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Abstract

Numerical solutions of the nonlinear, resistive magnetohydrodynamic (MHD) equa-
tions are used to study the evolution of a perturbed or stressed z-type neutral point.
By performing individual simulations for both compressible and incompressible plas-
mas, we are able to demonstrate that the important physics for this problem involves
just the interaction between the plasma flow velocity and the magnetic field and that
the thermodynamics has a relatively passive effect. We have also done separate sim-
ulations for both solid, conducting wall boundary conditions at a fixed distance from
the z-point and for open boundary conditions that adjust as required by the evolving
solution within the boundaries. With solid, conducting wall boundary conditions, our
solutions for azimuthally symmetric disturbances agree (for essentially linear perturba-
tions) with those obtained in previous analytic linear studies. In this case the stressed
z-point relaxes back to the unstressed state on a time scale somewhat shorter than the

time scale for the linear resistive tearing mode. Perturbations that are not azimuthally
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symmetric can relax even faster than the symmetric modes. When the conditions at
the boundary are free to adjust, the disturbances grow in amplitude on an Alfvén time
scale with the eventual formation of a current sheet separating two y-points. This
rapid growing behavior is, of course, in sharp contrast to the relatively slow decaying
solutions obtained with closed boundaries. The growing solutions qualitatively agree
with previous analytic z-point solutions that have been suggested as an explanation

for the rapid energy conversion in flares and substorms.
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I. Introduction

Localized regions within a plasma with an imbedded maénetic field containing points or
lines at which the magnetic field strength vanishes have lbng been recognized as having-
important and unique topographical features. In a plasma for which the physical variables
do not change in one dimension (the ignorable coordinate), one such region is the z-type
neutral point (also referred to here as an z-point or neutral point), which becomes a neutral
line along the ignorable coordinate. The z-point is of particular interest in solar physics
since this may be the location of the rapid conversion of magnetic energy to other forms
of energy in solar flares, as suggested by Giovanelli [1947]. Dungey [1953] quantified the
suggestion by Giovanelli and showed that z-type neutral points were unstable and that a
small perturbation initiated a rapid increase in the current at the neutral point. Chapman
and Kendall [1963] used a more complete quantitative analysis than Dungey and were able
to show that the instability grew on a time scale comparable to an Alfvén crossing time. In
addition, for the Chapman and Kendall solution the z-point eventually changed to a current
sheet with y-points at the ends. Syrovatsky [1966] later included this instability mechanism
and the current sheet formation in a solar flare model. As the above references indicate,
much of the early interest in perturbed z-type neutral points concentrated on the growing
solutions and the potential application to explosive phenomena such as flares and auroral
discharges [Akasofu and Chapman, 1961]. A

More recently, there has been some effort to examine solutions for perturbed z-type neu-
tral points that do not grow in time but rather decay back to the unperturbed configuration
[Craig and McClymont, 1991; Hassam, 1991; Craig and Watson, 1992]. A primary interest in
these studies has been to demonstrate that reconnection at the neutral point occurs at a rate

faster than either the classical reconnection rate for the tearing instability [Furth, Killeen,



and Rosenbluth, 1973] or the slightly faster rate predicted by Sweet [1958] and Parker [1963].
An important difference between these decaying solutions and the above growing solutions
is the form of the outer boundary conditions at some fixed distance from the z-point. The
perturbed magnetic flux must vanish at a solid, conducting wall surrounding the neutral
point for the decaying solutions, while it must be allowed to adjust as required by condi-
tions within the boundary for the growing solutions. In addition, for the two-dimensional
cylindrical geometry often used in studies of the decaying solutions, the perturbed magnetic
flux must depend only on radial distance from the neutral point in order to obtain the fast
reconnection.

