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Abstract

A two-dimensional analysis of the toroidal Alfvén eigenmodes (TAE) is presented,
based on an integrodifferential equation describing the shear Alfvén perturbation of a
toroidal plasma equilibrium in terms of coupling among the toroidal Alfvén continua
with the usual gap structure. Using a method similar to the Van Kampen-Case analysis
for the Vlasov equation, we derive exact analytic expressions for the dispersion function
and the two-dimensional eigenmode structure. The dispersion function is expressed in
terms of Cauchy-type integrals, which explicitly expresses the global character of TAE
modes and facilitates the calculation of their damping. Tﬁe continuum-damped TAE
modes are shown to be, in general, not true eigenmodes of the toroidal plasma equilib-
rium, but rather resonances corresponding to zeros of the analytic continuation of the
dispersion function onto unphysica.l sheets of its Riemann surface. Approximate but
explicit expressions for .thve dispersion relation and the eigenfunction are also obtained

in the limit of vanishing inverse aspect ratio.

“)Permanent address: Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Prague,
Czech Republic




I Introduction

The confinement of high energy, fusion generated alpha particles is crucial for the making of
a successful fusion reactor. It has been suspected, for a while, that these energetic particles
with steep spatial gradients, and hence a considerable reservoir of free energy, could drive a
host of plasma’ instabilities, some of which could prove harmful to the highly desired alpha
particle confinement. Much attention h.a_s been recently focused on the interaction of the
| alpha particles with two kinds of Alfvénic motioné, the global Alfvén eigenmodes'—® (GAE)
and the toroidal Alfvén eigenmodes®=® (TAE), in particular the latter. It was earlier claimed
that the TAE could be driven violently unstable,® with rather unfortunate consequences.
Experiments with high energy beams performed on both TFTR® and DIII-D!! tokamaks,
however, indicate that the instability thresholds may be much larger than those preaicted
by these theories. The clear messa,gé was that a much more systematic and detailed cal-
culation of the intrinsic dampings of these modes (in the absence of alpha particles) was
called for. In order to meet this challenge, researchers have been investigating a variety of
mechanisms. With the exception of a recent paper,!? which has demonstrated the crucial im-
porta,m-:e of electron dynamics on toroidal Alfvén waves, most of the studies lwere conducted
within the framework of ideal magnetohydrodynamics (MHD). Two distinct theoretical ap-
proaches, based on the variational nature of the determining equations, have been déveloped
to calculate what is generally known as the TAE continuum damping.®'® Both of these
approaches for the continuum damping calculation are effectively one-dimensional, and are
valid for high mode numbers and a vanishingly small inverse aspect ratio. In order to go
beyond these limiting constraints, we have develéped a fully two-dimensional analytic theory
for the investigation of TAE modes. Instead of using the usual poloidal harmonic expansion,

we decompose the wave function in the natural basis provided by the eigenfunctions of the



toroidal Alfvén continuum. Our method allows us to solve the standard TAE equation an-
alytically for arbitrary inverse aspect ratio (¢) and arbitrary mode numbers (n). We must,
however, remind the reader that the standard TAE equation itself was derived in the small
€ limit.

QOur paper also addresses a fundamental theoretical question concerning the true nature
of the TAE modes. Are they true eigenmodes:of the toroidal shear Alfvén wave equation
that correspoﬁd to zeros of some dispersion function, or are they merely quasimodes (such
as the Landau-damped modes in a stable plasma) associated with zeros of the analytic
continuation of the dispersion function onto an unphysical sheet of its Riemann surface?
Physical considerations, i.e., that eigenvalues of a conservative system (such as ideal MHD)
must necessarily be real or appear in complex-conjugate pairs, lead us to believe that there
" can be no complex eigenvalues for the MHD system without an alpha parficle drive (for
instance). Therefore, the continuum-damped TAE modes can not be the true eigenmodes
of the system under consideration. They must, ih some sense, turn out to be quasimodes.
We shall elaborate on this point later in the paper. As a by-product we obtain a systematic
method for calculating the eigenfunctions of continuum TAE modes, which play a crucial
role in Alfvén-wave and other heating schemes of thermonuclear plasmas.!”

