective separation
is 2G larger than the incoherent case ( G is the form factor and the 2 is due
to both beams moving). The mode frequency u satisfies Equation 3.24 with

¢ — 2G¢,. The motion is stable if m—mode is stable. For example,
¢o < cot(pe/2)/4nG. (3.56)

Resonance occurs when po = m, or vp = 1/2 which is just like the incoherent
and dynamic beta cases. The O-mode and the 7w-mode have been observed

experimentally [49].

When the beams are not rigid, the beam motion is determined by the
sum of all beam modes (table 3.2). Consider 1 bunch per beam. The bunches

collide head-on, but each executes coherent quadrupole oscillation. Define [13]

(z?) (zz’) O 0

(zz') (2?) 0 0
o 0 () (v
0 0 (yy) (¥°)

, S (3.57)
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mode resonances
rigid dipole | total tune v =n
quadrupole v=mn/2
sextupole v=n/3
etc.

Table 3.2: the beam modes and the associated resonances
where there are one of these arrays for each bunch. Consider small perturba-
tions around a steady state:
D =T+ A% (3.58)
Sy = o+ AZ,. (3.59)

The transformations for the ¥ matrices are in the arcs (round Beams):

(AZ1)out = R(AZL)inR. ' (3.60)

At the interaction point:
(AZ4)out = Top-(AZ,)inTEE- (3.61)
(AL )out = ToB+(AZ )inT5B4, (3.62)

where Tppa is the perturbed beam-beam matrix (linearized):

1 0 0 O
-1 0 0

Teps=| * o 1 ol (3.63)
0 0 —ﬁ 1

This matrix determines the effect on one beam at the interaction point due to

the oscillating beam size of the other beam.

Linearize this with respect to the elements in AY, for small per-

turbations. This will result in 12 x 12 transformation matrices which can be
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eigen-analyzed for 6 modes. Two of the 6 modes give constants of the motion.

The remaining 4 dynamic modes give

2

cos i = cos 2[& + __11 Po sin po cos & (3.64)
-2

COS [I = COS ftg — Po Sin pg. (3.65)

One can obtain a stability diagram from these equations. A similar analysis
can be performed for M bunches per beam. From this one gets 4M dynamic
modes.

The dynamic beta analysis gives a steady-state second moment. The
dynamics of the second moment is given by transformation matrices for AY ..
This formulation was based on a linear b‘eam-beam force which is inconsistent
with a Gaussian beam. With a nonlinear beam-beam force, higher moments are
excited, the distribution is non-Gaussian, and the beam-beam force is modified.

A self-consistent (Vlasov) treatment is needed.

3.0.4 Vlasov approach

A general approach to the analysis of the beam-beam interaction is

by the Vlasov equation [12, 14, 15, 19]. Let
‘I’]_,z = ‘I'o + Agl,Zy ' (366)

where ¥, is the steady state distribution and A¥;; are the perturbations.
Chao and Ruth [12] linearized the Vlasov equation in AW, transformed to

action-angle variables (J, ¢), and assumed a water-bag model where [13, 12]:

Uy = (1/me)H(e/2 - J), " (3.67)
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€ is the unperturbed beam emittance, J is the action, and

1 for z>0
H(e) = 0 for 2<0° (3.68)

The waterbag model is simple. However, it is inconsistent with the steady state

condition.

The coherent beam-beam instability is pronounced near
v =2y = p/q. (3.69)
The g-th mode is the most perturbed where

AT ~ exp(igp) (3.70)

and the mode frequency is [12]

8q— 7 ¢ sin(2wqv). (3.71)

cos p = cos(2mqr) £ pye

The stopband width around a resonance is:

_ ¢ 16
T o2m4qt -1

dv, (3.72)

The stopband is a region around a resonance in which the beams are unstable.
Figure 3.3 shows the stability diagrams for 2 bunches per beam, where the
beams are of opposite charge [12]. As the number of modes is increased, higher
and higher resonances can be excited. When the maximum number of modes

is n, the highest resonances are excited near v = m/n.

Beams blow up in the unstable regions, but only by so much that
stability sets in, for example, just under the sawtooth curve. This stabilization
is in analogy with bunch lengthening observed in electron storage rings and
has already been hinted by dynamic @ analysis where the beam blows up, but

stays below the instability.
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Figure 3.3: Stability diagrams for the case of two bunches per beam and max-

imum modes of m = 2,4, 6, and 8.
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3.1 Diffusion from Beam Offset

Another contribution of the beam-beam interaction is the enhance-
ment of particle diffusion. It is anticipated that at each collision the pair of
colliding beams, instead of head-on, suffer collisions with the centers of the
beams offset, resulting in diffusion of the beam particles, as they experience
stochastic kicks. According to analytic theory on beam offset [58] a Fokker-
Planck equation can be derived for the averaged perturbation of the distribution
function AF = F — Fy:

10 0F,
<AF>—~'2'8—J_<(AJM) 8]’

(3.73)
where Fjy is the initial unperturbed distribution function of the beam, J is the
action, and < (AJp)? > is the averaged change in the action due to beam
offsets. < (AJum)? > /2 can be thought of as the diffusion coefficient. An
expression for < (AJp)? > has been derived using the “weak-strong” approx-

imation for the beam-beam interaction and the assumption that the strong

beam is Gaussian [58]:

Jo
< (AJp)? >= 16722 Jy exp(—Jo) MZ Ik +Ik+1( ) Re, (3.74)
k=0

where ¢ is the beam strength parameter, Jy is the unperturbed action, I is the

modified Bessel function of order &k, and Ry is

Z K(n)cos(2mvn(2k + 1)), (3.75)

n=--o0

where K (n) is the auto-correlation function < {;(m+n >, (m is the beam offset

for turn m, and v is the tune.

Equation 3.74 can be simplified with the assumption that the beam

offsets ( are uncorrelated on a turn by turn basis. Then, K(0) is the only
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non-zero term in the calculation of Ry (the Markov process assumption). Also

noting that the Bessel functions fall off with &, Equation 3.74 can be written

in the form [58]:

< (ATu) >= 1672 Ty exp(~Jo) M (Io(2) + L) R (376)

After integrating over Jy, an approximate value for the diffusion coefficient can

be obtained from the change in the luminosity of the beam [58]:

AL z?
— = —6.25¢2 M —— 3.77
I 25¢ MAI/ ( )

where AL is the change in luminosity, Lo is the initial luminosity, ¢ is the beam
strength parameter, 6z is the beam displacement normalized to o, M is*the" -
number of turns, and Av is the distance of the tune v from the nearest integer.

The diffusion coefficient may be defined as:

(36
D - W. (3.78)

Thus, D can be expressed in the form:

2
D= _6.2552‘;i (3.79)
v




Chapter 4

Filamentation Instability

When collective effects are taken into account between two counter-
streaming beams, one of the most important instabilities is the filamentation
instability [64]. The filamentation instability is one of the fastest growing col-
lective effects which can occur in a plasma. From linear theory the maximum

growth rate for counterstreaming electron and positron beams is [64]:

1 Wy
Tmae = - —
aT 2\/’7

1 . . .
where v = o B = %, w} = 4mweny/m., ny is the beam density, and m, is

the electron or positron mass. The filamentation instability generates a mode

(4.1)

which propagates nearly perpendicular to the beam direction. The onset of
this instability can lead to beam filamentation and heating. Lee and Lampe
[40] have studied a relativistic electron beam in a plasma via simulations. They
foﬁnd that as a result of the ﬁlamentation instability the electron beam splits

into filaments, each of which self-pinches.

There are two factors which may determine the effect of the filamen-
tation instability on collective motion of counterstreaming beams in circular
accelerators. They are the timescale of the interaction and the transverse size
of the beam. The timescale of the interaction 7;,; is determined by the length
of the beam bunches L, where 7;n; = Ly/2¢. The maximum growth rate of the

filamentation instability for large beams is I'yae = wy/2 for p — P collisions and

33
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for p — p collisions where wy = y/4me?ny/ym is the beam plasma frequency, n,

is the beam density, v is the relativistic factor, and m is the proton mass [64].
The factor I';peeTin: determines the fraction of the growth rate time the beams
intefact. The fraction of the growth rate varies between different types of col-
liders. In the SSC the beams interact for a small fraction of the growth time
of the instability (I'mazTine = 0.035). Therefore, the only way the filamentation
instability may be of some importance to the beam dynamics is by repeated
interactions over many turns. Since the typical beam life is ~ 108 revolutions,

the effects of the filamentation instability may be important. In electron syn-

chrotrons the fraction of the growth rate is higher because the growth rate

increases with the decrease in mass. So the filamentation instability could be

more significant over a smaller number of rotations.

The transverse size of the beam may be another factor limiting the
effects of the filamentation instability. The typical scale of the filamentation
instability is the collisionless skin depth A, = c/wp. It has been found that
~the filamentation instability is suppressed when the bea‘I‘n_A.bv_r&{idth wp is small
compared to A. [60]. For the SSC the ratio of wy to A. is = 2 x 107°. So for
the SSC both the fraction of the interaction time and the width of the beam

are small.



Chapter 5

Previous Beam-Beam Simulation Results

Since a complete analytical treatment beam-beam interaction does
not yet exist [13], study of the problem has relied heavily on various types
of computer codes. In this chapter a review of previous simulation results is
presented. Substantial use of the review article by Siemann [56] on electron-

positron storage rings is made.

Two main types of computer codes have been used to study the beam-
beam interaction: weak-strong codes [44] and strong-strong codes [30, 43]. Typ-
ically the 10 to 10! beam particles are simulated with 10® to 10* simulation
particles. In the strong-strong simulations both beams are tracked and the
evolution of their phase space distributions is followed. The purpose of these
programs is to measure the effects of storage ring parameters on the beam core.
In the weak-strong simulations one beam is tracked (weak beam) and the other
beam is kept stationary (strong beam). The weak beam is perturbed by the
strong beam’s scattering potential. Weak-strong simulations cannot be used
to study the beam core. However, they are mainly used to study the dynamics
of particles in the tails of the beam distribution. The goal of tracking is to
directly simulate single-particle motion in circular accelerators and determine

regions of phase space that are stable [21].

The simulation particles are tracked for many turns. For each turn

the particles pass through each other at the interaction point (IP) and are then
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transported through the rest of the storage ring via matrices representing the

various magnetic transport components.

At the IP the usual approximations that the beams are Gaussian in
the transverse directions, ¢ and y, and can be treated as thin elements along
the collider in s are made. By treating the beams as thin elements the kick
approximation can be made [3]. In this approximation the fields are determined
by the rms width in = and y of the opposing beam. The approximation of the
kick for the beam-beam interaction is valid so long as the betatron oscillation
length at the IP 8* is not comparable to the longitudinal length of the beam ;.
When oy is comparable to §*, it is necessary to treat the beam-beam interaction
as a thick element. In the weak-strong simulation the rms values are fixed. In

the strong-strong simulations the rms widths are varying for each beam.

In the strong-strong simulations the particles are initialized in the
simulation with Gaussian distributions and the required variances [30, 43]. The

particles are tracked through a sector:

e an accelerating cavity
® a beam-beam interaction

¢ a normal machine arc (lattice)

and particles exceeding the aperture limits are removed from the simulation.
The aperture limits in transverse direction are determined by machine accep-
tance and in longitudinal phase plane are determined by acceptance of RF

accelerating “bucket”.
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After each turn new beam parameters are computed; for example,
beam size and intensity are computed and used to recalculate the beam-beam
force parameters. The beam size is calculated from the rms value of the dis-
placements of the superparticles. This value is used as the sigma of the assumed
Gaussian distribution. The beam-beam kick is evaluated by linear interpolation

of tabulated values of the complex error function [30, 43].

_1_\’_1‘_5 2 Re[w( z+1z ) —
v Va2 b 2(a? — b?)
z? z2 :v% +12¢
P20t~ 2 )

Az =

s (5.1)

where
o Az is the kick in the vertical kick,
¢ ¢ and b are the standard deviations in the # and z directions,
e Neis the total charge in the bunch,

e ~ is the relativistic parameter,

w(A 4 iB) is the complex error function.

Typically the simulations used about 100 particles and beam size
reaches steady state value in less than one half of a transverse damping time.
Simulations are run to one damping time after the steady state equilibrium has
been reached. Statistical fluctuations associated with each bunch are rather
large due to the limitations on the number of super-particles which can be
used. So it is difficult to obtain reliable information about the form of the

distribution function or about the tails of the distribution function. Once an
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apparent steady state distribution has been reached in the presence of beam-
beam forces, the statistical fluctuations may be reduced. Binning the particles
into histograms after traversal of each machine sector over many turns accom-
plishes this reduction [30, 43]). This binning of particles has been applied to
the computation of distributions in the betatron and synchrotron tune and in
betatron and synchrotron displacement [43]. This method of binning also al-
lows the calculation of the average tune shift and the tune spread for one or all

beam-beam crossings.

In the absence of the beam-beam interaction the beams would remain
Gaussian. However, because of the beam-beam interaction the strong-strong
beams do not remain Gaussian, as shown in Figure 5.1 from Siemann [56].
The beam profile is non-Gaussian in both the core and the tails. Bea.m-beam‘
resonances are modifying the distribution. The deviation of the beams from
the Gaussian profile is the main problem with these types of simulations. The
fields are calculated based on a Gaussian, which is inconsistent with the actual

distribution of the particles. Therefore, the beams may be prevented from

reaching a distribution which is self-consistent with the fields.

Both qualitative and quantitative comparisons between simulations
and storage ring experiments have been made. Piwinski reported qualitative
agreement between simulations and the operating point characteristics for PE-
TRA [50]. Simulations show that the beam-beam interaction is dominated by
resonances, as shown in Figure 5.2 where a Poincare map of the motion of a
single tes‘t particle near the 1/3 resonance is plotted [50]. At the beginning

of the simulation the particle is near the origin. After about 8000 turns, the

particle is moved quickly out to the resonance islands from quantum fluctu- -
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Figure 5.1: Simulation of the the vertical beam profile. The histogram is the
result of binning each test particle over 1000 turns. The solid curve is the
original Gaussian profile of the beam.
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Figure 5.2: Poincare map of a test particle, where v, = 25.2, v, = 23.32 after
10348 turns .
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ations and the nonlinear beam-beam force. Myers has found in LEP storage

ring simulations [43]:

e beam-beam limit decreases slightly with the number of bunches

e beam-beam limit decreases rapidly when the value of G* approaches

around twice the bunch length (o,)
e beam-beam limit is strongly dependent on the transverse damping

e transverse tune modulation caused by residual chromaticity produces no

significant reduction in the beam-beam limit.

e machine “errors” can produce significant reduction in the beam-beam

limit

Hutton [27] compared PEP luminosity at two machine operating points with
Myers [43] strong-strong simulation. Agreement was found between the abso-
lute luminosity and the current dependence. Jackson and Siemann have found
similar agreement with CESR [30]. They also compared simulation results with
CESR results away from operating points. Good agreement was found in some
regions around the operating point for the luminosity ;rersus the tune. Qual-
itative agreement was found in other regions. Substantial disagreement was
found from low vertical tune values [30]. Weak-strong simulations of CESR
show good agreement for beam blow-up by resonances and particle distribu-

tions in the tails [41].

Recently, non-Gaussian simulations have been performed [38]. The

simulations show that it is critical to use general field calculations in the study



42

of coherent beam-beam phenomena. Higher order coherent resonances were a

direct consequence of the general field calculation.




Chapter 6

Simulation models

In the course of our investigation various simulation models have been
developed to study the beam-beam interaction. These models are presented in

increasing order of sophistication and inclusion of physical effects.

Numerical simulation of accelerator beam dynamics has a relatively
short history. As accelerators became increasingly more costly and complex,
computers and computational techniques also became increasingly more devel--
- oped. Computer simulation has recently become an accepted standard method
of investigation of accelerators. It certainly is this way for the Tevatron. For
the SSC one Iﬁay say even that is has become one of the central design tech-
niques. An obvious reason for developing computer models is the cost. It is
much cheaper to run a simulation than to build a device. Also simulations
allow the study of the problem under very controlled conditions with accuracy
limited by the precision of the computer. This is not the case with experimen-
tal setups. Analytical methods provide a means to study the problem-in the
linear regime. However, nonlinear aspects are not easily accessible. Numerical
methods allow the study of this regime with fewer approximations than ana-
lytic methods. Simulation schemes such as the Particle-in-Cell (PIC) methods
[5, 62] represent a medium ground between the 2 particle picture of the beam-
beam interaction and the full statistical picture representing all particles in the

beams.
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In the following sections the various numerical codes used to study the
beam-beam interaction will be described. They are the tracking code, Vlasov

code, Particle-in-Cell (PIC) codes, and the § f algorithm.