In the present study we numerically solve the two-dimensional, nonlinear, dissipative mag-
netohydrodynamic (MHD) equations for both a compressible and an incompressible plasma.
We consider both the solid, conducting wall boundary conditions used in previous decaying
solution studies as well as open or free boundary conditions for the growing solutions. We
begin with solid, conducting wall boundary conditions, which should be applicable to fu-
sion devices and laboratory plasmas, and simulate the relaxation of a perturbed or stressed
z-point back to the initial potential state and show that our results are in quantitative agree-
ment with those from earlier studies. When the boundaries are allowed to be open, which
should have application to more general space plasmas and to flares and auroral discharges,
the perturbation grows at a rate comparable to a relevant Alfvén time scale and the z-point
evolves into a current sheet as predicted in the more approximate studies indicated above.

Our objectives are twofold. First of all, by applying both incompressible and compress-
ible theory to the same problem, we are able to demonstrate, for this application, that the
important physics lies not in the plasma thermodynamic properties but rather in the cou-
pling between the inertial and magnetic (including resistivity effects) terms. Secondly, by
using the same numerical codes with different outer boundary conditions, we show the dra-

matic influence the boundary conditions can have on the computed solutions; i.e., decaying



solutions with solid, conducting walls and growing solutions when the plasma motion and

magnetic field are not restricted at the outer boundary.

II. MHD Equations and Numerical Solution

We make the usual assumption that MHD adequately describes the essential physics in this
problem. By further assuming that the plasma resistivity is constant and isotropic and that
gravitational and viscous effects are negligible, the compressible equations can be written in

nondimensional form as follows:

dp B
5 TV (u)=0, - (1a)
du—— 13 -
pE——§Vp+(V><B)><B, ~(1b)
8B l ThE
S =Vx(uxB)-gVx(VxB), (1)

TR
where d/dt indicates the convective derivative. The phyéical quantities are the density p,
the velocity u, the magnetic field B, and the thermal pressure p. The specific heat ratio is
represented by v, which is taken here to be 5/3. The equations have been put in dimensionless
form by normalizing time to a relevant Alfvén time 7, = a(47po)/?/ By, distance to the
_quantity a, which is a representative scale length for changes in the magnetic field, velocity
to a/7,, thermodynamic quantities to their initial, uniform values (p, and p,), and magnetic
field strength to the average value over the outer boundary B,. The two parameters are
the plasma beta (8 = 87p,/ B2, the ratio of thermal pressure to magnetic pressure) and the
Lundquist number (S = 7,/7,, the ratio of the resistive diffusion time to the Alfvén time).
The resistive diffusion time is defined as 7, = 4mwa?/c?n, Where c is the light speed and 7 is
the plasma resistivity. We further make the aséumption that the initial equilibrium magnetic

field is maintained by an external magnetic field so it is not dissipated resistively.
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The two-dimensional (2-D) incompressible MHD equations are obtained by writing the
magnetic field in terms of a stream function using B = Vi x e, and the velocity in terms
of a flux function u = V¢ x e,, where e, is the unit vector in the ignorable direction z in
a Cartesian coordinate system. By then taking the curl of the momentum equation (1b) to
eliminate the thermal pressure p and setting the constant density to unity, the equations can

be written as:

o0 _ 06 (06, )\, 06 (% Y L
Bt dy (ax+“’>+ax (8y ) 57 (22)
Ow 090w  0¢ 0w o 0J o 0J
wnerrnt (G )e- (3 E %)
where J = —V1? is the z-component of the current density, w = —V¢? is the z-component

of the vorticity, and V2 = §?/0z% + 8% /9y* with 9/0z = 0. Note that the dimensionless pa-
rameter 8 does not enter into the incompressible equations. The thermodynamics uncouples
from the evolution of the plasma velocity and the magnetic field with this approximation.

