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Abstract

The turbulence-induced ion banana polarization current associated with steep ion
temperature gradients is explored as a possible mechanism for generating poloidal mo-
mentum at the tokamak edge. In the light of a recently developed two-dimensional
turbulence theory, one can obtain a simple closed expression relating this current (de-
termined by turbulence levels) to the derivatives of the poloidal rotation speed. A
self-consistent system, then, emerges, if we balance the turbulence-induced poloidal
momentum with that dissipated by viscosity. Under suitable conditions this system
may show a bifurcation controlled by a parameter dependent on temperature gradients.
Both the bifurcation point, and the shear layer width are predicted for a prescribed flow
in terms of a scale characterizing the nonlinearity of viscosity. The crucial relevance of

the flow parity with the turbulence scenario is analyzed. .



The physics of L-H transitions! is one of the most important and interesting topics of
current fusion research. It is one of those topics where theoretical challenges and practical
importance are all tied together. The transition itself is characterized by a sudden increase
in poloidal rotation near the plasma edge, immediately followed by a rapid suppression of
turbulence, resulting in a significant improvement in the local confinement.?~® To understand
the nature of L-H transitions, one seeks answers to questions in two broad catagories: (1)
the turbulence suppression due to an increase in the poloidal shear flow,>~ ana (2) mech-
anism(s) for the generation of the required flow.%1112:15-19 There have been some efforts to
formulate a unified, self-consistent theory, which could explain simultaneously the improved
confinement, and the flow generation. At this stage, however, we are far from a satisfactory
understanding, in particular of the mechanism(s) for the generation of shear flow. It is the
purpose of this Letter to examine a possible physical mechanism, and to discuss the prop-
erties of a self-consistent bifurcation system with a built-in suppression of turbulence due
to the shear flow, which, in turn, was generated by the turbulence. More specifically, our
model is constructed on the basis of the poloidal momentum balance expressed in terms of
radial currents. The radial current generated by turbulence is proportional to the turbu-
lence level, with a coefficient associated with and dependent on the plasma equilibrium (the
so-called control parameter of bifurcation). Therefore, it is not surprising that even though
the turbulence levels are suppressed by the shear flow, the radial current can still be large,
because of the large control parameter as well as due to the nonlinearity of the dissipation
that yields a counter-radial current to balance the driving one.

We would like to state that in the cold ion limit, a turbulence-based mechanism for the
generation of the radial current already exists in the literature;2>17 the current is related to
the net energy flow in the radial direction. For the weakly dissipative drift waves, for instance,

the dominance of the ion sound effect makes the wave energy flow in either direction away



from the rational surface, i.e., in the radia}ly inward as well as the radially outward direction.
In the region between two rational surfaces, the energy flow contributed by the two modes
is in opposite directions. It is clear that due to this “pairing,”?! a strong reduction in the
net radial flow should take place. This reduction is easily measured by the ratio of the
microscopic scale length characteristic of the individual modes ~ p,, the ion Larmor radius
at the electron temperature, to the overall macroscopic scale length associated with the
variation in the wave amplitude. The phenomenon is analogous to the diamagnetic drift
being a fraction p/L of the thermal speed, where p is the Larmor radius, and L is t}-le
equilibrium gradient 1ength.

For the dissipative drift waves?”~** (where the ion sound effect is not important), and
also for other modes associated with strong dissipation such as the rippling mode? and
the resistive interchange mode,*® the wave energy is “locked” around the rational surface
because these modes are esséntially standing waves. Thus, the mechanisms relying on the
radial energy flow cease to be effective for generating a radial current in the cold ion limit.
In this case the turbulence-induced radial current could originate from the warm ion inertia
[(Tip; - Viig), where {ip, is the fluctuating ion diamagnetic flow, iig is the fluctuating E x B
flow, and (...) is the ensemble average on turbulence]. In slab geometry, the calculation
(neglecting ion temperature fluctuation) is very similar to that for the “quasilinear” particle

flux, and the calculated current turns out to be
4 dr " ( " dr T, ) ’ ( )

where I’ is the turbulence-induced particle flux, S is the particle source (= dI',/dr), e is the
electron charge, p; is the ion Larmor radius, n is the plasma density, and T, is the electron
temperature.

From Eq. (1), and also from earlier cold ion calculations, it can be seen that schematically,
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the turbulence-induced radial current for either case can be written in the form:

p\?
Jr(pol) ~ el (Z) , (2)

where A is an appropriate macroscopic scale length (amongst those describing the radial
variation of equilibrium dénsity, temperatures and wave amplitude), and p can either be
pi or ps, depending upon which is more relevant to the physical process involved. Because
p/A < 1, this radial current, however, is found to be too small to balance the viscous
dissipation for generating experimentally observed poloidal rotation corresponding to the
parameters of L-H transition on tokamaks.