The contents of this paper are as follows. We begin in Sec. H by recasting the two-
dimensional partial differential equation (PDE) for the TAE modes into an integrodifferen-
tial equation. This reformulation is analogous tb the one used for studying many other basic

| plasma systems, including the Vlasov.equa,tion,w'19 the equation for electrostatic oscillations
in a cold, nonuniform plasma,**?! and the MHD equation in a slab geometry.??® The inte-
grodifferential equation is so arranged that, on the left-hand side is an ordinary differential
operator describing the toroidal shear Alfvén waves associated with a single flux surface,
and on the right-hand side is an integral operator representing the interaction of these waves

across the flux surfaces. This reformulation not only brings to light the essential physical




aspects of the TAE system, but may also facilitate our search for the solutions by letting us
draw on the recent fascinating developments in the theory of the Vlasov equation.?4-27

In order to find a more suitable basis than the poloidal harmonics, we analyze in Sec. III

the ordinary differential equation (ODE) for the toroidal shear Alfvén waves omn a single flux

surface. The collection of these waves on all flux surfaces constitutes the toroidal Alfvén
continuum.”®~%! For the standard TAE model, this equation can be transformed into the
Mathieu equafion in the poloidal angle, with radius and'frequency appearing as independent
parameters. The spectrum of this equation varies continuously with the flux surface and
exhibits the familiar gap structure.32-345-7 We also find the continuum eigenfunctions in
terms of the Floquet solutions of the Mathieu equation.

In Sec. IV We expand the TAE wave function in terms of the continuum eigenfunctions
found in Sec. III, thereby turning the differential opérator of the integrodifferential equation
into a simple multiplier. The resulting integral equation has many features in common
with the Vlasov equation, so we can use the machinery developed for the latter (the Van
Kampen-Case analysis) to derive analytic expressions fér the dispersion function and the
eigenfunctions of the discrete TAE modes, and analytic expressions for the eigenfunctions of
the continuum TAE modes.

In Sec. V, we simplify the results obtained in Sec. IV in the limit of vanishing inverse
aspect ratio. In this limit the integral equation reduces to a finite set of recurrence relations.
In the case of a single gap, we solve the dispersion relation and compare it with results
previously obtained using the boundary layer analysis. |

Finally in Sec. VI we give a few concluding remarks. Most of the detailed calculations of
this paper are put into the appendices. In Appendix A we give a derivation for the Green’s
function of the two-dimensional Laplacian operator. Appendix B contains the calculation of
the continuum eigenvalues and eigenfunctions in the small € limit. And in Appendix C we

calculate the coefficients of the recurrence relation derived in Sec. V.




II Derivation of the Integrodifferential Equation

In this section we show that the toroidal shear Alfvén system can be cast into an integrod-

ifferential equation of the form
Dy =Ly, (1)

where 1 denotes the wave function, D is an ordinary differential operator that déscribes
shear Alfvén waves on a single flux surface, and £ is an integral operator representing
the coupling of these waves across flux surfaces (stemming from magnetic shear, density
gradient, etc.). The spectrum of D is a continuous function of the flux surface, aﬁd can
be identified with the toroidal Alfvén continuum. The interactions embodied by L can
give rise either to the concentration in the continuous spectrum, which is reflected by the
existence of the quasimodes, or to true discrete eigenmodes. Integrodiﬂ"érential equations
like (1) are fundamental in plasma physics — three well known examples are (a) the Vlasov
equation for warm plasmas, both unmagnetized and magnetized;'®® (b) the equation for
electrostatic oscillations in cold nonuniform plasmas;** and (c) the ideal MHD equation in
the slab geometry.?® Because of its importance, Eq. (1) has been studied extensively and
methods for its solution are well-developed.’®1%2 The main purpose of this paper is to adapt
these techniques to analyze and understand the TAE problem.