The compressible equations are solved numerically using an explicit finite differencing
scheme of the Lax-Wendroff type [Rubin and Burstein, 1967] with a smoothing term sug-
gested by Lapidus [1967]. The equations are solved in the rf plane of a cylindrical coordinate
system with a computational domain limited by 0 < r < r,,,0 < 8 < w/2. All physical quan-
tities are either symmetric or antisymmetric at the § = 0 and § = 7/2 boundaries. The outer
boundary conditions at r = 1 will be discussed separately for each of the two studies in the
following sections. The incompressible equations are solved numerically using an alternating-
direction implicit method as discussed further by Steinolfson and van Hoven [1984]. These
equations are solved in the z,y-plane of a Cartesian geometry with a computational domain
limited by =z, < ¢ < Ty, —Ym < ¥ < Ym. As for the compressible case, the outer boundary
conditions will be discussed in the following sections.

The equilibrium potential magnetic field for the compressible study is B, = r(sin 20e, +

cos 20ep). The initial equilibrium magnetic flux for the incompressible study can be written



as ¥, = z% — y?, in which case the equilibrium potential magnetic field components are
B, = =2y and By, = —2z. The initial magnetic field for both cases contains an z-point,
as shown for Cartesian geometry in Fig. 1. The perturbation magnetic fields used in the

separate studies will be discussed later.

ITI. Decaying Solutions: Reconnection at the X-Point

Hassam [1991] and Craig and McClymont [1991] investigated the behavior of perturbed
z-points using linearized, compressible MHD with the low-beta approximation so thermal
pressure gradients could be neglected. More importantly, in terms of the types of solutions
they obtained, they assumed that the plasma was confined within solid, conducting walls.
They solved the equations in the 7,8 plane of a cylindrical coordinate system and silowed
that they can be reduced to a single, second-order partial differential equation for the per-
turbed magnetic flux function. Separation of variables, with an assumed time and angular
dependence given by exp(At 4+ tm#8), is used to reduce the equation to an ordinary differen-
tial equation in 7. It is then argued that only the m = 0 (azimuthally symmetric) modes
involve reconnection at the z-point, and therefore, the analysis is limited to the m = 0
modes. For these modes the approximate expressions for the oscillation and decay times of
the fundamental radial mode (n = 0, the radial mode with longest wavelength) are derived
as:

Tosc =~ 2IlnS ) Tdec ~ 2(11‘1 S)Z/WZ : (3)

Ofman [1992] has taken the above analysis one step further and has derived the general
linear solution valid for any radial and azimuthal mode. His solution for the m = n =0
mode is given by the solid curve in Fig. 2, and the above approximate solution is given by
the dashed liné. As a check on the nonlinear incompressible code, the decay rate for small

perturbations was computed for 102 < § < 4 x 104, and the results are compared with the



analytic solutions in the figure. The perturbed magnetic flux function for this simulation is
given by:

Y1 = Ai(z}, — 2*)(vm — y*) exp(-5(z" + y%)) (4)
with A; = 1072. The initial perturbation was selected to have approximate azimuthal
symmetry (m = 0) near the origin, to vanish at the edges of the box (z, =y, = 1), and
to decrease monotonically with distance from the origin (n = 0). Since the computational
box is square, the disturbance will always have some azimuthal dependence at least near the
edges of the box. Both the magnetic flux function 3 and the stream function m are required
to remain zero at the outer boundaries.

The relaxation of the perturbed z-point for the S = 10? case in Fig. 2 is shown in Figs. 3-
5. The temporal decay and oscillation of the perturbed magnetic energy in the z-component
of the field (curve A), the perturbed magnetic energy in the y-component of the field (curve
B) and the total (magnetic plus kinetic, curve C) energies are given in Fig. 3. These energies
are computed by integrating over the entire region. The variation of the magnetic flux at
the origin [¢(0,0,t)] is shown in Fig. 4. As discussed earlier, the magnetic field reconnects
whenever 1(0,0,t) # 0. This reconnection of the field when (0,0,t) # 0 can be seen from
plots of the magnetic field lines at three times during the oscillating decay in Fig. 5. The
results in Fig. 5(a) are at the first minimum of ¥(0,0,¢) at ¢t = 7, those in Fig. 5(b) are at
the second zero of ¥(0,0,t) at ¢t = 12, and those in Fig. 5(c) are at the following maximum
of 1(0,0,t) at t &~ 16. The reconnection oscillates between the field lines to the left and right
of the z-point (at the center of the figure) and the field lines above and below the z-point. In
Fig. 5(b) the magnetic flux function vanishes at the origin, there is very little reconnection,
and the magnetic configuration is nearly force-free. The oscillations are damped by the
resistive reconnection, and the final state is the force-free z-point configuration given by %,.