6.1 Tracking code

The basic principle of tracking codes is to follow the dynamics of
single particles around the machine [44]. In the beam-beam interaction the
tracking code comsists of two components: a target beam and a projectile
beam. The target beam is treated as a rigid smooth Gaussian distribution of a
large number of particles. It remains unchanged from interaction to interaction.
The projectile beam is considered to be a collection of mutually noninteracti;l;m:
particles which are perturbed by the target beam. This is the so called “weak-
strong” approximation as described in Chapter 3. In tracking code simulations
in the “weak-strong” approximation, transport about one turn is simulated as
the product of two matrices, one for the one turn Courant-Synaer map [17], and
the other for the impulsive application of the beam-beam interaction discusséd

‘above [44]:

T T
| =m [ } (6.1)
[ 2! ]final ' | itial |

_ cos(27vy) | G5 sin(2mvy) 1 0 .
M = —sin(2mvg)/Bs  cos(2mwug) ][ inAvoF(2)/B; 1 ] ) (6.2)

where z is the position of the particle, z’ is dz/ds, s is the distance along
the collider, vy = § ds/B(s) is the tune, Avg is the input tune shift, 33 is the
betatron oscillation amplitude at the interaction point (IP), and F(z) is the

1-D truncation of the force from a round Gaussian beam

_ 1 —exp(—2?/2040°)
B 02/20442 ’

F(z) (6.3)



45

where o¢ is the beam standard deviation in . This formulation is similar to
that of Neuffer et al. [44]; however, here both beams are of the same charge.
For comparison with one dimensional simulation results, F(z) becomes the

force of a 1-D Gaussian slab:

F(z) = /222 )erl ) (6.4)

where erf is the error function.

The first matrix in Equation 6.2 takes into account the particle motion
from the lattice magnets [17]. The second matrix takes into account the kick

from the beam-beam interaction.

6.2 Vlasov Code

This section describes a Vlasov-Maxwell code. Vlasov-Maxwell codes
can be used to simulate various electromagnetic phenomena which occur in

plasmas or charged particle systems [2, 7].

In this simulation technique, a plasma is represented by a discretized
version of tlie Vlasov-Maxwell system of equations. The Vlasov equation is a
continuity equation representing a system of particles as a fluid in phase space.
Thus it is free of noise plaguing PIC models due to the finite number of discrete
particles. On the other hand, it needs to follow greater dimensions (typically
twice as many) than the PIC models, since it represents phase space instead of

the configuration space. It is written in the form [7]:

8fa ﬁa afa = afa
ot Tm Bz T 5

=0 (6.5)
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where the subscript s refers to the individual species ( background electrons,

beam electrons, ions, etc...) and f, is the Lorentz force:
F, = q,(E + 7, x B/c). (6.6)

One of the greatest shortcomings with the Vlasov model, that of too
much grid space information, may be ameliorated by the adoption of the recent
development of massively parallel computation. In this section we specifically
describe the implementation of a 2-D Vlasov-Maxwell system on a MIMD (mul-
tiple instruction multiple instruction) parallel computer. A Vlasov-Maxwell
code which is already running in parallel on the Connection machine [9] is cho-
sen as an initial code platform. The fields (E, E) in the Lorentz force equation

are obtained from the set of Maxwell’s equations:

V-E = 4np, (6.7)
- 18B
v = - :
x E P (6.8)
V.-B = 0, - (6.9)
VxB = ani+ 195 | (6.10)

c ot’

The density p and current J are calculated self-consistently from:

p(z) = an/dﬁ’ fi(@,5,), (6.11)
f(f) = an/dﬁf"s f‘a(i"i"?t)' (6'12)

In the current formulation the electrostatic field calculated from Equa-
tion 6.7 is neglected. This approximation assumes that the charge density p

is zero everywhere at all times and therefore the electrostatic component of
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the field is zero. The approximation of p = 0 everywhere eliminates plasma

oscillations from the system.

The Vlasov equation is discretized in two dimensions using a “split-
ting” technique [7]. In this technique the distribution function f = f(va;, v2j, Tk, 21)
is advanced forward in time in a four step process for each species s [7, 10]:

At P=i

T 4 i3 n
i = fo - SAn o, Ferr = Fr—1)idt (6.13)
At p“—‘t n n n
+ (Z_A—;T)z (frer = 2f5 + fry)in
ij
n n At p.; |, . n
fz‘j-lj:-ll/z =fijle/4 - Z—A—Z’)"J (fz+4i1/4— z-+11/4)ijk (6.14)
7
At z n n n
+ (E—A-ZI;'J) Pt —2f Pt g f)
ij
rn n At n n
fij;:l3/4 = fij:zl/z - 9Ap o Foj - ( +1/2 f-jil/z)jkz (6.15)
At T 3 43
+ (EATszkt)z ' (fi++11/2 —2f; 2y f~_+11/2)jkz
n At " n
= fij?c-za/4 - E—inu : (fj:13/4 - fj_+13/4)ikt (6.16)
At n T n
+ (2A zzkl) (f o/ - f +a/ =+ f +3/4)1.kh
where
V2 n4-L
Fejir = ¢s(Eop + -c—lByk,) 3 (6.17)
Vg nd-4
inkl = qa(Ezkl - _ELByk[) +2, (618)
and
n+% 1
Exkz = E(Ez[.}.% -+ E:z[..[.{.%)k (619)
g = g E 6.20
2kl 2( Zht + zk_,})l (6.20)

n+3 1 n n
Bykl 2 - E(Bykf-l + Bykl)' (6.21)
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In each step the distribution function is advanced a full time step using
only one term at a time in the Vlasov equation. The fractional time indices for
the distribution function f at each step are used for notational purposes only.
This discretization scheme is numerically stable when the following conditions
are met (7, 10]:

p= At p. At

— < 1, o < 1, (6.22)
F_At F.At
Ap <1, Ap <1, (6.23)

Maxwell’s equations are written in a left handed Cartesian system for conve- -

nience:
OF, 0B, s
3t = CW - J (6.24)“
OF, 8B
5 = 83: - J,, (6.25)
0B, oF oF

ot~ ez bz (6.26)

These equations are discretized in the following manner:

n+i n— n
Bopy iy = E¢k+1 — Atdep 1y (6.27)
+ (Byk+‘ I+ yk+1 z—l)
E o E," - At 6.28
2k l+;- - 2k l+1 Zk I+4 ( . )
cAt, n
- Ay, (Byk+§ +1 Byk_% z+%) -
n41 _ gn cAt - ntd n+i
Bm-% I+ = Byk+‘ I+3 E;(E’Iﬂlz I+ B, zi%) (6.29)
cAt

n+:5 n+§
Az (E¢k+§ 141 Emk+§ z)'

The currents J, and J, are calculated from:

Jop = anZZ i1 Feii Z:i; )Av;Av, (6.30)
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Jap = Z‘Ja Z ZA,J, mkt —— )A’UwA'Uz, (6°31)

where A;; is a normalization constant, and then

n P n

Jokyy 1= 5(Joksa 1+ Jak 1) (6.32)
n 1 n n .

k14 T E(JZk 1 T Jok 1)- (6.33)

A similar set of finite difference equations for the Vlasov equation and

Maxwell’s equations can be written in cylindrical coordinates.

6.2.1 Boundary Conditions

The boundary conditions used are dependent on whether Cartesian

or cylindrical coordinates are used for the test problem.

In both geometries- the boundary conditions are taken to be periodic
in the z direction. In the case of Cartesian coordinates periodic boundary con-
ditions are employed in the two spatial directions (z,z). Also the distribution
functions are 0 beyond the momentum coordinate boundaries (p.,p.) for the

Cartesian case and (p,,p.) for the cylindrical case.

In the case of cylindrical coordinates conducting wall boundary con-
ditions are employed at » = R where R is the maximum radius of the do-
main. For conducting wall boundary conditions all field quantities, currents,
and distribution function values are equal to 0. Handling the field, currents
and distribution function at » = 0 is a little trickier. The field quantity which
needs special care is the Eeyyy field component. Its calculation requires the

knowledge of Bg% 141 for 7 = 0. By symmetry arguments the field Bg_;_ 141 Can
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be said to be equal to —ng 1+1, S0 the time advance équation becomes:

n+% cAt

Ea T EZ1 z+1 — AtJ.y [T 2—— (B3 41)- (6.34)

All other field quantities can be calculated, once this field component is deter-
mined. The distribution function fi;;; at the r = 0 boundary is also calculated,
using the symmetry argument. In this case fija is chosen equal to fijo due
to the fact that the distribution function is symmetric about r = 0. The time
advance equation becomes:

n n At sz n
fijfll/Ai: HTI (m%]) 2(f7 — f)in (6.35)

6.2.2 Square Geometry

The implementation of the code on the Intel i860 involves decom-
posing the spatial gnd of the simulation into square blocks and assigning one
node to each block. Each node communicates with four other nodes as shown

in Figure 6.1. Communication between nodes must occur in four directions

(North, South, East,and West).

The grid is decomposed in the following manner. First the number of
nodes is determined in the program. The dimension of the nodes used deter-
mines the number of cells in the z direction and the z direction in Cartesian
coordinates. The dimension n is defined as nodes = 2™ where nodes is the

number of nodes used. The number of blocks in the respective directions is :
r o= nz/(nm + nz) (6.36)
(nb)y = 27 (6.37)

(nb). = 27777, (6.38)
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Figure 6.1: This figure shows the communication path for north, south, east,
and west communication in the square geometry.
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where n, and n, are the size of the total grid in the z and z directions, respec-
tively, and (nb), and (nb), are the number of blocks in the z and z directions,

respectively. The number of cells per node is :

nem = ng/(nb). (6.39)

nzm = n,/(nb),. (6.40)

Nodes north,south,east, and west of a particular node are calculated in the

following manner:

iz = menod/(nb), + 1 (6.41)

iz = (menod + 1) — (iz — 1) * (nb), (6.42)
1zp=1z+1 (6.43)

izm =1z — 1 (6.44)

icp =iz + 1 (6.45)

izm =iz — 1 (6.46)

North = (iz — 1) % (nb), +i2p—1 (6.47)
South = (iz — 1) * (nb), +izm — 1 (6.48)
East = (izp — 1) x (nb), +iz -1 (6.49)
West = (izm — 1) x (nb), + 12— 1 (6.50)

where menod is the node number of the specific node and North,South, East,
and West are the node numbers of the north, south, east, and west nodes
respectively.

The quantities which are transferred between nodes are fields, cur-

rents, and distribution functions. They update the boundary cells of each
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square block assigned to each node. This update is done at every time step.
The dominant data transfer is done with the distribution function. The bound-
aries need to be updated at both the ¢ and z boundaries in Cartesian coordi-
nates or the » and z boundaries in cylindrical coordinates. Therefore, in the

square decomposition scheme the distribution function is transferred twice.

Boundary conditions are handled in the transfer of the data to the
respective boundary cells. In the case of Cartesian coordinates periodic bound-
ary conditions are imposed on all quantities. Blocks at either end of the grid
transfer data in a wrap-around fashion. Blocks at the west end transfer data
to the east blocks and blocks at the east end transfer to blocks at the west
end. A similar situation occurs for blocks at the north and south ends. In the
case of cylindrical coordinates the north and south block data are handled in
the same manner since the boundary conditions are periodic in this direction.
Blocks at the east end have all quantities at their eastern boundaries set equal
to 0 which takes into account the conducting wall boundary conditions there.
The western blocks are at the » = 0 boundary. The west end of these blocks
handle the fields, distribution function, and currents as described in Section

6.2.1.

6.3 Particle-in-Cell Codes

In this section collider models using Particle-in-Cell (PIC) codes are
described. In these models the collider is broken into two sections. One section
models the interaction region. The other section models the rest of the storage
ring. In the interaction region it is necessary to take into account the beam-

beam interaction. Since seli-consistent effects play an important role in the
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beam dynamics there, PIC codes are used. The rest of the collider is modelled
using the Courant-Synder map which simply involves a symplectic rotation of
the particles in phase space [17].

Two types of Particle-in-Cell (PIC) codes are used to model the beam-

beam interaction region:

e a fully electromagnetic code

e a strong-strong code

where the strong-strong code uses the “strong-strong” model described in Chap--
ter 3. Our model differs from previous models of the beam-beam interaction
[25, 30, 44, 56]. Previous models as described in Chapter 5 approximated the
beam-beam interaction as either a two particle interactfon, a single particle-
many particle interaction (“weak-strong” approximation) [25, 44|, or a many
particle-many particle interaction (“strong-strong”) where the beam is con-
strained to be a Gaussian [30, 56]. Using a PIC code in the beam-beam model
allows a many particle- many particle interaction with internal degrees of free-

dom in the beam sha,pe':s..

The steps of the simulation for one turn in the collider are:

1. interaction region
2. reset of fields to 0

3. symplectic mapping.

These steps are repeated until the necessary number of turns are attained.

Figure 6.2 shows the basic geometry used in the simulation models.



Storage Ring

Interaction Region

Figure 6.2: This shows the two components used to model the collider
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6.3.1 Accelerator model

The model we use for the accelerator is shown in Figure 6.2. Outside
of the interaction region self-consistent effects are not as important as in the
interaction region, since the density of the beams is much lower. Therefore,
the approximation of single particle dynamics is a very good one. With this

approximation a linear map can represent the collider in matrix notation:

v 1 —As COS(QWVO) B¢ sin(2mvy) z
( z! )n+1 = ( 0 1 ) ( _Elg' sin(27vy) cos(27w0)0 ) ( o' )ﬁ, (6.51)

where As is the drift length along the collider path. The first matrix accounts
for the finite length of the interaction region by treating the region as a free
drift space and subtracting it from the full rotation. The second matrix is the
Courant-Synder map around the collider where vy = § ds/G(s) is the unper-

turbed tune and a = 0 everywhere in the ring [17].

6.3.2 Electromagnetic Code

‘A 1-2/2 dimensional (z, pz, py, p, ) relativistic electromagnetic Particle-
in-Cell (PIC) code is used to model the interaction region [5, 62]. The main
- purpose of this code is to determine the electromagnetic effects on the beams.
Detailed descriptions of this type of code can be found elsewhere [5, 62]. The
particular modifications made to this code to study the beam-beam interaction

will be described in this section.

Typically, fully electromagnetic codes solve the full set of Maxwell’s
Equations 6.7. The main constraint on these types of codes is the time step size

At which needs to be small enough to follow light waves for numerical stability
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(5, 62]:
cAt < A, (6.52)

where ¢ is the speed of light and A is the grid size of the simulation. Because
of the small time step size the number of time steps to follow particles in the
interaction region is prohibitively large for SSC parameters. For realistic SSC
parameters the simulation time step size At is about 3 X 1075 7;,, where i, is the
interaction time. So 30000 time steps would be necessary for one interaction.
To reduce this constraint, the energy of the beams can be reduced. When SSC
parameters are relaxed to reduce the number of time steps, the electrostatic
field begins to dominate causing the beams to spread too quickly. In order to
eliminate this spreading, the electrostatic field in Equation 6.7 is ignored. The
main purpose of this code is to examine the effects of the transverse fields on
the beam-beam interaction at high beam energies where the electrostatic fields

causing beam spread are small. Therefore, the approximation is justified.

6.3.3 Strong-Strong Code

The shortcoming of the fully self-consistent electromagnetic treatment
described in the previous section is the time step size. Since light waves are
followed in this code, a large number of time steps is needed to maintain nu-
merical stability. To eliminate this, a strong-strong code is developed. The
code has one spatial dimension z and three velocity coordinates (vg,vy,v,).
In this strong-strong code two approximations are made: (1) light waves are
ignored and (2) self fields (space charge effects) among particles of the same

beam are ignored. Ignoring the effects of light waves can be justified for the
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SSC by considering the collisionless skin depth, A., of the beam where:

C
Ae = — .
- ~ (6.53)
4 2
wp = 4|2 (6.54)

AL
Using parameters for the SSC, A, > w where w is the width of the beam. A, is
the scale length over which a plasma responds to light waves. Since A, is much
larger than the size of the beam, pafticles do not strongly interact with light

waves. Self fields of the beam are neglected, since the forces from the other

beam are much larger. The ratio of the self fields to the kick fields from the

other beam goes as:
(self fields) ~ :%(kick fields), (6.55).
* where v = 2.13 x 10* for SSC parameters.