We begin with the following ideal MHD equation describing the shear Alfvén perturbation

in the limit of low plasma beta:

. . 2
b-VV.%b. V¢ — b x V(E Vo) v (4% Jn) +Vy- [% Vu%} =0. (2)
- A

Here 6¢ is the perturbed scalar potential, b and B are, respectively, the directional unit
- vector and the magnitude of the local equilibrium magnetic field, J|| is the equilibrium plasma
current parallel to b, V4 is the Alfvén speed, and w is the mode frequency to be calculated

as an eigenvalue. For the present paper we shall restrict ourselves to a large aspect ratio,




axisymmetric tokamak model with circular flux surfaces. In this model, perturbations with
different toroidal mode numbers n (n = 1,2,3,...) are decoupled, and Eq. (2) reduces to the

following two-dimensional PDE:
1
VLo — - (ro +30)0y¢+ V.- [92(1 + 2€cos H)V_,_gb] =0, (3)
where ¢(r, §) is the amplitude of §¢ for a given n, and
: | 1
6” = —n+ 589 y (4:)

with ¢(r) as the safety factor. In Eq. (3), the primes denote radial derivatives, e.g., 9 =

8T(1/q)59, and
R2w? 5
e =g (5)

where Ry is the major radius of the magnetic axis, va(r) = Bo/\/4dmp(r), and p(r) is the

Q4 (r,w) =

plasma mass density. Equation (3) is the “standard” model equation for the TAE modes
that has been studied in many previous investigations.”*13~16 Since a detailed derivation of
Eq. (2) and its transition to Eq. (3) have been given in Ref. 16, we shall not repeat them
here.

In order to exhibit that the TAE continuum damping is analogous to the Landau damping
in the Vlasov equation, it is necessary to use the perturbed radial electric field E(r,8) =
—0,4(r,0) as the wave function. This choice is dictated by the faét that the singula,ri.ties
of E(r,0) are of the desired form, i.e., simple poles like (r — r.)~, which lead to tractable

Cauchy-type integrals. We shall impose the following natural boundary conditions on E (r,0):
a) E(r,0) is periodic in 4,
b) E(0,6) is finite,

¢) E(1,6) = 0.



For notational convenience, we have used the normalized radial variable such that r = 1
corresponds to the edge of the plasma column. Equation (3), together with the above
boundary conditions, poses a well-defined eigenvalue problem, which we will solve without
further approximations. Our mathematical procedure allows us to solve Eq. (3) for arbitrary
n and €, although the equation itself was derived under the assumption that € < 1.

We now proceed to transform Eq. (3) into the promised integrodifferential equation. We
multiply Eq. (3) by 7%, then differentiate it with respect tor, and finally divide it by r. After

some algebra, which makes use of the relationship
8(r,8) = — / "dr' E(r',6) (6)
0 B
we obtain the following equation:

V.2 {r[8 + g(r,0)|E(r,0)} = -% [A(r,e,ae)E(r,e) +B(r,0,0) [/ dr'E(r',o)] G

where
g(r,0) = (1 + 2écos 9) , . (8)
A(r,6,00) = ~2r08f — [(39) + (B69)3%)] , )
and
B(r,9,3) = [(8} + 9)0% — 20y + (3sg)Bs] . (10)

The two-dimensional Laplacian

10 0 1
219 0 1o
Vi -rarr8r+r260 : (11)
can be inverted using the Green’s function method:
1 2 . ’
v, =Y / dr's! / d6' Gy(r,r')C=#) (12)
T Jo 0




In Appendix A, two different but equivalent representations for Gy(r, ') are obtained:

' Ji(§wr) Di(€ir’)
N — J—
Gl(r)r ) - ; 27TN[2k ) (13)
and
1
— Inry [=0;
27
Gi(r,r) =4 0 (e I (14)
/
Py (rr') (r>> } , [#0.
Here J;Zz) is the Bessel function of the first kind, & is its kth zZe€ro,
_ 1,5 0
= 5 Sk () - (15)

is a normalization constant, 7« = min(r,7’), and 75 = max(r,r’). The first expression (13) is
- more ﬁseful for theoretical development because it is separable, while the second expression
(14) is more useful for practical calculation Because of its simplicity. Applying Eq. (12) to
Eq. (7) we obtain

r(0f + g(r,0)]E Z/ dr’ / ae’ Gi(r r’)e‘l(a )

x [A(r’, §',00)E(r,8") + B(r', 6, 8y / dr" E(r", 9')J : (16)
0

Interchanging r’,r" and the order of integrations in the last term, we finally arrive at the

desired integrodifferential equation for the TAE modes:
2 1 / I / / / ! / |
(0F + 9(r, 61 E(r,0) = ["dr' [ a0 K (r, 0,7, 0,00 E(r, 07 , (17)

- where the kernel X, an operator in 4, is a continuous function of r and '

K=-%

I
Comparing Egs. (1) and (17) we find the differential operator for the toroidal Alfvén

RUCED)

[Gl(r,r')A(r’,O’,agf)+ /1 dr"G,(r,r")B(r",a',ao,)] . (18)

continuum to be

D=0t +g(r0). (19)
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Note that D contains derivatives only in 6; r and w are merely independent parameters. In
the next section we will analyze the spectrum of this operator and calculate its eigenfunctions.

These eigenfunctions will provide us with a basis to diagonalize the left-hand side of Eq. (17).

III The Toroidal Alfvén Continuum

. The eigenfunctions for the toroidal Alfvén continuum are solutions of the eigenvalue equation

Dy(r,0) = [6F + g(r, O)b(r, ) = o(r,w)eh(r,B) , (20)

with the boundary condition that ¥(r,6) be periodic in fforall 0 < r < 1. This is an
ordinary differential equation that can be solved analytically. We will show that, for given
w, the éigenvalues o(r,w) are real, continuous functions of r.

U;siné Eqgs. (4) and (8), we can rewrite the continuum eduation (20) explicitly as
1 \? | _
[(—in + 55@) + Q*(1 + 2€cos 9)} Y =o01. ' (21)
By using the inner product definition,
2m ’
(0'8) (r) = [ dowi(r,0)(r,0) , (@)

it is easy to derive the equation obeyed by the adjoint eigenfunction ¥1(r, §),
1 2
[(—z’n — g@g) + Q%(1 + 2€cos 9)} ot = oyt (23)

which is precisely the defining equation for ¥(r, —8). Since both !(r,8) and Y (r,—0) satisfy
the same boundary condition, we can put 1'(r,8) = ¢ (r, —8) without loss of generality. In
the rest of the paper, ¥(r, ) will not appear. '

Equation (21) can be transformed into the standard form of the Mathieu equation by a

simple change of variables,

0=2z, p=em¥x, A=4¢3(02 -0), b= —€(2¢0)?, (24)

9




with the new eigenfunction X(z) obeying

. :
%z—f + (A= 2b§os 22)X =0 . - (25)

The boundary condition translates into the requirement that X(z)exp[i2ngz] be periodic in

- z with a period 7. With the standard Floquet solution,
X(z) = €2 3wt | (26)
I
the periodicity condition is ensured if the Floquet exponent v(r) satisfies
v(r) + 2nq(r) = even integer . (27)

Below we discuss some properties of the Mathieu equation that are relevant to the problem
at hand.

We begin by asking the question whether there can be more than one eigenfunction
corresponding to the same eigen{/alue. From the mathematical literature® we kﬁow that
for integra,l v(r), Eq. (25) has only one acceptable Floquet solution (26); the other linearly
independent solution is unstable, i.e., it is unbounded as |z — co. We also know that if v(r)
is not equal to an integer and if X(z) is a solution, then X(—z) is another solution linearly
independent of X(z). Therefore, from Eq. (27) it follows that if 2ng is an integer, there
1s only one periodic solution %; and if 2n'q-is not an integer, then again there is only one

admissible solution % since only one of the two linearly independent solutions

ei(?nq)zx(z) — ei(2ngty)z Z we = , ei(an)zX(_z) — ¢il2ng—v)z Z we™ 2 : (28)
’ ! !