The decay and oscillation times computed with the compressible code also agree with the

analytic results given above. The m = 0 perturbation (defined in terms of the magnetic flux

8



function) used in this case is By = A.sinnr for 0 < r < 1, and the results in Fig. 6 are for
A, =107% and S = 10*. The outer boundary is located at r = 1 where the boundary condi-
tions are such that the thermodynamic quantities remain fixed at their initial values, the flow
is parallel to the boundary, and the component of the magnetic field parallel to the boundary
remains fixed. The quantity shown in the figure is the perturbed component of the magnetic
field at § = /2, which is calculated as ABy = [By(r;,m/2,t) — By(ri, 7/2,0)]/Be(ri,7/2,0)
where r; = 0.02,0.04,0.06,0.08,0.10 (curves A-E, respectively). The minor phase differences
at the various radii are due to nonlinear effects and can be made arbitrarily small by reducing

the magnitude of the initiating perturbation (reduce A,).

IV. Growing Solutions: Current Sheet Formation

The boundary conditions at the outer boundary are now changed so that this boundary is
open or free, as opposed to the closed boundary considefed in the previous section. Another"
way to view the present boundary conditions is that they are now able to adjust to changes
occuring within the region of interest rather than being fixed by some external means. The
boundary values are computed by setting the perturbed value of each physical quantity at
the boundary equal to the respective value at the grid point next to the boundary (zero-order
extrapolation).

The results shown in Fig. 7 after the solution has evolved for 5.3 Alfvén times are obtained
from the incompressible code using the same initial perturbation as used in the above section.
The transition to the sheet current seen in the plot of the contours of in Fig. 7(a) occurs
approximately on an Alfvén time scale. The formation of the sheet current involves large flow
vortices as shown in the contour plots of the velocity potential in Fig. 7(b). The flow velocity
is parallel to the contours with the dashed-line contours representing clockwise rotation and
the solid-line contours indicating counter-clockwise rotation.

The formation of a current sheet in the compressible simlation is seen in the results



presented in Figs. 8-10. The calculation extends out to r = 2, although the perturbation is
the same as used in the previous section for the compressible solution (with A, = 0.05) and
only exists out to r = 1. The reason for extending the computation beyond the perturbation
will be discussed later. The symmetries (or anti-symmetries) at § = 7 /2 (the vertical axis
at the center of the panels in Figs. 8 and 9) were used so the solution could be shown for
0 < 8 < 7. The magnetic field lines and velocity vectors are shown at the same three times
in Figs. 8 and 9. The formation of the current sheet can be seen clearly in Fig. 8(b). The
center of the sheet eventually becomes a magnetic island [Fig. 8(c)] separating two z-points
that propagate radially away from each other. The velocity vectors have the same general
pattern at all times in Fig. 9 although the maximum velocity increases by almost two orders
of magnitude between the times used for the top and bottom panels.

The temporal behavior of the radial components of the perturbed magnetic field and the
velocity at several radial locations (r; = 0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0 for curves A-
J) along a line at # = 10° is given in Fig. 10. These curves illustrate a couple of points. First
of all, the large increase in the radial field begins near the original z-point location (r = 0)
and propagates outward. Note also that the radial component peaks and then decreases as
the island forms. Also, the radial velocity increases to a larger maximum before decreasing
as the z-points travel outward since the reconnection then occurs in a stronger magnetic
field region, since the initial magnetic field increases with radius.