With the elimination of light waves the time step of the simulations
can be on.the order of the plasma frequency wp, which occurs on a much longer
time scale than light waves. The time of interaction between the two beams
is Tine = A8/2¢. Tine is the time the simulation is run before the particles are
rotated in phase space. With simulation time steps in units of fractions of w,

the time period can now be represented by 1 — 4 simulation time steps.

In particle simulations the beams are represented by a number of
macroparticles. FEach particle in the simulation has a particle shape factor
S(z). S(z) is chosen to give the particles finite size, so that short wavelength
osqiﬂations are filtered out in the fields [5, 62]. This reduces noise and short

range collision forces. The particular form chosen is :

S(z) = —— exp(— ) (6.56)
= e _— . .
21ra 3 2a2"’
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where a is the finite particle size.

Care must be taken when choosing the particle size a. When it be-
comes comparable to the beam width w, the tune shift Av is reduced . This

can be expressed by:

Amef'n.t @ 9.1

— P - (14 4(=)%)Y? - (6.57

T (14 (P (6.57)
where Avpoint is the tune shift for a point particle, Avy,, is the tune shift for
a finite size particle, a is the particle size, and w is the beam width. This
calculation is based on the assumption that the particle is Gaussian in shape

as in Equation 6.56. The particle size must be chosen so that ¢ << w and,

therefore,
A oin
lpoint 1. (6.58)
AZ/f,p

The macroparticles are advanced by the Lorentz force equation:

(Z}' = e/_o:o dzS(z — m,)(ﬁ(a’:‘) + T X B'(q‘;‘)/c), (6.59)

where Z; is the position, p; is the momentum, 7; is the velocity of particle i,

S(z) is the particle shape factor, and E(%;) and B(&:) are the electric and
magnetic field of the other beam, respectively. The integral over = takes into

account the finite size of the particle.

The calculation of the fields can be simplified by performing the ap-
propriate Lorentz transforms and taking into account the highly relativistic
nature of the beams being studied. For a general Lorentz transformation to a

frame moving at velocity ¥ the transformation of the fields can be written [29]:

Qoo 7 A v 72 20 a o
E=o(B+FxB) - =85 B), (6.60)
B=vB-GxE)- -4 B, (6.61)
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where ﬁ = ¥/c and 7 is the relativistic factor. Equations 6.60 and 6.61 can
represent transformations of the fields from the frame moving with the beam
(E"’,B") to the lab frame (E, E) In the beam frame the beam particles only
have thermal velocities. These velocities are small and randomly oriented.
Therefore, only small remnant currents are present and the approximation

|§'| = 0 can be made. Equations 6.60 and 6.61 become:

B=+E - -—L—§(3-E, (6.62)
B =—+(8 x E". (6.63)

Assuming the motion of the beams is in the z direction the fields can be written: |

E, =~E., : (6.64)

B, = 1BE.. _ (6.65)

Since the beams are highly relativistic 4 3> 1 , the approximation |E | ~ 1 can

be made. Thus, E, =~ B,. Using this in Equation 6.59, we obtain:

‘fiﬁt;‘ e /;: deS(z — ;) EL(z)(1 + v;/c) (6.‘66)

where v; is the velocity of the beam kicked by the other beam. Again the

approximation v; & ¢ can be used:

I -
T~ 2e /_ " doS(a — 2 Ea (o) (6.67)

Therefore, including the effects of the magnetic field kick to the beam simply
involves doubling the contribution of the electrostatic field of the other beam.
The electric field E, is calculated from:

oF,
Oz

= 47!'6/5(:{: —z')p(z)dz’, | (6.68)
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where p(z) is the charge density and S(z) is the particle shape factor. The
charge density p(z) is the accumulation of the finite size macroparticles:
- N
= 4;S(z —z;), (6.69)
i=1
where N is the number of particles and g¢; is the charge of particle j. Since the
charge is accumulated on a grid, Fast Fourier Transforms (FFT) can be used

to transform the grid to k space where manipulation is easier:

Z g e~ (z=z;)? /2‘1 (6.70)
o(k) = ge —k%a?/2 Z e—ikzg Z e ikbi (6.71)
Jj€g

where a Gaussian shape factor is used S(z — z;) = exp[—(z — ©;)?/2a?], the
sum on g is over the grid points, a is the particle size, and §; is the distance
of the particle from the nearest grid point z; — z,. The summation term with

J € g is a sum over all particles 7 in grid cell g.

In order to increase the accuracy, the accumulation is done using cubic
spline interpolation [45, 62]. This assignment technique allows a smoother grid
assignment than lower order methods such as the subtracted dipole scheme
(SUDS) or area weighting scheme 1[5, 62]. The charge density then takes the
form (62]:

p(k) = ge —kzaz/zz —ika, 231'*" Z Sz)

jeg j€g-1
— sze“’“’ Yozt ) s4)], (6.72)
j€g jeg-1

where the summation terms with 7 € g — 1 are sums over all particles j in grid

cell g — 1 and the s terms are the weighting factors:

o= (1= 6)%(1+28) (6.73)
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where L is the system length, and FFT~! is the inverse transform.

The previous field calculation solves the field for periodic boundary
conditions. Note that the field equation does not take into account finite charge
in the system. Finite charge is included in the k = 0 term. However, this term
cannot be incorporated, since one gets a division by zero. To account for finite

charge in the system, the k = 0 term in E, can be explicitly calculated [18]:
k=0 Lm .
E;=°(z) = —47rp(0)(7 —z), (6.85)

where L, is the length of the system and p(0) is the ¥ = 0 component of the
charge density which calculates the total charge in the system. By adding this
field to the field calculated from Equation 6.78 one gets the field with vacuum

boundary conditions.

In the SSC design each beam has ~ 1010 particles and a large num-
ber of beam-beam interactions (10%). Due to computer time limitations the
beams may only be represented by ~ 10% — 10* particles. We find that the
representation of eq. 6.68 and 6.59 by the well known PIC method [5, 62]
with macroparticles shows a large amount of noise d’ue to the small number of
coﬁputational macroparticles; This is especially apparent when single parti-
cle diffusion is studied. To study particle diffusion we, therefore, implemented
a few improved algorithms for noise reduction. One is the cubic spline for
smoother interpolation [62], which was described above. Another is to load the
macroparticles using a quiet start [5]. The third is to follow the portion of the
particles due to the perturbed distribution only [20, 36, 62]. This is described

in the next section.

Normally simulation macroparticles are distributed initially in a Gaus-
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55 = 63(3—26;) (6.74)
53 = 6;(1—68)A (6.75)
ss = —(1—=6;)8A. (6.76)

The electric field in Equation 6.68 can be transformed to k space using the

FFT:
—ikE, = 4mep(k), (6.77)

where p(k) is from Equation 6.72. Using Equation 6.72 and rearranging terms
[62]:

. __k2a2/2
Eo(k) = z—q—?——k——[FFT(Gl)() — ikFFT(G2X)], (6.78)

where FFT is the Fast Fourier Transform and

GIX'=> s1+ > s (6.79)

j€g j€g-1
G2X =D s3+ Y s (6.80)
i€g j€g-1

where G2X corresponds to derivatives of the charge density. Note that two
quantities, G1X and G2X, need to be accumulated in this method. The force

on the particles F(x) can be calculated in a similar manner [62]:

F(z) = qE(z) (6.81)
= s(6)F(2,) + 5x(5)F (2 + A)
+ 53(8)Fa(zg) + s4(8)Fu(my + A), (6.82)

where § is the distance from the nearest grid point ¢ — z, and

- 3 ~1[_~k2a?/2
F, = SI-FFTe¥=/B(k), (6.83)
Fy = —LFFT'[ike /2 E(k)], (6.84)

2r L
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sian profile via random number generators. A distribution produced from this
method is shown in Figure 6.3. The distribution integrated over p, is shown in
Figure 6.4. Although the distribution resembles a Gaussian, it contains spikes

and peaks which produce start-up noise.

This start-up noise can be minimized by using the technique of the
quiet start to load the macroparticles [5]. Two methods of loading simulation
“macroparticles are described. One method distributes the particles uniformly
in phase space and assigns charge nonuniformly to the particles based on the
initial particle distribution. The other method involves nonuniform distribution

of the particles in phase space and uniform charge for each particle.

In the first method the particles are distributed uniformly in r and 4

where r and § are defined in terms of z and p, as:

’ 2 r 2. pm2b
Y= — +— 6.86
Bs p (6.86)
z p
tan(d) = ——, 6.87
()‘ B e (6.87)

where G is the betatron oscillation length at the interaction point and p the
particle momentum along the collider. The increments in » and 6 are deter-
mined from values input into the céde. The 7 increment Ar is Tpmee/nr, Where
Tmaz 15 the maximum value of 7 and 7, is the number of r segments. The angle
increment Af is 27 /ng, where ng is the number of angle segments. The initial
distribution for 10000 particles is shown in Figure 6.5. Assuming a Gaussian

profile for the beam in ¢ — p, of the form:

N m2 pz
p) = ——— exp(——— — =2-). 6.88
f(z,ps) s 2032) (6.88)
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Figure 6.3: A Gaussian distribution of particles produced from a random num-

ber generator
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Figure 6.4: Distribution integrated over p, with random number generated
phase space positions
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Each particle can be assigned charge g; where:

2
riexp(—:j
6= Ne— ) (6.89)
2ie1 Ti exp(—z—;g)

N is the number of simulation particles, e is the unit charge, r; is obtained from
Equation 6.86 for particle ¢, and o is 0. Although each particle is assigned a
different charge g;, each particle is also assigned a different mass m; so that the

force on each particle is the same.

The distribution integrated over p, is shown in Figure 6.6 after the _
charge assignment. In comparison with the random distribution (Figure 6.4)
this distribution is much smoother in the tails and is more symmetric about the
center. This symmetry reduces the higher order moments in the distribution

and therefore produces less start-up noise.

In the second quiet start method particles are distributed nonuni-
formly in r and 8, where r and 6 are defined in terms of z and p, in Equa-
tions 6.86 and 6.87 [24]. The number of particles at each r value is determined
by a cumulative integration method [5, 62]. Again a Gaussian distribution
f(z,pz) in = and p, is assumed (Equation 6.88). This function can be inte-
grated in r and # coordinates to yield :

2

N(r) = N(1 — exp(—%)), - (6.90)

where N(r) is the number of particles contained within radius » and N is the
total number of simulation particles. Equation 6.90 can be used to obtain the

number of particles to add between r and 7 + Ar :

r2 r + Ar)?
AN = N[exp(m) - exp((—zaT)—

T

) (6.91).
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where AN is the number of particles to be added. The AN particles between
T aﬁd r + Ar are distributed uniformly in 6 with a random offset §,,. at
r + Ar/2. The initial distribution for 10000 particles is shown in Figure 6.7.
The distribution integrated over p, is shown in Figure 6.8. This distribution is
smoother than both the random distribution of particles (Figure 6.4) and the

uniform distribution of differently charged particles ( Figure 6.6).

6.3.4 Noisy Model

In order to study particle diffusion brought about by the beam-beam
interaction, sources of numerical noise in the PIC codes need to be quantified.
One source of noise is the fluctuations due to the use of a finite nﬁmber of
particles. To model this noise in PIC simulations, noise is added to the tracking
- code described in Section 6.1. This is done by adding a fluctuation term to the

tune shift Ay :

Av = Ay(1 + R n(z)), (6.92)
) .

: 6.93
e (6.93)

n(z) =

where N(z) is the number of particles contained between —z and +z and R

is a random number between —1 and 1. n(z) gives an idea of the fluctuation

level where

T

V20,

N is the total number of particles. Equation 6.94 is calculated for a Gaussian

N(z) = N erf( ), (6.94)

distribution of particles.
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Figure 6.7: A nonuniform distribution of 10000 particles with equal charge
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6.4 Of algorithm

PIC codes typically use macroparticles to represent the the entire
distribution of particles. In the beam-beam interaction for the SSC, the beams
consist of 10%° particles each. Simulating this many particles with the PIC
technique is computationally prohibitive. With the conventional PIC code
10%° particles are represented by only 10° — 10* simulation particles allowing
simulation of the beam-beam interaction in a reasonable computation time.
However, the fluctuation level of various quantities such as the beam density p
in the code is much higher than that of the real beam. The fluctuation level

bp goes as approximately:
—_— N — (6.95)

where N is the number of particles. Therefore, the fluctuation level of the
PIC code is about 10% times higher than that of the real beam. Although
this probably is not significant for beam blowup near resonances, the higher
fluctuation level has a large effect on more subtle phenomenon such as particle
diffusion. To facilitate the study of subtle effects, a § f code has been developed
20, 36, 61, 62]. |

The §f method follows only the fluctuating part of the distribution
inétead of the entire distribution. This is essentially modelling the nun;erator
on the right hand side of Equation 6.95 which goes as v/N. So the 10% — 10*
computational particles are used to represent v/101° or 105 real fluctuation
particles. This is only one or two orders of magnitude beyond the number of

computer particles.

In the previous sections the strong-strong code used a finite number
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of particles to represent the Vlasov equation or Klimontovich equation [35]. In

the particular case of the beam-beam interaction:

0 7] 3]
U o (K(s)a — Fla,9) 5% = 0, (6.96)

where K (s)z is the usual magnetic guiding force and F(z,s) is the beam-beam

force

_ 2eE,(z)

ymuv?

F(z,s) bp(9), (6.97-)

where F,(z) is calculated from the distribution of the particles and §,(s) the
periodic §-function. é,(s) = 1 when s = nL where L is the accelerator circum-
ference and n = 0,1,.... The distribution function f is represented by a finite

number of particles by:

N
f(z,2'ys) = 3 8(z — 2i(s))8(2" — zi(s)), (6.98)
i=1 :
where N is the number of simulation particles used.
In the 6f method only the perturbative part of the distribution is
followed [20, 36, 62]. The total distribution function f(z,z’,s) is decomposed

into

f(z,z',8) = fo(z,z',s) + 6 f(z,2', s), (6.99)

where fo(z,z’',s) is the steady or slowly varying part of the distribution and
6f(z,a',5) is the perturbative part. The key to this method is finding a dis-
tribution fo(z,x',s) which is close to the total distribution f(z,z’,s). The
perturbative part §f(z,z',s) is then small, causes only small changes to the

distribution, and thus represents only the fluctuation levels. If a distribution
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fo(a:?:c’,s) close to the total distribution is not found, then 6 f(z,z’, s) repre-
sents more than the fluctuating part of the total distribution. This defeats the
purpose of the method. The ideal situation is for fo(z,z’, s) to have an analytic
solution. In this case any numerical truncation errors which result from the
necessary derivatives of this function are eliminated. If an analytic solution
cannot be found, then a numerical solution needs to be found which is close
to the total distribution f(z,z’,s) and is slowly varying. Continual numerical
update of fo(z,z’, s) would also defeat the purpose of the § f method, since the

PIC technique essentially does this also.

In the particular case of the beam-beam interaction an analytic solu-
tion to an equation close to the original Vlasov equation can be found. In the
case of a linearized beam-beam force the Vlasov equation can be written in the

form:

%{g + xr% _ (K(S) — Fo(g))mg—ﬁ =0, (6.100)

where
Fo(s) = Foby(s). (6.101)

Fyis the linear portion of the beam-beam force F(z). The solution is a Gaussian
of the form:
* 2

Ng
omo? exP(_ﬁ)’ (6.102)

fo(r) =

where r? = 22+ 3*?22, N is the total number of particles in the beam, 3* is the
betatron oscillation length, and o is in the z direction. Note that if the beam-

beam force were linear this solution fo(r) would represent the distribution for
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all time in the interaction region as well as in the rest of the storage ring. Only
the values of §* and o differ between the two regions. In the interaction region
the B* and o are calculated using the dynamic @ model which assumes a linear

beam-beam force [1, 52]:

cos(2mr) = cos(2wyp) + 2w Av sin(27yy), (6.103)
g _ sin(27vy) (6.104)
B3 sin(27v)’ ‘ '

where vy and (§ are the unperturbed quantities valid in the rest of the storage
ring and v and (3* are the quantities perturbed by the linearized beam-beam
force. From the perturbed §* the perturbed beam width o can be calculated
from the formula:
B _ o3 |

where 0 is the unperturbed beam width which is obtained from the assumption
that the beam emittance is unchanged due to this linear beam-beam force. An
equation for the perturbed 3* can be written in terms of unperturbed quantities

from Equations 6.103 and 6.104:

(Z_;)Z — 4wAvyy COtV(ZTI'VO)(%P/Z — (Zwéuo)Z(g;:) —1=0, (6.106)

where Avyg is the unperturbed one dimensional tune shift. Equation 6.106 can

be expressed in terms of the perturbed ¢ using Equation 6.105:

(<=)¢ — 4mAvg cot(2me)(—)® — (2T Ave)}(—)? — 1 = 0. (6.107)

(o4 0o 09
Both equations can be solved for the perturbed o or #* using a root finder.
Once this is obtained the other perturbed quantities, v and Av, are obtained

from Equations 6.103 and 6.104.
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Subtracting the linearized equation in Equation 6.100 from the total
Vlasov equation in Equation 6.96, we obtain the perturbative part of Equa-

tion 6.96 for 6 f :

B8 a2 (Ko}~ Folo, o) 2L = ~((a,5) ~ Fo(s)e) 3. (5.108)
Fy(z,s) is the kick from a Gaussian beam and F(z,s) is the kick from a Gaus-
sian beam Fo(z,s) plus the perturbation §F(z,s). As a result of using the
dynamic beta model for the stationary solution fy, only the nonlinear part
of the beam-beam force on the right hand side of Equation 6.108 is used to
advance §f. The terms %ﬁ% and Fy(z,s) are calculated using the perturbed
dynamic beta quantities §* and . Note that the unperturbed Gaussian field
Fo(z, 8) is used on the lefthand side of Equation 6.108 which makes the equation

linear in §f. The term which has been neglected is

6 f

6F(m’s)79_a—:’—

(6.109)

This term can be shown to be small in our problem. A possible incorporation
of this term in the algorithm is described in the Chapter 8. The reason for
choosing the particular form of the steady state solution is apparent. It is

chosen so that the right hand side of Equation 6.108 is small.