can satisfy the periodicity condition. Thus we conclude that all eigenvalues o(r,w) of Eq. (21)
are nondegenerate.
Next, let us consider the behavior of the eigenvalues as functions of r. Substituting

Eq. (26) into the Mathieu equation (25) yields a recurrence relation

[/\ - (l/ + 2[)2]’11,1 - b(ul_l + U1+1) =0. ‘ (29)

10




- The eigenvalue equation can be obtained by setting the infinite determinant of Eq. (29) to

zero. The “dispersion relation” for the Mathieu equation takes the relatively simple form3
L g (VT .o [TVA
sin” | 5~ ) = A(A, b) sin — (30)

where A(A, b) is Hill’s determinant. The behavior of the eigenvalue \ and the corresponding
eigenfunction, as functions of v and b, can be graphically illustra,ted by the stability diagrams
such as Fig. 1. In Fig. 1, the shaded regions are the “forbidden zones” where the solutions
are unstable, while the unshaded regions are the “allowed zones” where the solutions have
the Floquet form. Equation (30) has an infinite number of solutions for A, reflecting the
infinite number of allowed zones; it is moreover invariant if we change_ the value of v by an
even integer. To enumerate all the eigenvalues unambiguously, we need to divide the domain

of v into intervals according to
i<yl <541, . 5=0,1,2..., (31)
then for given v; and b there is a unique eigenvalue A; satisfying

lirn )\j = I/J? . (32)

b—0

In order for v;(r) to satisfy Eq. (27), we need to introduce an integer-valued function m;(r),
defined by

vj(r) = 2[m;(r) = ng(r)] . (33)
It is in general necessary to allow m;(r) to jump at radii where 2nq(r) takes on integral
values so as to keep |v;| within the bounds set by Eq. (31). In fact it is not difficult to see
that at these radii v;(r) must change signs. But since the eigenvalue A; is an even function

of vj, it would remain continuous. Therefore by Eq. (24), the eigenvalue of Eq. (20) reads

oi(r,w) = Q(r,w) = X;(r)/44*(r) (34)

11




and is also a continuous function of 7. The dashed Iineé in Fig. 1 depicts how the parameters
(Aj,0) typically vary as r increases. It illustrates clearly the appearance of the gap structure
in the toroidal Alfvén continuum. Figure 2 is a more conventional way of showing the same
gap structure in the r-w? plane, where the curves are the solutions of oj(r,w) = 0. Thus,
considering w as the speétrzﬂ parameter, the differential opera,to‘r (19) is seen to have a purely
continuous real spectrum. The dashed vertical lines in Fig. 2 indicate the location of the
gaps, where 2ng(r) takes on integral values, and where m;(r) may be discontinuous.
Finally, we calculate the eigenfunctions of the Mathieu equation by substituting A; into
the recurrence relation (29) and solving for the Fourier coefficients u (r). Up to a normaliza-
tion factor, these coeflicients are uniquely aetermined.35 This normalization factor in general

depends on r, and can be so chosen that the continuum eigenfunction,
$i(r,0) = ™ S ui(r)e, © (35)
1 , ,

is continuous over all 0 < r < 1. In the limit of small b, the { = 0 term in the sum
s predominant away from the gaps. Near a gap, however, one of the | = +1 terms also
becomes important. Thus the value of m;(r) coincides with the usual poloidal harmonic on
each segment of the continuﬁm delimited by the dashed vertical lines in Fig. 2, which shows
more graphically why m;(r) needs to be discontinuous at the gaps. Explicit expressiéns for
the continuum eigenvalue o;(r,w) and the contilnuum eigenfunction t;(r, ) in the small b
limit are calculated in Appendix B. | |

For any given radius r, the eigenfunctions ¥;(r, #) form an orthogonal and complete seb.