As mentioned above, the computation extends one unit in radius beyond the maximum
of the initial perturbation. If the calculation did only go out to r = 1, the results are
almost identical to those shown here with the difference that the eruptive phase begins just
a little earlier. The reason the eruption then begins earlier is that, after the transients from
the initial perturbation decay away, the solution (primarily the velocity) must evolve into a
particular pattern throughout the entire simulation region before the eruption begins. The

initial transients can be seen at early times in the temporal plots in Fig. 10. The time to
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set up this special initial state for the eruptive behavior naturally increases as the size of
the numerical box increases. It now becomes easy to understand why the growing solutions
do not develop when the radial velocity is forced to be zero at the outer boundary since the
necessary initial state cannot be established.

It is important to realize that these growing solutions develop from physical conditions
in the vicinity of the initial z-point. They are not a result of doing something special at
the outer boundaries like pushing the field lines together or imposing an electric field. All
that is required at the outer boundaries is that they be open so an appropriate state (after
the transients due to the initial perturbation vanish) can be established. Once the eruption
begins it continues to grow explosively with the z-points traveling outward into regions of

stronger magnetic fields.

i

V. Summary

The evolution of perturbed z-type neutral points has been studied using numerical solutions
of both compressible and incompressible nonlinear MHD equations and for two distinctly
different sets of outer boundary conditions. The qualitatively similar results obtained with
the compressible and incompressible simulations demonstrates that the thermodynamics
does not play a significant role in the evolution of z-points. When the boundary consists
of a solid, conducting wall, the perturbed z-point relaxes back to the unstressed state on
a time scale proportional to the resistivity. The decay time scale computed here for small
perturbations agrees with earlier analytic linear studies and is somewhat faster than the
time scale for reconnection in the resistive tearing instability. When the boundary is open,
so conditions at the boundary can adjust tao the evolution near the z-point, the perturbation
grows in amplitude on an Alfvén time scale. The initial z-point evolves into a current sheet

separating y-points at the ends of the sheet. The y-points propagate away from each other

into regions of increasing magnetic field strength.
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Figure Captions

; L

The equilibrium magnetic field configuration containing an z-point. These are contour

lines of the magnetic flux function ¥, defined in the text.

The dependence of the decay time with S for the m = n = 0 mode. The dispersion
relation is from Ofman [1992], the dashed curve is for 74 in Eq. (3), and the boxes

indicate results from the numerical computation.

The relaxation of the perturbed energies integrated over the numerical box for a dis-
turbed z-point. The curves represent the z- and y-components of the magnetic energy

(curves A and B) and the total energy (curve C).
The temporal variation of the magnetic flux at the z-point [(0,0,t)].

Magnetic field lines at various times during the oscillating decay. The field lines in (a)
are at the first minimum in %(0,0,t) in Fig. 4, those in (b) are at the second zero in

¥(0,0,t), and those in (c) are at the time of the following maximum in (0,0, ?).

The temporal decay of the perturbed component of the azimuthal magnetic field at § =

7/2 and at several radial locations r; near the z-point (r; = 0.02, 0.04, 0.06, 0.08,0.10).

The development of a sheet in the incompressible MHD model. The magnetic field lines
(contours of ¢) are shown in (a) and contours of the stream function (¢) are shown in
(b). The flow velocity is parallel to the indicated ¢ contours with the dashed contours
representing clockwise rotation and the solid contours representing counter-clockwise

rotation.

Line segments drawn parallel to the magnetic field lines. The beginning and end of

the lines are selected internally by the plot package, and consequently, the fact that
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10.

the lines end suddenly does not imply the sudden appearance of disappearance of a
magnetic field line. The solution in this and the following figure is symmetric about
the lower axis in each panel and is shown at times of 5.47,,8.87,, and 9.97, from top

to bottom.

Velocity vectors for the solution shown in Fig. 8. The length of the velocity vectors at
each time is scaled to the maximum speed throughout the grid, which is indicated by

the given value of V.

The time variation of the radial components of the magnetic field and velocity at

# = 10° and at several radial locations spaced evenly between r = 0.2 and r = 2.0.
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