6.4.1 Finite Particle Representation

The perturbative part of the distribution §f (Equation 6.108) can be

represented by a finite number of particles (characteristics):

f(z,z',s) Zw, s,zi(8),zi(s)]8(z — zi(s))6(z" — zi(s)). (6.110)
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Substituting this into the equation for § f advance, we obtain:

R )
P ——;[(F(m,s) Fo(s) )Bm’]” (6.111)
where
N,
n = (A:L'A:z;’)' (6.112)

This density n is calculated on the assumption that the particles
are distributed uniformly in phase space. The density n is assumed constant
through the entire run. This approximation is no longer valid when there is
either significant clumping of particles or the particles have spread out in phase
space. Thus, the § f algorithm is most suited to problems that occur far away

from resonances.

In the éf algorithm z;, z!, and w; are advanced. The advance of
the extra term w; increases the number of operations over the PIC method and

leads to other numerical constraints which will be described in the next section.

The simulation particles are distributed evenly in phase space upon
initialization. The particles are distributed uniformly in @ and p, phase space

in'a cylindrical coordinate system r and #. » and 4 are defined in terms of =

and p, as:
2 2 ‘
r? = ﬁi + %” , (6.113)
0
tan(d) = %pﬁ, (6.114)
0o =z

where B; is the betatron oscillation length at the interaction point and p the
particle momentum along the collider in s. The maximum r value is input into

the code and is broken up into segments of length Ar. The number of particles
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at each r value is determined by a cumulative integration method [62]. The

particular functional form is:

_ %(21« _ 1), (6.115)

AN
where AN is the number of particles to be added, N is the number of particles,
and N, is the number of Ar segments to the edge of the distribution. Once
the number of particles between » and » + Ar is known they are distributed
uniformly in  with a random offset 6,,, at » + Ar/2. The initial distribution

for 1000 particles is shown in Figure 6.4.1. The purpose of this method is have

each particle cover an equal area of phase space.

6.4.2 Symplectic mapping

Results from previous runs indicate that a higher order integration
scheme for the characteristic advance is necessary for the § f algorithm. In runs
where just the leapfrog scheme is used, the code is inaccurate in the particle
push. This higher order integration scheme for the particles is needed in the § f
algorithm because small changes to the initial distribution are being studied.
In the PIC codes the numerical noise caused by the finite number of particles
is larger than that produced by the numerical diffusion of the particles caused

by the leapfrog integration scheme.

In this section we describe a symplectic finite difference scheme to
counter the effects of numerical diffusion on the particle motion. In this scheme
the normal symplectic mapping is used to advance the particles with an addi-

tional perturbation term.

Without the beam-beam force term a symplectic transformation map
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Figure 6.9: Uniform distribution of 1000 particles in z, p, phase space
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for the characteristics with the magnetic field can be written. Also in the case of
a linearized beam-beam force a symplectic transformation map can be written

with slight modifications. The map can be written in the form:

(2) (50 550)(2).

where © = dz/ds, s is the coordinate along the collider, § = [; ds/83, and the
indices 7 and f refer to the initial and final positions, respectively. This map
is used at all places in the storage ring including the interaction region. Upon
adding the symplectic map the particle motion is accurate to many decimal

places.

A simple implementation of the beam-beam force which preserves
symplecticity involves approximating the force with an impulse. Using Hill’s
equation:

Fl2) s (o), (6.117)

ymv? ¥

"+ K(s)z =

where the term on the right hand side of the equation is due to the beam-beam

force. The mapping is the same as a tracking code with the beam-beam force:
T 1 0 T
(m’)f_((}(m) 1) (:c’)i’ (6.118)

G(e) = %i (6.119)

where

and Fy(z) is the unperturbed force due to a Gaussian beam.

In the particle advance scheme the particles are advanced first using

the transfer matrix for a distance in § = As/435 where As = cAt. The particles
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are then kicked by the beam-beam field for As/28% and then advanced again
As/4f;. The total matrix is:

(i’)f = M(g)(g(lm) O)M(9)<§,)i, | (6.120)

cos(8) B sin(f)
M(6) = (——sm(()) cos(f) ) (6.121)

where § = As/(406;) and z used in G(z) is the intermediate ¢ value obtained
from the first transfer matrix application.

Fo(2)1 s

ymviz 2

G(w) =

6.4.3 Time Advance

In this section the time advance scheme of the code is described. The
entire predictor-corrector advance scheme is shown in table 6.1.

n+1

The n in table 6.1 refers to the time step number. In step 2 § di
predict

is calculated from the discretization of Equation 6.111:

! 8 fo(z?, =)
'”'+1 -1 n(..n n Ty T;
Yisredict ~ - g[(F (27,6 f") — Foz?)— a0l ]2As, (6.123)

where As = cAt, and F™(z?, 5f") is the force calculated from the unperturbed

Gaussian beam Fy(zl) plus the perturbation force §F™(z?,6f"). & ;:édlct

then calculated using Equation 6.110:

(o, Nythges = 32 iptiger¥(e — ODBE el (8128

The same procedure is used in step 5 to calculate 6fggz_}rect

n+1 _ n
Wit rect = Wit + Aw, (6.125)

(6.122)



Start with z",z™,§ f™,6 f~1

§ S:édict from z™,2™ 6 f*~ 1L, F™(z™, 6 f™)

”+'é‘ 1 n+1 n
5fpredict =5(6 predict +6f7)

1 1
xﬂ+i- ’mln.-{-a-

1
n+1 nt+t myd n pntd/ ontl nt3z
8 feorrect from 2™t 2,2™ra § fT.F i(z 2’5fpredict)

mn+1,mln+1
repeat steps 1-6 until the end of the interaction region
rotate "+l g/m+1

repeat steps 1-8 until the end of the simulation run

Table 6.1: Steps for advance of § f algorithm
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n+3 (n+§
pw = — L el 60 - Ro)erth) 2lE
T

)]As. (6.126)

In steps 4 and 6 = and z' are advanced using Equation 6.120. In step 8 = and

z' are advanced using Equation 6.116: o
z \" B cos(2rv) B sin(2mwv) z \" 7‘
/7 —ﬁ—l—. sin(2mv)  cos(2mv) z | (6.127)
1 0 1
where

As

.
0

(6.128)

V=1 —

which takes into account the finite length of the interaction region As in the

phase space rotation.

6.5 Diagnostic quantities

Analysis of the dynamics of the beam-beam interaction requires diag-
nostics of several quantities. Two typical accelerator quantities, the beam-beam
tune shift parameter Av and the beam emittance ¢, are calculated from the
simulation. These quantities give an idea of the beam strength and beam size,
respectively, Various moments of the beam are also measured to get an idea of
macroscopic beam behavior. It is also important to determine the amount of
particle diﬁ‘usion‘ occurring within the beams. This diffusion is measured using
Poincare sections and the method of Chirikov [16]. Each of these diagnostic

quantities are described in more detail in the following sections.

6.5.1 Emittance

A quantity of importance to accelerator physics is beam emittance

e. It is a measure of phase space area occupied by the beam particles. In
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a Hamiltonian system phase space area is conserved and therefore, the phase
space area should be conserved. The quantity often calculated in accelerator

physics is the normalized emittance €, [44]:

N

11 * 12
25 ;(ml + Bszi’) (6.129)

where @ and v are the usual relativistic quantities, §; is the betatron oscilla-

= (B7)r

tion length at the interaction point, ' = p/p, p; is the transverse momentum,
p is the momentum along the collider path, and NN is the number of simu-
lation particles. By including v, €, remains constant even during the boost
or acceleration phase of the beam. In the PIC codes €, may be calculated
by just summing over the number of particles. In the §f algorithm an initial

unperturbed emittance is calculated:

€no = (B7)m Zﬂo Z(wz + Biel)wo;, (6.130)

where wy; is the initial unperturbed distribution function f, for particle i. The

perturbation :

= (B7)r 2ﬁo }:(w, + Bzt yw; (6.131)

where w; is the time evolving perturbation § f for particle 1. This perturbation

emittance is calculated and added to the initial €, to get the total e,.

6.5.2 Tune Shift

As described in previous sections, the tune shift Av stands as a mea-
sure of the strength of the beam-beam kick. As the beams expand and contract,
the kick weakens and strengthens, respectively. The various methods by which

Av can be measured are described.



86

One method for measuring Av involves a least-squares-fit to the kicks
of small and large amplitude particles. We use Sands’ [55] expression for linear

tune shift, which is valid for small amplitude particles:

Ay = &AK As, (6.132)
4 .
AK As =27 (6.133)

T

where Az’ = Ap,/p and Ap, = 2eE,(z)At. A least-squares-fit to Av can be

performed:

(Av)a; ( )Pa:;‘ (6.134)

where z; and Ap,,; are for individual partlcles and the average Av is given as

& l _/_1_ R
Av irp 5 ‘ _ (6.13?)
where

A = NZ z; Apa.-l Z z; Z Apas, (6.136)
1=1 =1 =1
N

B = N} zi- Z mxzw, (6.137)
i=1 =1 =1

The sums are over the number of particles N used in the fit. The tuﬁe shift for
small amplitude particles is measured from simulation particles lying within
0.10¢ of the beam. Tune shifts measured using particles of the entire beam
are smaller than for only small amplitude particles, since Av drops off at large
amplitude. in the PIC codes the sums are carried out over the number of
particles. In the §f method the sums are also carried out over the number of

particles with the modifications:

N N N
A =" N Z iBgApz_.i’w,; — Z T;W; Z Apziw,-, (6.138)

i=1

N N N
B = NZ m?w; - Z T;W; Zm;wi, (6.139)
1=1 i=1 i=1
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where w; is the total distribution function value f(z,z’) = fo(z,2') + § f(=,z")
for particle 1.

Another method for calculating Av uses the electric field E,(z). This
can be done at one point = in the beam or as an average over several points.

For one point:

Av = f" AK As, (6.140)
AK = ge—E—“—(—z—)—, (6.141)
ymuve

and for several points:

Av = ép—AK As, (6.142)
1 X 2eE

= 6.143)
N;;l 'ym,vz :c, ( )

where the sum is over N particles. The tune shift Av is calculated in the §f
algorithm at one point from Equation 6.140 by using E.(z) = E,o(z)+ § E(z),
where Eo(z) is the unperturbed field and § E,(z) is the perturbation field. For

several points in the § f method Equation 6.142 becomes:

Av = &AK As, (6.144)
N1 CEa!“;;! 1 wt
AR = —— T n (6.145)
Z::l w;

where w; is the total distribution function value f(z,z') = fo(z,2') + 6 f(z,z’)

for particle 3.

The power spectra of the = position of sample particles are another
diagnostic method. The z positions are sampled after each complete turn

around the collider. The power spectral density P(v) is calculated from[51]:

= /w dn' exp(—in'v)C(n'), (6.146)
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where n refers to the turn number and C(n), the autocovariance function, is

given by:

C(n') = lim { 2N/ z*(n +n')dn}, (6.147)

N—oco
where 7' is the lag in the number of rotations. The previous expression assumes
that @(n) is a continuous function of n. In the simulations, C(n') is calculated

from a discrete set of values [31]:

C(r

NZ (n+7), (6.148)

where r = 0,...,m, r is the rotatlon lag, m is the maximum rotation lag, and N
is the total number of rotations. The autocovariance function may be calculated
using an FFT with N = 2*. The maximum rotation lag was constrained to be

less than 0.25 N for accuracy. The power spectral density is calculated by:

P(v) = FET[C(r)W(r)] (6.149)

where W (r) is the window function, the Parzen lag Weighting functions[46]. The
tune shift can be determined from the frequency shift in the power spectral
peak. The frequency spectrum peaks at the unperturbed tune vy when the
beam-beam interaction is not present. The error in measuring the tune shift
Av is given by:

§(Av) = 2 (6.150)

m

where m is the maximum lag in rotations.

6.5.3 .Determination of Beam moments

Other quantities of importance in diagnosing beam dynamics are the

beam moments. The beam moments may be studied in two different ap-




89

proaches. One way involves calculating the cumulants of the particle positions

z for each beam [39]:

1 N
N i=1
1 N
<z’> = =Y (zi—<z>) (6.152)
N i=1
1 N
<z?> = =) (zi—<z>)° (6.153)
N i=1
1 N
<zt> = NZ(&:,-— <z >)t=3(zi— <z >)? (6.154)

..
il
=

where N is the number of particles. In the §f technique the cumulants are

calculated:

| 1 Y '
<> = — E TiW; (6.155)
N =1

M=

(z;— < z >)w; (6.156)

.
il
ey

(zi— < z >)w; (6.157)

©.
1]
-

(zi— <z >)* = 3(zi— < z >)w;. (6.158)

M=

A
HW
v
I

2|l 2= 2=
M=

ﬁ.
-

Power spectra of the cumulants give the frequency components which con-

tribute to each mode.

Another method involves taking the moments directly from a certain

functional form:

N
f(m) =) exp(im#;) (6.159)

=1
where N is the particle number, m is the particular moment, and
g

f; = tan™!(
Ti

) (6.160)
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where z; is the particle position, and z} is j—fi. The advantage of this method
isin dete.rmining the mode structure of the beams. The growth of the quantity
f*(m)f(m) where f*(m) is the complex conjugate of f(m) determines the
strength of particular modes in the beam. For example, particular modes

should dominate near resonances. The mode m = 4 should dominate near

[ 4[]

v = % and mode m = 6 should dominate near v =

6.5.4 Determination of Diffusion

Two methods of determining the stochastic nature of particle motion
are employed. One simple method involves the use of Poincare surface of sé(;-
tions. A Poincare map is generated of sample test particles which are placed
in the code. The map plots the particle position in z/8* and z' coordinates
at each time step. Each point represents the particle on a turn by turn basis.
The advantage of this method is in seeing the diffusive nature of the particles

and determining regions of stability in phase space.

The second method is to calculate the diffusion of particles. Diffusion

coeflicients may be calculated in the following manner [16, 6] :

_ 2. [X(m) - X))
Nk(Nk - 1) ml (ANk)(m —-l)

where Nj is the number of subintervals, ANy is the size of the subinterval in

Dy, , k=1,2 (6.161)

terms of rotations, k refers to the subinterval type, and X(m) is the average of

z, over the subinterval m:
B 1 AN

> Lltn
n=1 T

a

where [ = m AN,. The total number of rotations is broken up into two dif-

ferent subinterval sizes. Diffusion coefficients are calculated for each different
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subinterval. If we find the coefficients computed with different sampling inter-

vals,
Dy ~ Dy, (6.163)

then the motion z is diffusive. This occurs since a diffusive process should be
independent of the number of subintervals. On the other hand, if the initial
conditions are chosen within “islands” of stable oscillatory motion : [X(m) —
X(1)] o< (ANg)™1, then

D, (AN)
- X
Dy, (AN,)?

< 1. (6.164)

The average in Equation 6.162 is intended to lower the influence of
bounded energy oscillations and pick out accumulating changes [16]. The av-
eraging made over all pair combinations of intervals is intended to increase the
time scale for which diffusion is described by the raten and facilitates the sep-
aration of diffusion processes from side effects. The mean value of At is about

half the total time and is independent of the length of the interval At, [16].