The orthogonality condition reads [recall that 11(r, 8) = 1 (r, —8)]
2r
[ d0ws(r, ~6)(r,6) = 22 NZ(r)s; (36)
0

where

Wms;wwf. . (37)

12



In the next section we shall return to the integrodifferential equation (17) and expand
the wave function E(r, ) in terms of 1, (r,ﬁ); This will enable us to diagonalize the differ-
ential operator on the left-hand side and pave the path for solving the entire TAE equation

explicitly.
IV  The Dispersion Relation and Mode Structure

Now let us expand the wave function E(r,f) in terms of the complete set of continuum

eigenfunctions v;(r, #) found in the previous section:

E(r,0) =" ci(r)iu(r,0) . (38)
1=0 .
This representation diagonalizes the continuum operator (19) (converts it into a simple mul-

tiplier) and changes Eq. (17) to
oi(r,w)e(r Z/ dr' K;;(r,m")e;(r') o (39)

where

Ki(r,r') = 271N2 /”do / 48 i(r, ~8) K (r, 6;1", 8/, 8o Yoy (', ) (40)

Using the continuum eigenfunction (35), and the kernel (18) with the Bessel function repre-

sentation (13) for Gi(r,r'), we obtain

1 T
Kii(r,r") 70 > Li(r)Ri(r') (41)
: i\T) 1% :
- Whel‘e
. 1 . .
w(r) = WJI(EM)U}-W(T) : , (42)
and

. 2 49 . |
By = 5= [ 5 e [Heun),0,00 + [ ' ilewr) B, 0,8)] wn0) . (43

13



The continuity of kernel Kj;(r,r’) is guaranteed by the continuity of the original kernel (18)
and the continuum eigenfunctions ¥;(r,8). It is remarkable that this kernel is separable,
i.e., it is a sum of products of the form a(r) b(r"). This property will enable us to transform
the integral equation into an equivalent set of algebraic equations. Generally speaking, the
number of algebraic equations thus obtained is infinite, so in practice it must be truncated
in order to obtain useful solutions. In this section we concentrate on the general properties
of Eq. (39). The appropriate truncation scheme will be discussed in the next section for the
limiting case € — 0.

Equ'ation (39) has the same structure as the Vlasov equation in action-angle variables
with the streaming operator diagonalized by means of its eigenfunctions.!® .Below we apply

the method developed in Refs. 18 and 19 to analyze the spectrum of Eq. (39).

The Discrete Spectrum

The discrete spectrum occurs when o;(r,w) # 0 'for all 7 and for the entire range 0 <r < 1.

We can explicitly exploit this property of o;(r,w) by introducing the following ansatz:
®i(r,w)

oi(r,w) ’ (44)

c(r) =
where the functions ®;(r,w) describe the “envelope” of the mode structure. Upon substitut-
ing it into Eq. (39), we obtain

1

¢, (r,w) =

[Z / d’g] T, @J(r',w) . (45)

i

It is obvious that the choice
o, ('f‘ w N2 ) Zsz Clk (46)

converts Eq. (45) into an infinite set of hornogeneous algebraic equations in the coefficients

Cikw) [a knowledge of Cii(.) determines ®(r,w)],

Cie(w) = > Mgy (w)Crrpr(w) = 0, (47)

ll k!
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where
le T)Luk'( )

r)o;(r,w)

(48)

Mk pw(w Z / dr

is a sum of generalized Cauchy-type integrals of the kind treated by Gakhov.®® Each integral
defines a function of w, analytic in the whole w plane except for those w that satisfy the
relation oy(r,w) = 0. Thus we arrive at an explicit analytic expression for the dispersion

relation for discrete TAE modes:
D(UJ) = det |5”16kkl — M[k,pkr(w)l =0. . (49)

If a nontrivial solution Cy of Eq. (47) were to exist, the two-dimensional eigenfunction:

E(’", 0) = i']‘\;z(w—)(,— [Z Li(r C'ch (50) |

i=0
could be readily computed.