The turbulence-induced ion polarization current can be greatly enhanced by finite ion
banana width, if the turbulence correlation length along the field line is longer than the
banana length. In this work, we assume that the aforementioned condition is satisfied. As
a result, the Larmor radius p in Eq. (2) should be replaced by the “poloidal” Larmor radius

pis,2" as the edge ions enter into the banana regime. The enhanced current is thus written

as
o pio )

JPY o ee*T, (K’) : (3)

where €* is composed of the three small factors: (a) €1, the ratio of trapped particle density

to the total density, which is subject to be greatly reduced from its normal value /€ (e is
the inverse aspect ratio) by a large E x B flow, the so-called electrostatic detrapping,?® even
if the edge ions still remain in the banana regime, (b) €, the bootstrap diamagnetic effects
associated with the warm ions, which is essentially /€, and (c) €3, the ratio of wave radial
correlation length to the banana width, if the former were to be smaller than the latter,

otherwise ¢ < 1. The radial current given by Eq. (3) is proportional to the turbulence

intensity via I',. The appearance of a shear flow will modify the intensity by!®*
2\ _ <"P|2>o
<|9°| > =TT dolR (4)
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dr




where p is a number between 1 to 2, ¢ is the decorrelation time of the turbulence, (|¢]?),
is the turbulence intensity (the subscript 0 stands for the quantity without shear flow). The
turbulence-induced radial current drives a poloidal momentum with flow v, which in tﬁrn
induces a counter-radial currént through the agency of the viscosity . The requirement for

a net zero radial current then yields a differential equation for the poloidal velocity:

a —
1+ dv |+ —
dz

O], ()

| where @ [v] is a nonlinear function, approaching linear as v becomes small, and is character-

ized by a local maximum of ©[v] at v = v*. In Eq. (5), = is the radial coordinate normalized

to r, = v*t,, and o is a quantity determined by th¢ characteristics of the turbulence-induced
- drive and the dissipation due to viscosity. An example for ©[v] is provided by the kinetic
model of Shaing et al.,! fof which v* ~ av, and a and v are respectively the minor radius,
and the ion collision frequency. Making use of Eq. (3) and the neoclassical viscosity in the
small v limit, we obtain a = E*Fr,oping/ env* A2 where I',p is the radial particle flux with-
out shear flow (the local Low-mode radial flux), €" is the v—independent part of €*, and R
is the major radius.

For this first-order differential equation (even in m)? the choice of the boundary condition
at £ = 0 1s imposed by the parity of the flow. In this Letter we consider only the even parity
flows like those observed in DIII-D experiments,?®®° i.e., the double shear layer structures
with essentially symmetric flow around the peak. Wé choose the origin (z = 0) to be precisely

at the peak, i.e., |dv/dz|;=0 = 0. This choice implies
O[v(0)] = a, (6)

where v(0) is the peak of flow in the shear layer. In order that a solution of Eq. (6) may
exist for large a, ©[v] must have a second rising-stage (C — D sector of Fig. 1), which may |

arise either from the possible electrostatic detrapping, or from a real increase of viscosity at

)



large flow. In this Letter, without offering any derivation, we assume that ©[v] does indeed
have the qualitative form depicted in Fig. 1.

It can be readily shown that for those v(0)s corresponding to the positive d©/dv sector
[ A— B, C — D, the bold solid curve sector in Fig. 1], the solutions of Eq. (5) must have
a convex configuration, i.e., v(z) < v(0). In contrast, for those v(0)s within the negative
dO®/dv sector [B — C the thin solid curve sector in Fig. 1], the solutions show a concave
configuration, i.e., v(z) > v(0). The qualitative features of these two configurations for the
same « (< O[v*], labeled by v(0) = v_ and v, respectively) are illustrated in Fig. 2, where
the emphasis is on the distinction in topology. Both the local maximum and minimum [B
and C] are singular points. At these points, there are no acceptable solutions which may
satisfy the boundary condition, |dv/dz|,=0 = 0. In a sense, the discontinuity in topology
(from convex to concave and vice versa) forbids the system evolving continuously from one to
the other. As a result, the transition must take place, just as these singularities are reached.
For increasing c, the transition occurs at B [B — D], while for falling «, it must happen at
C [C — A], implying “hysterisis” in the system. For this reason, the concave configuration
of v(z) would not pertain in the normal machine operation.

The above discussion clearly yields the L—H bifurcation condition at a ~ 1. The solution
of Eq. (5) also yields a radial structure of shear flow (notice that the solution for the radial
structure is meaningful only for # < 1). Regardless of the details of the radial structure,
Eq. (5) implies that the width of physical shear layer is essentially measured by r,.

The system, in fact, also suggests a v*—model independent relation between the measured
quantities at the L—H transition. By substituing v* = r,/t into o ~ 1, we readily obtain

the condition for L—H transition:

AT‘S < E*tcorr’o -6_*

Rpig = EnA kA2’ ()

where k, is the averaged perpendicular wave number of the turbulence spectrum. It is



noticeable that in order for a to be sufficiently large, the edge ions should be either in, or
near the border of the banana regime. Further information can also be drawn, if a specified

*

nonlinear viscosity model is provided. For example, assuming a v™ ~ av,!! the shear layer

width becomes r, ~ at,ov, and Eq. (7) reduces to A%v/p; < €T, 0/e?n.

Finally, we would like to point out that the radial flow structure with odd parity is aiso
observed in tokamak experiments, e.g., in the experiments where the shear layer resides
outside the last closed magnetic surface.?! These flows have only one shear layer, in contrast
to the flows with even parity that possess a double shear layer. For the single layer flows,
the natural boundary condition at z = 0, v(0) = 0, will not be consistent (O[v(0) — 0] — 0)

with the poloidal momentum generation mechanism proposed in this Letter.
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Figure Captions

1. A plot of the model nonlinear ©[v] as a function of the poloidal velocity v for the L-H

transition described by the differential system, Eq. (5).

2. Qualitative radial structure of the concave (a) and the convex (b) configuration for the

same a (< ©[v*]), where vy are the two solutions of & = @[vs] (cf. Fig. 1).
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Fig. 1
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