Chapter 7

Simulation Results

In this ;:hapter we describe results of the study of the beam-beam
interaction with the various codes which have been developed. The effects
of the filamentation instability [64] are examined using the electromagnetic _
code and Vlasov code. Beam-beam collective effects are examined using the

electromagnetic code, strong-strong code, and 0f code. Particle diffusion is

also examined with the use of all the codes. A comparison of the different - -

codes is made.

7.1 Filamentation Instability

In this section we discuss the results from the eIectromagnetiC'PIC
code and the Vlasov code. We focus on the filamentation instability in coun-

terstreaming beams.

7.1.1 Electromagnetic Code Results -

To test the electromagnetic code described in Section 6.3.2, runs are
performed with two counterstreaming proton beams and with no rotation in
phase sp.ace due to accelerator magnets. This is a control run to check the
growth rate of the filamentation instability. Figure 7.1 shows the filament for-

mation of one beam in (z,p,) space at wpT = 50, 100 and 150, where w is.

92
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the beam plasma frequency. The beams are counterstreaming in the the y
direction. The initial beam size is 128 A with a simulation box size of 512A
and a relativistic factor of ¥ = 100. The maximum growth rate expected is
Tmaey!?/wy = 0.5 with a filament size of A =~ A, where A\, = ¢y/?/w, is the
collisionless skin depth. At wyT = 150 the separate filament sizes correspond
approximately to a collisionless skin depth A; and the measured growth rate
18 Tmaz/wp = 0.3. Figure 7.2 shows results from varying the relativistic factor
7. The measured growth rates [';,0-/wn are in close agreement with the pre-
dicted growth rate of I'paq/wn = 1/2, where w, = wy/v'/? is the beam plasma

frequency normalized by +.

Results of simulation runs with a small ratio of beam radius, w, to
collisionless skin depth, A, = ¢y'/2/wj, are shown in Figure 7.3. Growth rates
were measured with and without the electric field included in the simulation.
It is apparent that the growth rates with the electric field included in the
simulation are in agreement with the theoretical growth rate of I'/w, = 0.5.
Thus, it appears as if the small beam width has not suppressed the instability.
When the electric field calculation is not included, the growth rates increase
by approximately a factor of two. The inclusion of the electric field causes
expansion of the beams and suppresses the pinching in = of the beams by the

magnetic field.

7.1.2 Vlasov Code Results

. A problem involving two counterstreaming electron beams is exam-

ined with the Vlasov code. The beams are unstable to the filamentation insta-
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Figure 7.1: (z,p.) phase space plots for wpT = 50, 100, and 150 at the top,
middle, and bottom of the figure, respectively, with v = 100.
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bility, which has a maximum growth rate I'y.. [64] of:

I‘mam’yl/z 1
T = ‘2—. (7.1)

The code is timed for various problem sizes and performance is compared with
the Cray YMP. The results presented here are only for the Cartesian geometry

case.

Figure 7.4 shows the growth in the field energy as a function of time
in units of the background plasma frequency, wye. The field energies are plotted
for the three machines on which the problem was run (Intel 860, a Connection -
Machine, and a Cray YMP). Note that the results agree well over the length
of the run. The slight differences can be attributed to the differences in pre-
cision and random number generators used for the initialization of the fields.

Using the growth time of 400 simulation time steps from the simulations, the

measured growth rate is:

1/2
P77 ~0a4 (7.2)

Wy

This measured growth rate close to the theoretical filamentation growth rate.

The ratio of beam width Wy to the collisionless skin depth A, is

Wy
LS . (7.3)

The integrated distributions functions of one of the beams at various
time steps are shown in Figures 7.5 and 7.6. The other beam evolves in a
similar manner. The evolution of the z — z distribution function is shown in
Figure 7.5. The beam starts out as a finite width beam in ¢ with an initial

small perturbation in z ( the oscillations can be seen along the beam at the
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Figure 7.4: This figure shows a comparison between the intel hypercube, the
connection machine, and the Cray YMP on a test problem. The growth in field
energy as a function of time (wpyt) is shown.
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top ). As the beam evolves, it begins to spread in z. The filament formation
is evident for f(z,z) in Figure 7.5 after 400 time steps. The filament sizes
are approximately between 0.5\, and A.. By the end of a 1000 time step run
the beam has spread to the point where the multiple beams are beginning to
overlap due to the periodic boundary conditions. By the end of the run the
results are no longer valid for a single beam, since overlap has occurred. Results

before this point are valid.

Note that the z — p, distribution function in Figure 7.6 becomes neg-
ative, an inherent problem with Vlasov simulation techniques. Since only two
points are chosen to represent the distribution function of the two beams in
p. space, truncation errors result which cause the distribution function to be-
come negative. A solution to this problem may be in higher resolution in p,
which translates into a larger number of grid cells and more meinory. Another
approach may be to use transform methods in the momentum directions [2].

This truncation error is something which still needs to be resolved.

The maximum speed of the code is approximately 152 million floating
point operations per second (MFLOPS) for 32 nodes. The efficiency of the code
is dependent on the ratio of the number of floating point operations per node to
the number of transfers per node. It is obvious that reduction in communication
increases efficiency. In the extreme case of no communication the number of
MFLOPS would be linearly dependent on the number of nodes. We assume
the exclusion of speedup due to vectorization which would depend on problem
sizes. The amount of communication per node can be minimized by considering
the shape of the region computed for each node. Two quantities which give an

indication of the shape are the perimeter of the region which is 2(ne, + nc,)
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Figure 7.5: The integrated distribution function f(z,2) at 0 and 400 time steps
from the top to the bottom
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and the area of the region nc, - nc,, where nc, and nc, are the number of cells
per node in the z and z direction, respectively. The ratio of the perimeter to
the area of the region is in proportion to the amount of communication per

computation for each node. The ratio can be represented by the formula:

p_2(r+1), 1 |
£ _ , 7.4
a ( 7 )’_N (7.4)

where
ne

-2 7.5
" ne,’ _ (7.5)
N = nc; - nc;,. (7.6)

Minimizing p/a reduces the amount of communication per computa-,
. tion for each node. The smallest value is achieved by choosing » = 1 for a fixed
number of cells per node N. At this point it can be seen why a slab geometry
is not optimal for communication. Although the slab geometry needs only two
directions of communication, the ratio r is generally far from 1. Also as the
number of nodes is increased, the ratio r increases. Equa.tion 7.4 also shows
that the larger the total problem size, the larger IV is for a fixed number of
nodes. So efficiency is also enhanced, when the problem size is large. The
‘problems with the highest efficiency or MFLOPS per node are the problems

with the largest number of grid points per node.

As a comparison for outright speed a serial version of the code was
also run on the Cray YMP at NASA Ames. No effort was made to opt1m1ze the
code for vectorization. Tests are performed on the code with 32 nodes on the
Ames hypercube. The speed was 2.3 times faster than the Cray YMP for the

largest problems run. Although this may not be a fair test, it does give rough '
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idea of the size of the parallel machine necessary to achieve speeds comparable
to a Cray YMP. Obviously a more rigorous test needs to be performed where

both codes are optimized for each specific machine.

There are a few improvements which can be made. The distribution
function goes negative after a few hundred time steps. A solution may be
to increase the resolution of the velocity distribution or go to some type of
transform method [2]. Another solution is to use the § f method on the Vlasov

technique, which will be discussed in the next chapter.

7.2 Collective Beam-Beam Effects

In this section the object is to describe the effects of the beam-beam
interaction on macroscopic beam behavior, that is, phenomena which deal with

the entire beam such as beam blowup.

7.2.1 Reference Parameters

Our research is generic enough to cover the beam-beam interaction of
various colliders or storage rings. We make specific reference to the parameters
of the SSC. Table 7.2.1 shows parameters for the SSC. Using the numbers from
the table we have: v = 2.13 x 10* and wyTin: = 0.035 where wp, = \/m,
ny = Np/(lwh) is the beam density, m; is the mass of the beam particles
(protons), v is the relativistic factor, and 7;,; = L/2c is the interaction time
of the colliding beams. The horizontal tune shift Avgo is calculated for a
two dimensional Gaussian beam. Since the present simulations deal with only

one dimension, this quantity is recalculated. Using the equation for the one
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Ixwxh = T7.5cm x1073cm x107% cm
Np = 7.3 x 10°
T = 20 Tev protons
G* = 50 cm
Avygo = .84 x 1073
vgo = 0.285
Luminosity = 103 cm~% s}
Lifetime = 24 hours or 108 turns

Table 7.1: SSC Parameters
dimensional tune shift :
Ave = 4|22 T8 (7.7)

and using values from table 7.2.1, the one dimensional tune shift is Ayy =

2.1 x 1073,

A series of simulation runs is performed using the parameters de-

scribed in table 7.5.1.

Electromagnetic Code Results

Runs of 1000 turns are performed using the reference parameters described
in table 7.2.1 with 1o = 0.285 and Ayy = 2.1 x 1072, In order to keep the
time between rotations réasonable (= 1000 time steps), a beam width larger
than the SSC is used. This is due to constraints of following light waves in
the electromagnetic code. The ratio wy/A. is still small at ~ 1073, Also to
save on computation time 256 particles are used for each beam. Measurements
of the tune shift Av for both beams for small amplitude particles are shown
in Figure 7.7. The tune shift Av oscillates about an average of 1.87 x 1073

and 1.93 x 1072 for beams 1 and 2 respectively. The predicted tune-shift for
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Figure 7.7: Tune shift of Interacting Beams
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a one dimensional Gaussian beam using SSC parameters is 2.1 x 1073, The
fluctuation levels of Av is approximately +£15%Awv,. This large fluctuation
level is attributed to the small number of particles used. Figure 7.8 shows the
initial and final (z/05, p=/op) phase space particle positions. Litte difference is

seen between the initial an final configurations.

Some of the shortcomings of this fully self-consistent method are clear:

e too costly/ small number of particles

e a large number of time steps are necessary for one rotation. For realistic

SSC parameters the simulation time step size At is about 3 x 10757;,,.

We will concentrate on more efficient methods of modelling the beam-beam

interaction in the rest of the paper.

Strong-Strong Simulation Results

A series of strong-strong simulations have been performed to determine long
time characteristics. The initial distribution of particles is shown in Figure 6.5.
In this run 10* particles are used in ea;h beam with variable charge per \particlg
initially to maintain a Gaussian distribution. The tune vp = 0.285 and the tune
shift Ay = 2.1 x 1073, The simulation box size is 128A where A is the cell
size. The beam width w is 30A and the particle size a is A. The particle size

a is small enough in relation to the beam width w so that from Equation 6.57:

Alpoint _ 1 0099, (7.8)

Visp
where Avpyin is the tune shift for a point particle and Avy,p is the tune shift

for a finite size particle. Thus, finite size particle effects on the kicks that
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the simulation particles receive are minimal. By normalizing the code to a
plasma with density lower than the beam where wy is the normalization plasma
frequency and wy is the beam plasma frequency, only 4 simulation time steps
are needed to cover the interaction region. So wpAt = 0.25 where At is the

simulation time step size.

Figure 7.9 shows the distribution of 10* particles in (z/0%,ps/0p)
phase space for one beam after 10240 rotations. The particles were initialized
using the nonuniform charge distribution (Figure 6.5). After 10240 rotations
the particles are no longer uniformly distributed in (z/72, p=/0p) space. Clump-
ing of particles has occurred and small regions contain no particles. However, no
do.minant mode such as a m = 2 mode (football shape) or m = 4 mode (square
shape) has appeared, which would distort the shape of the whole beam. A
profile in 2 of the distribution of particles in Figure 7.10 shows the deviation of
the dis’pribution from the initial Gaussian profile. The center of the beam is at

z = 64A. Large spikes in the distribution are visible at z ~ 504 and z =~ 80A.

We measure the tune shift Av by two methods described in Sec-
tion 6.5.2. Omne method involves a least-squares-fit to the kicks of small and

large amplitude particles.

Results from the least-squares-fit method for one beam are shown in
Figure 7.11. The fit is done for small ampiitude particles z < 0.l0, at the
top of the figure and for the entire beam for the bottom of the figure. The
tune shift Av oscillates around the unperturbed values of Ayy = 2.1 x 1073
for small amplitude particles and Ay & 1.55 x 1072 for all the particles. The
discrepancy is due to the drop off of the kick at large values of z. When

all particles are included in the least-squares-fit, the measured Av is lowered




109

-3 b

-4 -

-8 .
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by the particles with large z. The amplitude of the variation in Av for small
amplitude particles is approximately £-20% of Ay near the end of the run. The
tune shift obtained from all particles decreases in amplitude with the number of
rotations. The maximum variation of Av is approximately £3% of its average
value and occurs within the first 500 rotations. The oscillations in Av indicate
expansion and contraction of the beam. The expansion and contraction of
the beam decreases and increases Av, respectively. Notice that the beam is
expanding and contracting differently at different particle positions. The small
amplitude portion of the beam is increasing in oscillation amplitude, while the -

entire beam is decreasing in oscillation amplitude.

The other method by which th.e tune shift Av is measured~is" by 3
getting power spectra of the = positions of sample particles which are sampled
once every complete rotation. Figures 7.12 and 7.13 show the particle positions
and power spectra for a small and large amplitude particle, respectively. The
tune shift Av is measured from the shift in the power spectral peak from
the unperturbed tune vp. The small amplitude particle in Figure 7.12 shows
smearing in the particle position in phase space, which is 'iﬁdica,tive of particle
diffusion which will be discussed in Section 7.3. The peaks in S(v) are at
v = +0.2827148. The difference from vy is 2.2852 x 10~3, The error in this
measurement is v = 7.8125 X 107*, where the maximum lag time 15 2560
rotations for the power spectrum calculation. Although the value is higher
than the unperturbed tune shift Avg, it is within the errors of the calculation.
The large amplitude particle in Figure 7.13 also shows smearing in the particle
position in phase space, but it is less than that observed for the small amplitude

particle. The peaks in S(v) are at v = +0.2832031. The difference from v .
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(z/0z,pz/0p) space for M = 10240 rotations (top) and power spectrum of z
position of the particle versus v (bottom).
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is 1.7969 x 1073. The error in this measurement is also v = 7.8125 x 107%.
The tune shift, Av, for the large amplitude particle is smaller than the one
measured for the small amplitude particle, since Av drops off with large = for

the beam-beam interaction.

Moments of one beam are shown in Figures 7.14 and 7.15. At the top
of Figure 7.14 the oscillation of the average beam center < = > is apparent. The
beam oscillates with a maximum beam amplitude of §z /0, =~ £8 x 10~%. The
average < z > and < (z— < z >) >, the odd moments, are both increasing in
oscillation amplitude with rotation number. The increase is more obvious for
< (z— <z >)® > at the bottom of Figure 7.14. At the top of Figure 7.15 the
oscillation of the beam width can be seen. The beam is oscillating about the
initial beam width o2 with a maximum amplitude of approximately +0.04c2.
Oscillations are also apparent for < (z— < z >)* > at the bottom of the figure.
The amplitudes of the even moments < (z— <z >)? > and < (z— <z >)* >
are both decreasing with the number of rotations. Note that the variation in
the second moment < (z— < z >)? > closely corresponds with the variation
of the tune shift measured from all beam particles in Figure 7.11. Both Av
and < (z— < z >)* > give a measure of the width of the kicking beam and

the kicked beam, respectively. Since both beams are oscillating in width in the

same manner, the agreement is expected.

Figures 7.16 and 7.17 show the moments and their associated power
spectra. The power spectra of the average of #, < ¢ >, is shown at the bottom
of Figure 7.16. There is a peak in S(v) at v = 0. This peak corresponds
to oscillations seen in < z > with periods between 500 and 1000 rotations.

The smaller peaks at v =~ £(vy — Ay) cbrrespond to the betatron motion. In
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Figure 7.14: Beam moments < ¢ > and < (z— < z >)® > for M = 10240
rotations at the top and bottom of the figure respectively.
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M = 10240 at the top and bottom of the figure respectively.
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Figure 7.17 the peaks in the power spectra S(v) at v = £(1—2(rp — Avyp)) also

correspond to the betatron motion of the beam.