Now let us consider the circumstances that may give rise to discrete eigenmodes. In-a
general configuration, the gaps in the toroidal Alfvén continuum do not line up with each
other, so for any real w, there will be some o;(r,w) that vanishes at some radii. As a
consequence the entire real w-axis is a line of singularity of M(w) and, in turn, of D(w).
More precisely, we should say that the entire real w-axis is covered by (oveﬂa,pping) branch
cuts of D(w), one for each segment of the continuum in Fig. 2, with each end-point of these
segments generating a branch point of D(w). Therefore the principal sheets of the Riemann
sﬁfface of D(w) are two disjoint half planes. We observe that D(w) is real and depends
only on w?, so the complex zeros of D(w) must appear in quadruplets, +w and Fw*, with
two in each of tﬁe half planes. Thus, accepting the reasonable assumption that our starting
equation (3) has no unstablé eigenmodes, we can infer that D(w) has no complex zeros on
~ the principal sheets of its Riemann surface. This leads to the conclusion that, in a general
conﬁgura.tioq, the ideal MHD toroidal Alfvén specfrurn does not contain discrete eigenmodes.

The exceptional case occurs when all the gaps in Fig. 2 do line up with each other, so there

15




exists an interval on the real w axis where ai(r,Q) # 0 for all 2 and all 0 < r < 1. In this case
D(w) has a principal Riemann sheet that is connected, and it may have real zeros within
the gaps.

On the other hand, even if D(w) does not have zeros on the principal sheets of its Riemann
surface, its analytic continuation through the branch cuts onto the “unphysical” sheets may
still have zeros, just as in the case of the Vlasov equation for a stable plasma. These zeros do
not correspond to the true eigenmodes of the original equation. They are rather resonances
of the continuous spectrum of the system‘, which are sometimes called quasimodes. It is
worth noting that the Cauchy-type integral representation in Eq. (48) makes the analytic
continuation of the dispersion function D(w) explicit and straightforward — we simply need
to carry out the r-integral along appropriate Landau contours. Because of the extremely
complicated structure of the Riemann surface of D(w) due to the overlapping branch cuts,

we shall not deal with these quasimodes in this paper.

The Continuous Spectrum

Next we turn to the continuous spectrum, which occurs when w is real and o;(r,w) vanishes
for some 7 at some radii. For simplicity we restrict ourselves to the situation where oi(r,w)
vanishes only at isolated radial locations. Then by the implicit function theorem, oi(r,w) =0
defines some functions r;(w) (usually more than one, so we use the index « to distinguish

them) such that

g;

oi(Tia(w),w) = 0, — (ria(w),w) = oi(rig(w),w) # 0 . (51)

Again, we introduce an ansatz for ¢;(r) similar to the Van Kampen-Case eigenmodes:!8-2

§(r — ria) L P U, (r,w)

0 (Tin,w) oi(r,w)

, (52)

16




where the functions A(w) and ¥;(r,w) are to be determined. Inserting this into Eq. (39)
yields
le

erw

V() = Jry 2 Lie(r) [ Alw) X = Rilrie) +ZP [ %(r',w . (83)

1k jae O i(ria, w)

It is obvious that the solution may again be assumed in a form similar to Eq. (46):
1 PR
Uy(r,w) = W%:sz(r)c w(w), (54)

leading to the following infinite set of inhomogeneous algebraic equations for Ci(w),

Ci(w ;L;Mlk 1 (w)Crrr (W) = Big(w) (55)
where
Mg e (w ZP/ dr —%, . (56)
and
Be) =A@ 2 f(”;;fjj) . (57)

The set of linear nonhomogeneous equation (55) always has a nontrivial solution. For if the
matrix on the left-hand side is nonsingular, then a unique solution exists for a given (nonzero)
A(w); if the matrix on the left-hand side is singular, then the corresponding homogeneous
equation has nontrivial solutions, and these solutions are acceptable by letting A(w) = 0.
Therefore we eXpect the spectrum for this case to be continuous. In reality, one must truncate
this infinite set of equations so that, at least formally, it can be solved by Cramer’s rule.