The emittance ¢ of each beam for 10240 rotations is shown in Fig-
~ure 7.18. The emittance for one beam is at the top of the figure and the other
is at the bottom. Until about 6000 rotations the beams show similar behavior.
They oscillate about the initial emittance o = 9.586A. After this the beams
begin to deviate from one another. One beam is decreasing in phase space
area and the other beam is increasing. This phenomena is similar to the “flip-
flop” effect observed experimentally with equal strength beams [34]. One beam
blows up and the other decreases in size. The difference in € is small between
the two beams. By the end of the run it is §¢/€y = 4.4 X 1073, This variation in
€ is very sensitive to the initial conditions. Figure 7.19 shows the emittance for
both beams when the distribution is initialized with different random offsets in
@ for the nonuniform charge distribution. The increments in /o are the same.
The beams begin to deviate from one another at about 9000 rotations. The
deviation is much smaller than the previous case. By the end of the run it is
§e/eo =5 x 1074, |

Runs with the uniform charge and nonuniform position initialization
show different behavior than the runs with nonuniform charge and uniform
position. Figure 7.20 shows the distribution of 10* particles in (z/0%,pz/0p)
phase space for one beam after 10240 rotations. The particles were initialized
using the uniform charge distribution (Figure 6.7). After 10240 rotations the
particle distribution shows spiral arms in (z/0z,pz/0p) space. However, no
dominant mode such as a m = 2 mode (football shape) or m = 4 mode (square

shape) has appeared which is distorting the shape of the whole beam. A profile
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Figure 7.20: Distribution of 10* simulation particles in (z/0., pz/0,) space after
10240 rotations with vy = 0.285 and Avy = 2.1 x 1073,
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in z of the distribution of particles in Figure 7.21 shows the deviation of the
distribution from the initial Gaussian profile. The center of the beam is at
z = 64A. The profile is much smoother than the profile from the nonuniform

charge distribution run (Figure 7.10).

Results from the least-squares-fit method for one beam are shown
in Figure 7.22. The fit is done for small amplitude particles z < 0.10,. Av
oscillates around the unperturbed tune shift values of Avy = 2.1x 1072 for small
" amplitude particles. It is found that Av =~ 1.55 x 102 for all the particles.
The discrepancy is due to the drop-off of Av at large values of 2. When all
particles are included in the least squares fit, the measured Av is lowered by the
partides with large . The amplitude of the variation in Av for small amplitude
particles is approximately +3% of Ay near the end of the run, which is about
a factor of 6 smaller than the deviations observed in the nonu.niform charge
run. The tune shift Av obtained from all particles decreases in amplitude with
the number of rotations. The maximum variation of Av is approximately 3%
of its average value and occurs within the first 500 rotations. The oscillations
in Av indicate that the expansion and contraction of the beam which is kicking

the particles is smaller than the nonuniform charge runs.

The emittance € of each beam for 10240 rotations is shown in Fig-
ure 7.23. The emittance for one beam is at the top of the figure and the other
at the bottom. In this case the beams are oscillating in €. The amplitude of
the oscillations is largest for the first 1000 rotations. The magnitude of these
oscillations is §€/€y =~ 1073, where ¢ is the initial emittance. By the end of the

run the oscillations are §e/ep = 1074,
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Figure 7.23: The emittance € of both beams for 10240 rotations. One beam is
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6f Simulation Results

A series of §f simulations have been performed to determine long time char-
acteristics. We use 10° particles in the runs. The fluctuation level § expected
for the actual SSC beam is § =~ 107° for 10*° particles. Figure 7.24 shows the
variation with particle number of the minimum and maximum perturbations
6f/ fo for runs with 10240 rotations. We see that the maximum perturbation
is nearly independent of particle number. The minimum fluctuation value de-
creases exponentially with increasing particle number. It can be seen that the
minimum perturbation drops below 10~° for simulations with 10% particles and
larger. Because 10° particles could be used, larger rotations of 10° could b“é-'
ruﬁ. The initial distribution of particles is shown in Figure 6.4.1. In this run
10° particles are used in each beam with variable charge per particle initially
to maintain a Gaussian distribution. The tune vy = 0.285 and the tune shift
Avg = 2.1 x 1073, The simulation box size is 128A where A is the cell size.
The beam width w is 30A and the particle size ¢ is A. The particle size a is

small enough in relation to the beam width w so that from Equation 6.57:

A oin
Zlroint . 1.0022, (7.9)
Al/f,p

where Avpyin: is the tune shift for a point particle and Avy,, is the tune shift
for a finite size particle. Thus, finite size particle effects on the kicks that
the simulation particles receive are minimal. By normalizing the code to a
plasma with density lower than the beam, where wy is the normalization plasma
frequency and wj is the beam plasma frequency, only 4 simulation time steps
are needed to cover the interaction region. Thus, woAt = 0.25 where At is the

simulation time step size.
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Figure 7.24: The minimum and maximum perturbation values §f/ fo for M =
10240 rotations, vy = 0.285, and Ayy = 2.173
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Figure 7.25 shows the distribution of 10® particles in (z/0%,pz/0p)
phase space for one beam after 10° rotations. After 10° rotations the particles
are no longer uni-formly distributed in (z/05,p;/0p) space. Some clumping of
particles has occurred and small regions contain no particles. The clumping is
not significant enough that the constant phase space density assumption is still
a good approximation. A profile in z of a Gaussian distribution of particles
in Figure 7.26 is shown. Figure 7.27 shows the perturbations from the §f
code to the Gaussian profile after 10° rotations. The center of the beam is |
at ¢ = 64A. The maximum perturbations are only 0.1% of the maximum in
the Gaussian profile. Thus, the §f code is still a valid approximation. Notice
that the perturbed distribution makes sense physically. There is a depletion
of particles from the center of the beam and an increase in pa;rticles at about

+20,. The beam is expanding slightly.

Results from the least-squares-fit method for one beam are shown in
Figure 7.28. The fit is done for small amplitude particles z < 0.1o, at the
top of the figure and for the entire beam for the bottom of the figure. The
tune shift Av oscillates around the unperturbed values of Avy = 2.1 x 1073
for small amplitude particles and Avp = 1.52 x 1072 for all the particles. The
discrepancy is due to the ‘drop-off of Av at large values of z. The amplitude
of the variation in Av for small amplitude particles is approximately +3%: of
Au(; throughout the run. The tune shift obtained from all particles increases
in amplitude with the number of rotations until approximately 15000 rotations
and then remains somewhat constant until the end of the run. The maximum
variation of Av is approximately £4%. The oscillations in Av indicate expan-

sion and contraction of the beam which is kicking the particles. Notice that
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the beam which is kicking the particles is expanding and contracting differ-
ently at different particle positions. The small amplitude portion of the beam
is constant oscillation amplitude while the entire beam is increasing oscillation

amplitude for the first 15000 rotations.

The other method by which the tune shift Av is measured is by
getting pc;wer spectra of the = positions of sample particles which are sampled
once every complete rotation. Figure 7.29 shows the shift in the power spectral
peak from 100 particle positions in phase space. The tune shift Av is measured
from the shift in the power spectral peak from the unperturbed tune v,. Notice
that Av decreases with increasing r/o of the sample particle, where r/o =
2 + 32

Moments of one beam and their associated power spectra S(v) are

shown in Figures 7.30, 7.31, 7.32, and 7.33. At the top of Figure 7.30 the
oscillation of the average beam center < z > is apparent. Thé beam oscillates
with a maximum beam amplitude of §z /0, = +1.6 x 10~%. The average < = >
and < (z— < = >)* > (Figure 7.32), the odd moments, are both increasing
in oscillation amplitude with rotation number. At the top of Figure 7.31 the
oscillation of the beam width can be seen. The beam is oscillating about the
initial beam width o2 with a maximum amplitude of approximately 4:0.00302.
Oscillations are also apparent for < (z— < z >)* > at the top of Figure 7.33.
These oscillations are induced spontaneously. This is in spite of the initial lack
of offset and initial lack of noise due to finite number of particles. The later is
due to our adoption of the §f algorithm. The particle weights w; were taken

to be zero at ¢t = 0.

The bottoms of Figures 7.30, 7.31, 7.32, and 7.33 show the moments
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and their associated power spectra. The power spectra of the average of z,
< z >, is shown at the bottom of Figure 7.30. There are peaks in S(v) in
descending power at v ~ +v' and £(5¢' — 1) where v/ = vy — Avy. These
peaks correspond to harmonics of the betatron motion. In Figure 7.31 the
peaks in the power spectra S(v) at v ~ £(1 — 2(vy — Awy)) also correspond
to the betatron motion of the beam. The peak near v &~ 0 corresponds to
low frequency oscillations with periods longer than 10* rotations. Figure 7.32
shows S(v) for < (z— < z >)® >. The peaks in S(v) in descending power
are at =(5¢' — 1), v = £/, £(1 — 3v'), and £(2 — 7v') where v’ = vy — Av,.
Similarly in Figure 7.33 S(v) for < (z— < z >)* > has peaks in descending
power at (1 — 2¢') and +£(1 — 4v') where v’ = vy — Avp. As in the case with
< (z— < & >)? >, there is a low frequency peak with oscillations having time
scales longer than 10* rotations. It appears from these results that the even
beam moments contain more power in the low frequency components of S(v)

than the odd beam moments.

The discrepancy between the odd and even moments is also indicative
in the mode expansions of the beam distributions. Figures 7.34 and 7.35 show
the variations of the odd and even modes respectively with rotation number.
The modes are calculated from Equation 6.159 in Section 6.5.3 for m = 1
to m = 6. As in the calculation of moments the odd modes m = 1,3,5
are increasing with rotation number (Figure 7.34). The intensity f(m) of the
odd modes also increases with mode number m. The even modes m = 2,4,6
oscillate about an average throughout the entire run. The oscillation amplitude
decreases with mode number m. The overall intensity f(m) of the even modes

is about a factor of 10 higher than that of the odd modes.
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The emittance € of each beam for 10° rotations is shown in Figure 7.36.
The emittance for one beam is at the top of the figure and the other is at the
bottom. The beams show similar behavior t‘hrough the 10° rotations. They
expand and contract in phase space simultaneously. The maximum expansion

is about de/ep =~ 2 x 1073,

7.2.2 Vg — Al/() Stability

In this section we examine the variation of beam stability with tune
vy and tune shift Avy. The strong-strong PIC simulation code is employed
exclusively here. Although the §f code is quieter, it is not well suited for
studying beam blowup phenomena which distort the original distribution by a

significant amount.

Figure 7.2.2 shows a stability diagram of Ay, versus vy. The dotted
lines are obtained from a linear theory developed by Chao and Ruth [12]. The
lines demarcate regions of linear stability and instability for equal charge beams.
The stable regions are those regions contained by the dotted lines. The lines
plotted are for up to 8 beam modes. Asis the general case with any linear theory
the theory can predict the initial growth rates of the instability, but not the
saturation levels. The points in Figure 7.2.2 represent strong-strong simulation
code results, in which the unperturbed Ay, and v, are varied. The unperturbed
tune shift Avg is scanned between the SSC reference value of 2.1 x 10~3 and
a maximum value of 0.04. In each of the simulations 10* simulation particles
are used. The codes are run for 10* rotations with the exception of one run
which is run for 3 x 10 rotations. All the runs are initialized with variable

charge and uniform distribution. All other parameters are the same as previous




145

100 =
100 4
10.0 4
18.0 B
109 -
€ 109 y
103
100 i
1¢ '
mt ]
100R_, . . .
2 2 2 2 2 2 2
M
10.0
10Q | 3
10.0 B
10.0 ;T ) A g :
100 1118 T T
€ 100 ‘ .
10Q 3
10.03 1
|o'J_| _______ | 'A,,,',,,.H*._
10942 9
2 388383938838 88¢8sgsgsgéd
28 248838 3988 3388 338 g 38

M
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strong-strong simulation runs. Beam stability for various values of Avy and vy
is determined from emittance growth. If the emittance of the beams € increases
by 50%, then the run is designated unstable. The marginally stable case noted

in Figure 7.2.2 is determined from the emittance growth after 30000 rotations.

The results from the simulations show good agreement with the linear
theory of Chao and Ruth [12]. The beams are unstable in regions of instability

and are stable in regions of stability.

We examine in more detail the cases where Awg is small. In this case
similarly charged beams with values of the unperturbed tune v just above a
resonance are kicked towards the resonance by the beam-beam interaction. In
this case the beams are expected to be unstable. For beams with values of v,
. just below a resonance the beam-beam kick is away from the resonance and
the beams are expected to be stable. Beam blowup due to strong resonance
is observed just above vy = 1/2 and v = 1/4 for values of Avy = 2.1 x
10~3. Figures 7.38 and 7.39 show the phase space distribution of the simulation
particles. In Figure 7.38 phase space plots show simulation results around the
vo = 1/2 resonance. At the top of Figure 7.38, where vy = 1/2 + Aup the
beam blows up. At the bottom of Figure 7.38, where vy = 1/2 — Auy, it is
seen that mode 2 dominates the shape of the beam in phase space (football
shdpe). In Figure 7.39 phase space plots show simulation results around the
vo = 1/4 resonance. At the top of Figure 7.39, where vy = 1/4 4+ Avy, the
beam particles are clumping and the emittance is observed to increase by more
than 50%. At the bottom of Figure 7.39, where vy = 1/4 — Ay, it is mode
4 which dominates (square shape). The beams in the case of vy = 1/2 + Ay

blow up very quickly. It only takes a few hundred rotations. The beams blow
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up more slowly for vy = 1/4 + Avp. This behavior is expected. Higher order
resonances have lower growth rates of instability. The beams are stable just

below vy = 1/2 and vy = 1/4 for small values of Az)o.

A point is scanned just above vy = 1/3 with v = vy + Ay where
Avg = 4 x 1073, In this case the emittance € is slowly growing (Figure 7.40).
The beam emittance € keeps growing until approximately 24000 rotations, after
which it appears to saturate until the end of the run at 30000 rotations. The
phase space distribution of one beam is shown in Figure 7.41. It can be seen
that mode 6 is beginning to slowly dominate the distriBution. Since two (i.e.
an even number of) beams are colliding, mode 2/6 is expected to dominate
for vp = 1/3 + Awvy. Since this is a high order mode, the slow growth rate is

expected.

7.3 Particle Diffusion

In this section we examine particle diffusion brought about by the
beam-beam interaction. The diﬁ'usion is measured from the tracking code,
strong-strong code, and the §f code. We compare the diffusion coefficients
measured for each of these runs. Of the three codes the §f code gives the best
representation. It is quieter than the PIC code and allows degrees of freedom
of evolution from the initial distribution that are not permitted in the tracking
code. We use the two methods described in Section 6.5.4 to measure particle

diffusion.
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7.3.1 Tracking Code Results

We first examine particle diffusion for particles tracked using the 1—D

tracking code describe in Section 6.1.

Reference parameters described in Section 7.2.1 for the SSC are used:
The tune vy = 0.285 and the tune shift Avy = 2.1 x 1073, The initial particle
positions are shown in Figure 7.42. The Poincare map of two sample particles
is shown after 105 rotations in Figure 7.43. The particles are sampled once
every complete rotation. They show little diffusive motion. The circles that
each particle traces out in phase space is due to the betatron motion of the

particles.

A better grasp of the diffusive motion of the sample particles can be
obtained from their diffusion coefficients. The diffusion coefficients, dfl and

df2, calculated after 10240 rotations are shown in Figure 7.44 where:

2 2
T /2,0 (7.10)
(o2

Oz  Op
is the distance in phase space from the center of the beam. The D, means that
dfl and df2 are calculated for diffusion in position |z| from Equation 6.161.
The diffusion is normalized to o2/N, where N, is the number of rotations. In
Figure 7.44 it is apparent from the fact dfl >> df2 that the motion is largely
oscillatory in phase space. The coefficients calculated over two time scales differ

on average by about a factor of 100. This is expected for oscillatory motion

where:
df2 ANy,
ar = (ANZ)
1

—— 7.11
1000 ( )
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Figure 7.44: D, from the tracking code with Avp = 2.1 x 102 and v = 0.285
for M = 10240 rotations. dfl and df2 have time scales of AN; = 102 and
AN, = 1024 rotations respectively.
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Figures 7.45 and 7.46 show the diffusion coefficients calculated for
M = 40960 and M = 10° rotations, respectively. The average diffusion rate
is decreasing with increasing rotations. The range of coefficients for 40960
rotations is between 10~° and 107* and for 10° rotations between 107!° and
1015, This drop with increasing rotation number is another indication that the
particle motion is still oscillatory and not diffusive. If the particles are diffusive
the diffusion coefficients would settle down to values independent of the time
scale. There are some points between /¢ = 1.5 and 7/o = 2 which meet the
criteria for diffusivity. That is, dfl =~ df2. However, most of the coefficients

differ by about a factor of 100.

So in tracking code simulations a majority of the particles exhibit

oscillatory motion at different values of position & up to 10° rotations.

7.3.2 Strong-Strong Simulation Results

In this section results from the strong-strong code on particle diffusion
are presented. The effects of the particle initialization method are examined
and the results are compared with the tracking code. Again reference param-
eters described in Section 7.2.1 for the SSC are used. So the tune v = 0.285
and the tune shift Avy = 2.1 x 1073,

Results from the strong-strong code with variable charge per I;a,rticle
are shown in Figure 7.48. Each beam in the simulation has 10* simulation
particles with the initial distribution in (z,p,) phase space shown in Figure 6.5

and the resulting profile shown in Figure 6.88.

The Poincare map of two sample particles is shown after 10240 rota-

tions in Figure 7.47. The particles are sampled once every complete rotation.
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Figure 7.45: D, from the tracking code with Ayy = 2.1 x 10~ and v = 0.285
for M = 40960 rotations. dfl and df2 have time scales of AN; = 409 and

AN, =4096 rotations respectively.




159

o df1
e df2
10° gy 10°°
;_. ooooOOOoO
11 g OOOOOOOO OOO o] "
10 - o° B8 g o 10
g o 8
= oo 8 Y "0
D : J9ge8e8d 0o
1077 R « %0 ".M’-.- S IPPSE
. e %% .‘ . "
= e %
107° b 10°'°
3 .
10.17 1|||In|11I|1||l|111|:11|,111| 10-17
0 0.5 1 1.5 2 2.5 3
r/c
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Diffusion is apparent for both particles even after only 10240 rotations. The
small amplitude particle especially shows the smearing out of the ring observed
from the tracking code Poincare map (Figure 7.43). The diffusion coefficients
are calculated for 100 sample particles after 10240 rotations. The initial parti-
cle positions are the same as the tracking code shown in Figure 7.42. As in the
tracking code results in the previous section the diffusion coefficients, dfl and
df2, are calculated at various |z|in Equation 6.161. The diffusion D, is normal-
ized to ¢2/N, where N, is the number of rotations. The diffusion coefficients
differ substantially from those obtained from the tracking code (Figure 7.44).
All the particles in this case show the diffusive nature. D, is uniform across
the beam radial position and is nearly an order of magnitude higher than the
tracking code values. Some of this diffusiveness is from fluctuations due to the
finite number of particles of the strong-strong code. This dependence is shown
in Figures 7.49 and 7.50. These figures show the diffusion coeflicients, dfl and
df2, for two different particles after 1000 rotations. One is for a sample particle
at /o = 0.1 (Figure 7.49) and the other is for sample particle at /o = 0.9
(Figure 7.50). In both figures the solid line and the dashed lines refer to the
diffusion coeflicients dfl and df2, respectively, calculated from a tracking code.
Note that the tracking code values are independent of the number of particles,
since the field is calculated from one Gaussian particle (“strong beam”). Both
plots show a reduction in the diffusion coefficient for the strong-strong code
calculated on the longer time scale (df2). It is more apparent for the particle
at 7/ = 0.1 (Figure 7.49). The reduction goes as 1/v/N, where N is the num-
ber of particles. This 1/v/N dependence shows that finite particle fluctuation
noise [5, 62], which goes as 1/+/N, is contributing to the diffusion of the sample

particles.
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Figure 7.48: D, from the strong-strong code with Ayp = 2.1 X 1072 and v =
0.285 for M = 10240 rotations. dfl and df2 have time scales of AN, = 102
and AN, = 1024 rotations respectively.
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In order to reduce the fluctuation noise, we use the nonuniform par-
ticle initialization method described in Section 6.3.3. The simulation particles
are given equal cilarge and are nonuniformly distributed in (z,p,) phase space
(Figure 6.7). The res.ulting profile in z is shown in Figure 6.8 for 10000 sim-
ulation particles. SSC reference parameters are used with vy = 0.285 and
Avy = 2.1 x 1073, The initial positions in (z/0s,p=/0p) phase space of the
100 sample particles is shown in Figure 7.51. The nonuniform initialization
of the simulation particles does make a difference in the finite particle fluc-
tuation noise level. The Poincare map of two sample particles is shown after
10240 rotations in Figure 7.52, where the particles are sampled once every com-
plete rotation. Diffusion is apparent for both sample particles. However, the
smearing seen for the small amplitude is much less than that observed with the

nonuniform charge particle initialization (Figure 7.47).

The reduced diffusion is evident in Figure 7.53, Qhere the variable
charge and uniform charge diffusion coefficients are shown for M = 10240 ro-
tations. The uniform charge initialization is much quieter. It shows oscillatory
particle motion for particles with /o < 2. The only particles which exhibit
diffusive characteristics are those particles with /o > 2, that is, particles in
the tails of the distribution. In comparison with the tracking code the sample
particles from the uniform charge initialization show more diffusive behavior
(Figure 7.54). The agreement is good between the tracking code and strong-
strong code for the shorter time scale diffusion coefficient dfl for values of
r/o < 2. However, the longer time scale diffusion coefficient for the uniform
particle initialization shows higher values for all values of 7/, especially in the

tall of the distribution.
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Figure 7.52: Poincare section in (z/0.,p./0p) space of small and large am-
plitude strong-strong code particles with uniform charge after M = 10240

rotations.
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Figure 7.53: D, from the strong-stong code with the variable charge and uni-
form charge particle initialization for M = 10240 rotations. dfl and df2 have
time scales of AN; = 102 AN; = 1024 rotations respectively.
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Figure 7.54: D, from tracking code and the strong-stong code with uniform
charge particle initialization for M = 10240 rotations. dfl and df2 have time
scales of ANy = 102 and AN, = 1024 rotations respectively.
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It has been shown that finite particle fluctuation noise plays a role
in the diffusion of particles in the strong-strong simulations. This noise can
be somewhat offs;:t by using quieter particle initialization schemes such as the
smooth charge loading scheme. However, there are still significant differences
from the tracking code. Although the strong-strong code should show differ-
ences from the tracking code because of the self consistent solution of the fields,
it is difficult to determine whether the differences observed are due to particle
fluctuation noise alone. In order to get a better grasp of the effects of this
fluctuation noise, the noisy tracking code described in Section 6.3.4 is used.
Figure 7.55 shows the results for 10240 rotations where noise added to the
tracking code is of the form described in Section 6.3.4. The noise level § is

determined by:

1
N(z)

(7.12)

where N(z) = Nerf(z/+/20,) and N is the particle number. Notice that the
small amplitude particles at /o = 0.1 are diffusive for thg noisy tracking
code-a.nd the PIC code. The larger amplitude particles at /o = 0.9 are
both oscillatory. The PIC code is more diffusive than the noisy tracking code
at /0 = 0.1 and is less oscillatory than the noisy tracking code at /o =
0.9. These results indicate that some of the diffusion observed in the PIC
code is from finite particle noise. The discrepancy in the diffusion coefficients
between the PIC code and the noisy tracking code may be due to other types

of numerical noise or collective phenomena.
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Figure 7.55: D, from noisy tracking code and PIC code for M = 10240 rota-
tions at /o = 0.1 and 0.9. dfl and df2 have time scales of AN; = 102 and

ANg =

1024 rotations respectively.
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7.3.3 §f Simulation Results

In this section we describe particle diffusion results obtained from the
§f simulation code described in Section 6.4. SSC réferencé parameters from
Section 7.2.1 are used with vy = 0.285 and Ay = 2.1 x 1073, Each beam in the
simulation has 10% simulation particles with the initial distribution in (z,p.)
phase space showr in Figure 6.4.1. The Poincare map of two sample particles is
shown after 10° rotations in Figure 7.56. The particles are sampled once every
complete rotation. Little diffusion is apparent for both sample particles. The

smearing seen for the small amplitude is much less than that observed with

either strong-strong code.

The diffusion coefficients are calculated for 100 sample particles after_
10240 rotations. The initial particle positions are shown in Figure 7.57. As’
in previous sections the diffusion coefficients, dfl and df2, are calculated using
|z| in Equation 6.161. The diffusion D, is normalized to o2/N,, where N, is
the number of rotations. Results from the §f code and tracking code after
10240 rotations are shown in Figure 7.58. The diffusion coefficients for the
§f and tracking code nearly overlay each other. Both codes show oscillatory
motion for 10240 rotations. Thus, the noise level of the §f code is less than

the strong-strong code with either the variable or uniform charge distribution.

Simulations with 100, 1000, and 10000 parti.cles show little eﬂ:ect on
the diffusion of the particles from particle number for M = 10240 rotations
(Figure 7.59). For 100 simulation particles there is some deviation for sample
particles with /o < 1. The noise level is not as strong a function of particle

number as the strong-strong code.

The sample particles begin to show diffusive behavior, when the num-
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Figure 7.58: D, from the § f code with 1000 simulation particles and the track-
ing code for M = 10240 rotations. dfl and df2 have time scales of AN; = 102
and AN, = 1024 rotations respectively.
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M = 10240 rotations.
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ber of rotations is increased. Figure 7.60 shows the diffusion coefficients, dfl
and df2, calculated for 40960 rotations. Particles with r/o > 2 are diffusive
(dfl = df2). This same behavior is observed for 10240 rotations in the strong-
strong code with the uniform charge distribution (Figure 7.54). The particles
with 7/0 < 2 are still somewhat oscillatory in nature. It appears that the parti-
cles in the tail of the distribution are most sensitive to either noise or collective
motion in the beams. This diffusion in the tails is not due to finite particle
noise, as is evident in Figure 7.61. The figure shows the diffusion coeflicients
calculated for N = 1000 and N = 10* simulation particles for 40960 rotations.

The results are nearly identical.

A comparison of the § f and tracking code at 40960 rotations is shown
in Figure 7.62. The tracking and é§f code diffusion coeficients are nearly equai
to the short time scale coeflicient df1 with values of r/o < 1.5. For the long time
scale coefficient df2 and 7/o > 1.5 the § f code shows more diffusive behavior.
This indicates that the phenomenon which causes the diffusive motions at for
large r/o is most evident on time scales of 409 rotations. Diffusive motion is
not evident for for particles with r/o < 1.5. This indicates that the diffusion
occurs on longer time scales there. This is shown in longer runs. It appears

that the diffusion is largest for large /o and smallest for small »/o.

In order to determine the source of the diffusion observed in the §f
code, noise of the form described in Section 6.3.4 is added to the tracking code.
Figure 7.63 shows the results for 40960 rotations, where the noise level § is

determined by:

5= , (7.13)
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where N(z) = Nerf(z/+/20,) and N is the particle number. Notice that the
long time scale coefficient df2 increases for small r/o and therefore, df2 is
more uniform in r/o. The form of D, as a function of r/o is different from
D, calculated from the 6f code. It is apparent that the enhanced diffusion
observed in the tails of the distribution for the §f code is due to the self-
consistent treatment of the beams. This enhanced diffusion in the tails was
also observed in the strong-strong code with the uniform charge initialization

and fewer rotations.

When the §f code is run for 10° rotations, all the sample particles
show diffusive behavior(Figure 7.64). The diffusion D, is an approximately
exi)onential function of r/e. The coeflicients take nearly the same value as
the long time scale diffusion coefficient df2 calculated for 40960 rotations (Fig-
ure 7.60). The diffusive time scale appears to be in the range of 400 to 4000

rotations.

A comparison of the §f and tracking code results at 10° rotations
is shown in Figure 7.65. As in the run with 40960 rotations, the diffusion
coefficients obtained from the tracking and §f runs are nearly equal for the
short time scale coefficient dfl with values of r/oc < 1.5. For the long time
scale coefficient df2 and r/o > 1.5 the § f code shows diffusive behavior and is

higher in value than the coefficients from the tracking code.

Figure 7.66 shows the diffusion coefficients calculated for N = 1000
and N = 10* simulation particles for 10° rotations. The coefficients for both
particle numbers overlap indicating that the diffusion observed is not strongly

dependent on the simulation particle number.

In order to get an idea of where the stochastic regions are in phase
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space, the simulation code is run forwards and backwards in time. In chaotic
regions the particle motion is very sensitive to initial conditions and the orbits
bifurcate exponentially. Since the numerical integration of the code has finite
accuracy, the particles which have passed through chaotic regions most likely
would not return to their initial conditions when the code is run forwards and
then, backwards. Figure 7.67 shows results from running the 6 f code forwards °
and backwards 10° rotations with 1000 particles. In the figure contour, surface,
and grey scale plots of the particle weights §f; of one of the beams are shown.
The reference parameters vp = 0.285 and Ayy = 2.1 x 1073 are used. It
is found that the particle positions return to their original positions within
8 decimal pla.ces‘. The cieviation from the initial conditions is found in .the
weights §f; for each particle 5. Figure 7.67 is the result of a dump of 200
consecutive rotations of particle weights. The weights from the forward time
stepping are subtracted from the correspon&ing weights from the backward time
stepping. The figure shows positive deviations for small amplitude particles and
négative deviations for large amplitude particles. It may be interpreted that
these particles are in stochastic regions. The positive a,na ;1egative devia‘f;i;)n
regions are separated by a thin ring where there is no deviation. The lack
of deviation does not automatically determine a region of non-stochasticity.
However, we ..may imagine there lie regions of non-stochasticity in this ring
éreé. Due to the limited resolution the ring may consist of islands separated

by stochastic regions.
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Figure 7.67: A (z/04,p=/0,) space plot with contour, surface, and grey scale
plots from the top to the bottom of the figure
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7.3.4 Beam Offset Effects

In this section we examine the effects of beam offset on particle dif-
fusion. Simulation results are compared with the theoretical predictions of
Stupakov [58]. A tracking code and a §f code are used to compare with Equa-
tion 3.76 described in the previous section. Parameters from the Supercon-
ducting Super Collider (SSC) are used to compare the analytic results with the
simulation results. In this case v = 6.285 and Av = ¢ = 2.1 X 10-3. These
numbers can be used to get an approximate number for the diffusion from
Equation 3.79. An estimate of 6§z can be obtained from plots of the average

z position of the beam versus the number of rotations M (Figure 7.68). The

estimate of dz = %:— is 0.0005. From this an approximate value of the dlffusmn

D is:

D ~ 10~ 3¢2 /turn (7.14)

Figure 7.69 shows the total change in the action < (AJy)? > versus
the action J for various values of the beam offset { calculated from Equation
3.74. The action J is normalized to po?/3* and the beam offset is normalized
to 0. The plot is obtained with the assumption fhat the beam offsets are
uncorrelated so that the & = 0 term in Equation 3.76 is the only nonzero one.
The offsets plotfed are for ( = 0.000I,0.00l;and 0.01. Note that < (AJy)? >

increases with ¢ as (%, which is expected from Equation 3.76.

Figure 7.3.4 shows tracking code and analytic results. The tracking
code Ais run for M = 10° turns with vo = 0.285 and Ay = 2.1 X 1073, The total
change in the action < (AJyr)? > /2 is divided by M, the number of turns, to
get the change per turn. The data points represent 100 uniformly distributed




189

MFw ]

JABY 4

\‘dr‘:'

i
Jeho

Jepe-
. ul 5
- Jpla
- apie
. g};g

- aF;s

T = o el =l = ] K ) = D o - 2 a -
p - 4 ) = = - - = = > ] ) & D S ; "3 3 g
2 9 9 9 ~ = : R - - I -] - B
w p ul Se [} T " - e e W) ] ("] @D [\J > (") .Y «Y 3
—_ - [ 4 Al < - ut ra) ) < ~ ~ o D > > o
-

Figure 7.68: This figure shows < z > /o, versus M from §f simulation with
Vg = 0.285 and Al/o = 0.0021



190

0.01

lllllllllvl'!lllLLlIIl{llLL 10‘8
0
1 2 J 3 4 5

Figure 7.69: The total change in the action AJpy versus the action J for three
values of the beam offset ¢ v ‘




191

10'14 111'1:11'1|1|l||1|||l||v

0 1 2
J 3 4 5

104

Figure 7.70: Tracking code results showing the change in < (AJp)? > /2 per
turn versus the action J for three values of the beam offset ¢. The time scales
over which dfl and df2 are calculated are 10 and 10% rotations respectively.
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tracking particles which are run for each value of the beam offset ¢ (Figure 7.71).
As is evident in Figure 7.3.4 the diffusion coefficients (dfl,df2) calculated on
different time scales for each particle are close to one another indicating that
all the particles show diffusive behavior. There is good agreement between
the tracking code results and the analytic predictions based on the random

offset model of Stupakov [58]. Both show the leveling off in the diffusion with

increasing values of the action J.

The §f code results over 10° turns are shown in Figure 7.72. The
§f code is started with zero offset and allowed to evolve self-consistently for
M = 105 turns. Analytic results for 3 values of the beam offset, { = 0.01 to
0.0001c,, are shown in the background while the simulation value of ( is in the.
range of 0.0005 to 0.001c,. Asis evident in the figure, the values of the diﬁ'usion‘
in the action variable J crosses the range of the analytic prediction. However,
the functional dependence on the action J is very different. The §f results
show an exponential dependence on the action J for large values of J, whereas
the Stupakov‘theory shows the diffusion leveling off. T_he approximate value
for the diffusion calculated from the change in the luminosity {Equation 7.14)

produces a value which is lower than most of the § f simulation values.

In order to get 'an idea of the cause of the exponential dependence
in the diffusion several avenues are examined. Figure 7.73 shows the effects of
adding terms of £ = 1 and k£ = 2 to Equation 3.76. The coeflicients are chosen
from peaks at the appropriate fréquency in the power spectra of < z > from
Figure 7.68. The effect of adding the k = 1 and k = 2 terms to Equation 3.76
is negligible. The change in the action still levels off for large J. Figure 7.3.4

shows the results of using the output < z > from the §f code shown in Figure-
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Figure 7.72: §f code results showing the change in the action AJy per turn
versus the action J for zero initial beam offset. The time scales over which dfl
and df2 are calculated are 103 and 10* rotations respectively.
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7.68 in the tracking code. Analytical results are also plotted for various values
of the beam offset (. The tracking code and analytic results show the same
functional behavior with respect to J. The corresponding beaﬁ offset is in
the range ¢ = 0.001 to 0.01. Although the diffusion from the tracking code is
in the same range as the §f code results, the exponential behavior for large
J is not seen (Figure 7.75). The exponential dependence can be reproduced
from Equation 3.76 when the arguments to the modified Bessel functions Io
and I; are replaced with J rather than J/2. The reason for this agreement is
still under investigation (Figure 7.76). The diffusion from Stupakov’s theory
[58] is dependent on the < z > offset of the beam. Figure 7.77 shows the
dependence of < z > offset on 7/o where r/o is from Equation 7.10. <£2t
‘refers to particles in the range 0 < r/o < 1. <222 refers to particles in the -
range 1 < r/o < 2. <8 re[e;s to particles in the range 2 < r/o < 3. The
fluctuation levels increase in magnit-ude with /0. So large amplitude particles
have < z > motions which are about an order of magnitude higher than those
at small amplitudes. This difference in < z > with r/o would explain the

higher diffusion coefficients in the tails of the distribution. The reason for this

larger beam offset is still under investigation.

v
J

The leveling off in the diffusion is produced in the §f code when the
beam strength is increased. When the tune shift is increased from Avy = 2.1 X
10‘:.3 to Avg = 8.4 x 1073, the resulting motion of the beam about the original
beam center increases by approximately an order of magnitude (Figure 7.78).
The diffusion coefficients D, calculated for Avg = 2.1 X 1072 and Ay = 8.4 X
1073 are shown in Figu;e 7.79. It is evident from the figure that the diffusion

increases for the small amplitude particles (r/c < 2) when Ay is increased to
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Figure 7.74: A comparison of tracking code with input < z > and theory
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8.4 x 1073, The net effect is uniform diffusion across the beam in this case.

The resulting diffusion is similar to that of beam offset diffusion [58].

This same behavior is seen in the strong-strong simulations. Fig-
ure 7.80 shows the diffusion coeflicients calculated for the PIC and the 6f
codes. The leveling off in the diffusion is seen for the PIC code and not the § f
code. The §f code for M = 10240 rotations still shows oscillatory behavior for

all values of r/o.

It appears as if the fluctuation level of the simulation determines
whether the diffusion due to the presence of nonvanishing < z > suggested by
Stupakov [58] dominates the particle diffusion. In the cases where the fluctua-
tion level is high either from the strength of the kick Avg or from simulation
noise the < & > type of diffusion dominates. This behavior in the diffusion
may be viewed as a process similar to the breaking-up of KAM tori [59]. For
low fluctuation levels where the tune shift is small and the noise level is low,
the phase space may contain many stable regions surrounded by regions of
stochasticity. As the fluctuation level is increased, the stable regions disappear
and the whole phase space becomes stochastic. When this occurs, the diffusion
of the particles becomes nearly uniform across the phase space, as observed in

the simulations with high Av, and high noise levels.
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Figure 7.80: D, from PIC and 6§ f codes of the beam with Avp = 2.1 x 1072 for
M = 10240 rotations. dfl and df2 have time scales of 102 and 1024 rotations
respectively.




Chapter 8

Conclusions

In this chapter we discuss the results and their relevance of our inves-
tigations of the beam-beam interaction to modern circular accelerators. Also
we present future improvements which can be made to the currently developed

numerical tools.

8.1 Summary of Results .

We have examined the effects of collective interactions between coun-
terstreaming proton beams via various simulation techniques. Two types of
code have been developed to study the effects of the filamentation instability:
an eleciromagnetic PIC code and a Vlasov code. Three types of code have been
developed in increasing sophistication to study the beam-beam interaction : (1)

a tracking code, (2) a strong-strong code, and (3) a §f code.

8.1.1 Filamentation Instability .

Fair agreement is found between linear theory of the filamentation
instability [64] and the electromagnetic PIC code for beams with width w,
greater than A. the collisionless skin depth. The filament sizes correspond
approximately to a collisionless skin depth A. and the measured growth rate is

close the maximum growth rate. It is found that the filamentation instability

205
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is not suppressed by having the counterstreaming beams small in width in

comparison with the collisionless skin depth of the beam A.. -

In the Vlasov code two counterstreaming electron beams are also
found unstable to the filamentation instability. The maximum growth rate
Tmos/ws = 0.4 is close to the theoretical maximum filamentation growth rate.
As the beam evolves, it begins to spread in z. The filament sizes are between
approximately 0.5); and A.. The code is timed for various problem sizes and
performance is about 2.3 times faster than the Cray YMP. However, the dis-
tribution function becomes negative from truncation error. This an inherent

drawback with the Vlasov simulation technique.

From theses results it is apparent that the filamentation instability
will have much more of an effect for electron-electron or electron-positron syn-
chrotrons. The fraction of the growth time is higher than in hadron machines

such as the SSC.

8.1.2 Collective Beam-Beam Effects

Among the codes developed, the strong-strong and § f codes are best
suited for studying beam-beam collective effects. The electromagnetic PIC code
requires too many time steps to cover one interaction time and the tracking
code does not show beam collective motions. The strong-strong code’s main
drawback is the amount of fluctuation noise produced by the finite number of
particles used. This noise may be reduced by initializing the particles using
the quiet start [5]. Also; although the §f code is much quieter than the strong-
strong code, it is better suited for studying the beam-beam interaction away

from resonances.
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In the strong-strong simulations using the reference parameters of
the SSC oscillations in Av are observed. The oscillations indicate expansion
and contraction of the beams. The beam expansion and contraction varies
with different particle positions. The small amplitude portion of the beam
is increasing in oscillation amplitude while the entire beam is decreasing in
oscillation amplitude. The odd moments of the beam, < ¢ > and < (z— <
z >)® >, are increasing in oscillation amplitude with rotation number. The
amplitudes of the even moments, < (z— < 2 >)? > and < (z— < z >)* >,
both decrease with the number of rotations. The phenomena of the “flip-flop”
effect [34], where one beam is decreasing in phase space area and the other
beam is increasing, is observed in our simulations. It is found to be sensitive

to the initial conditions.

Differences between the nonuniform charge and uniform charge initial-
izations are found: The beam distribution from the uniform charge initializa-
tion is smoother than the distribution from the nonuniform charge distribution
at the beginning and end of the simulation. The oscillations in Av indicate that
the expansion and contraction of the beam with uniform charge initialization
is smaller than the nonuniform charge initialization. Owverall the fluctuation
levels in the uniform charge initialization are smaller than in the nonuniform

charge initialization.

The simulations based on the §f algorithm show the lowest fluctu-
ation levels of all the codes except the tracking code. However, the tracking
code does not include internal dynamics of the beam. After 105 rotations the
two main approximations of the §f code are still valid. The deviation from

the initial Gaussian distribution is still small. The maximum perturbations to
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the Gaussian background is only 0.1% of the background distribution. Also,
the constant phase space density assumption remains to be a good approxima-
tion. After 105 rotations in the §f code the simulation particles are no longer
uniformly distributed in (z/0%,ps/0p) space. However, clumping of particles is
not significant. In the simulations using the reference SSC parameters t.he am-
plitude of the variation in Av for small amplitude particles is approximately
4+3% of Avp throughout the run. As observed in the strong-strong simula-
tions, the beams are expanding and contracting differently at different particle
positions. The small amplitude portion of the beam is constant oscillation am-
plitude, while the entire beam is increasing in oscillation amplitude. The odd
moments, < z > and < (z— < z >)*® >, are both increasing in oscillation

amplitude with rotation number. This increase in the odd moments is also

observed in the strong-strong simulations.

8.1.3 Stability in the Tune versus Tune shift space

Scans in parameters tune and tune shift, vy and Avp, show regions of
stability and instability against the beam blowup. These regions correspond
closely to the regions predicted by the linear theory of Chao and Ruth [12],
For small values of the tune shift Avy the beams are unstable just above a
resonance. For beams with values of vy just below a resonance the the beams
are stable. Strong resonant beam blowup is observed just above v = 1/2 and
vo = 1/4 for values of Ayy = 2.1 x 1073, Just below these tune values the
beams are stable, as expected. However, each of the beams show dominant
modes distorting the beams in in (z/0s,ps/0p) space. For vy = 1/2 — Awp

mode 2 dominates and for vy = 1/4 — Avy mode 4 dominates. It is also found
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that the rate of beam blowup above the resonance drops with the order of the
resonance. With vy = 1/2 + Ay, the beams blow up very quickly within a
few hundred rotations. The beams blow up more slowly for v = 1/4 + Auw.
The slowest beam blowup is observed for v = vy + Avg, where in the case of
two beams vy = 2/6 and Avy = 4 x 103, In this case mode 6 dominates the

distribution.

8.1.4 Particle Diffusion

In studying particle diffusion away from resonances it is found that
the tracking code shows no diffusion of particles from the beam-beam interac-
tion over 10° rotations. The strong-strong codes are too noisy to study process
of diffusion of beam particles due to the beam-beam interaction. With variable
charge initialization all particles show diffusive behavior, after 10240 rotations.
The diffusion differs substantially from the tracking code. The diffusion coeffi-
cient D, is uniform across the beam radius and is nearly an order of magnitude

higher. With uniform charge initialization where the fluctuation noise is lower,

only particles with large /o, where r/o = \/(rz;/cr,,.)2 + (pz/0p)? are diffusive
after 10240 rotations. Results from noisy tracking codes modelling the finite
particle fluctuation noise indicate that some of the diffusion can be attributed
to this noise. This noise can be somewhat offset by using quieter particle ini-
tialization schemes such as the uniform charge scheme. However, there are still
significant differences from the tracking code. Although the strong-strong code
should show differences from the tracking code because of the self consistent so-
lution of the fields, it is difficult to determine whether the differences observed

are due to particle fluctuation noise alone. However, it is apparent that the
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enhanced diffusion observed in the tails of the distribution for the strong-strong

code is due to the self consistent treatment of the beam dynamics.

The § f code which has the lowest fluctuation level shows no particle
diffusion up to 10240 rotations agreeing with the tracking code. The noise level
of the 6f code is less tl;a,n the sirong-strong code with either the variable or
uniform charge distribution. However, particle diffusion is observed after 40960
rotations for particles with large values of r/o > 2. It appears that the particles
in the tail of the distribution a,re‘most sensitive to either noise or collective

_motion in the beams. Variation of the §f particle number indicates that this
diffusion in the tails is not due to particle noise. All particles are diffusive after
10° rotations. The magnitude of the diffusion is found to increase exponentiéliy
with the action J where J = (z/0z)? + (pz/0p)?. This exponential dependence
is found to be independent of the number of particles used in the § f simulations.

It appears, therefore, that collective beam effects are responsible.

Stochastic regions in phase space are found using the §f code by
running the code forwards and backwards in time. They are found for particles
with 7/o small and /o large. Between the two regions there is a thin ring
where the particles may not be cha.otic. Due to limited resolution the ring may

consist of islands separated by stochastic regions.

8.1.5 Beam Offset Effects

In examining the effects of beam offset on diffusion, good agreement
is found between analytic theory [58] and the tracking code. This is expected,
since the tracking code is based on the “weak-strong” assumption as is the

theory. Results from the § f simulations show general agreement with the range
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of values for the diffusion. The §f code is started with 0 offset and allowed to
evolve self-consistently for M = 10° turns. The values of the diffusion in action
are within the range of the analytic prediction. However, the § f results show
an exponential dependence on the action J for large values of J whereas the
theory shows the diffusion leveling off. The approximate value for the diffusion
from the change in luminosity is lower than the diffusion for most of the‘sa.mple
particles in the §f code. Tracking code results with < z > input from the §f
also do not show the same functional dependence on J as the §f code. The
values for the diffusion, however, are within the same range. The exponential
dependence on the action J is still under investigation. Analysis of the Var'ia,tion
of the beam offset with increasing r/o or equivalently v/J shows that the offset
< z > increases. It is apparent that because of the non-rigid character of the
beam that particles at large J have much larger offsets than particles at small
J. This variation of the offset with J explains the variation of the diffusion
coeflicients with J. The behavior is most likely due to the self-consistent effects
included in the § f code which are still under investigation. The leveling-off in
the diffusion is observed in the §f simulation when the beam strength Auvj is
increased. The increase in Avg leads to the increased beam offset < z >. It
appears that when this beam offset is large enough, the resulting diffusion is
dominated by beam offset diffusion [58]. This leveling-off in the diffusion is
also seen for the strong-strong code. It appears as if the fluctuation level of
the simulation determines whether the diffusion due to the presence of < z >
offset suggested by Stupakov [58] dominates the process of particle diffusion.
This behavior in the diffusion is similar to the breaking-up of KAM tori [59].
For low fluctuation levels where the tune shift is small and the noise level is

low, the phase space may contain many stable regions surrounded by regions of
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stochasticity. As the fluctuation level is increased, the stable regions disappear
and the whole phase space may become stochastic. When this occurs, the
diffusion of particles is nearly uniform across the phase space as observed in

the simulations with high Avy and high noise levels.

8.2 Future Improvements

In this section we discuss possible future improvements which can be

made to the codes and future areas of study.

One obvious improvement to the code is extension to z—y and z—y—=z

dimensions. This extension is straightforward.

Improvements can be made to the simple storage ring model we em-

- ployed. Some of the effects which can be included in t.he lattice traversal are
[43): | ‘
o betatron damping
. synchrotroﬁ motion
e non-zero chromaticity
o longitudinal displacement
e (3* variation along the length of the interaction point
. eﬁe:gy loss and phase change between interaction points

e quantum excitation.
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As shown in earlier chapters, the perturbation equation for the §f
advance was linear in §f ( Equation 6.108 ). The term which is neglected is

Equation 6.109:

asf

oz'’

§F(z,s) (8.1)

which was assumed to be small. This term, however, can be incorporated in

the 6 f advance by placing it in the stationary Equation 6.100:

Oy . B0 g penalfo
Ba +z 52 (K(s) — Fo(s))z 5 0 (8.2)
in the following manner:
O , 0 05y _ 25/
3 T (K(s) — Fo(s))z 9 < 0F(z,s) 50 (8.3)

where <> refers to time average. The incorporation of this term in the station-
ary Equation 6.100 forces the numerical advance now of fo(z,z’,s). However,
fo(z, ', s) is slowly varying as long as it is away from resonances, so that the
equation would need to be advanced only every few thousand rotations. The
term in Equation 8.1 is similar to the quasi-linear term used in plasma physics
[28].

Another improvement which can be made includes a higher order
method of integration of the particle positions. Higher order integration may
be accomplished using the method of symplectic integration algorithms [54] or

Lie algrebraic techniques [22].

Also a possibility exists of applying the technique of differential alge-
bra [4] to the 6 algorithm. In this technique the §f method could be treated

as a mapping function which could be applied to any points in phase space.
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Another approach to the §f method would involve using the Vlasov
approach (Eulerian method). The main problem with the Vlasov technique
has been that the distribution functions go negative due to truncation errors.
However, in the §f technique the main part of the distribution is already de-

termined and the perturbation can go negative without causing problems.

One of the topics Qf future study for the beam-beam interaction would
be the determination of the mechanism for the exponential dependence in action
J observed in the diffusion of the particles. A theory which includes self-
consistent treatment of the interaction would be a next step. Other areas of
investigation would include investigation of betatron resonance, applications
to other machines such as HERA or LHC, and the effects of cpllisionv angle on

beam dynamics.
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