Assuming that the solvability conditions are satisfied, we have

— _ Eyk/(w)
'Ollkl (w) = —D—-(w) y (58)
wheré
E(w) = det {511'51:1& - Wuc,ukr(w)| ) (59)
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and the determinant Dy (w) is obtained from the determinant D(w) by replacing its (Ik,I'k)
element by By (w). Since every element Bj(w) is proportional to A(w), we obtain a consistent

solution by putting
Aw) = D(w) . (60)

Then C(w) and, in turn, ¥;(r,w), are completely determined.
~ Alternatively, we can define the eigenfunction for the continuum TAE modes not by
means of the principal value as in Eq. (52), but as boundary values on the real axis of the w

plane from above or from below:'®1°

8(r — ria) L P U;(r,w)

£ _ A%
GO =) o e ) (61)
Proceeding as before, we find
A% (w) = D(w £10) . (62)

The functions A*(w) are thus equal to the boundary values of the dispersion function D(w)
on the real axis. This is another manifestation of a general relation that has been found
pfeViéusly in Refs. 18, 20, 21. A detailed discussion and explanation can be found in Ref. 20.
By means of the Plemeij formulas it is not difficult to show that the eigenfunctions (52) and
(61) are equivalent.

Before closing this section, we remark that, as w varies, two different roots r;,(w) and
r;6(w) may coalesce and disappear. The points of coalescence are always located at the gap
tadii. At such a point we expect the coefficients ¢;(r) for continuum TAE modes té have a
“term proportional to the é-function derivative. We note that the .a,nsatz (52) in fact meets
this expectation, for as rj,(w) and rip(w) approach the point of coalescence from opposite
sides, the denominators o%(r;,w) and o}(r;s,w) become equal in magnitude and opposite in
sign, so the two §-functions will subtract and produce a term proportional to the §-function

derivative. This property renders the restriction (51) nonessential.
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V The Limiting Case € — 0

Until now, our calculation of the solution of the standard TAE equation (3) is rigorous
and without any approximations. In particular we have not assumed € to be small. The
expressions for the dispersion function (49) and the mode structure (50) and (52) are the
exact solution of the mathematical problem represented by Eq. (3). In this section ;»ive
consider the limiting case € — 0, for which our formalism can be greatly simplified. We shall
concentrate on the discrete TAE modes; the calculations for the continuum TAE modes are
very similar.

When terms proportional to € < 1 are neglected, the coefficients A and B [from Egs. (9)

and (10)] become independent of 6:
A(T’, 89) = —27'8“6‘I| ’ (63)
B(r,d)) ~ (8} + 032 —2rgy8)] . (64)
Inserting these into Eq. (43) we obtain
: 1 h / / :
Ri(r) ~ N [Jl(fuc?”)Al(T) +/ dr' Ji(&r )BI(T’)] Uy (T) 5 (65)

where A;(r) = A(r,1l), and B)(r) = B(r,il). With the definitions

- _ Ji(&wr) :
Li(r) = [N:r ; (66)
Rzk(f‘) = .Z_V]:z_/: [Jl(&k?")z‘l((?”) + /Tl dr’ J[(f[kT,)Bl(T‘I)] , (67)

Eq. (48) can be written as

(68)

J=0

Miky ) = [ dr Ru()Tuw ) [i “’}v”%"éf})a?&;,’”;y)] |

The expression (68), although considerably simpler than the original, still contains an

infinite sum. To make further progress, we restrict ourselves to frequencies near the gaps
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between the two lowest continua. We will then need to keep only two terms (5 = 0,1) in
the j-sum, since oy, 07 alone are ~ O(€) near the gaps, while all other o;s tend to be larger
(the latter actually increases as j* for j — oo, which ensures the convergence of the series).
Furthermore, as 1/0¢ and 1/ oy are highly peaked around the gaps, the main contribution to
the integral in Eq. (68) comes from the gap regions. Assuming that the functions Ly and

Ry, are slowly varying, we can pull them out of the integral and obtain
Mgy (w Zle(Tm Vi (rm) Hu (v (69)

where m labels the gap located at r,,, which is determined by

A(rm) = Gm = w ) (70)

n
and
H(r) Z / d ““’"' "“m’ e e e ) (71)
with z = r — fm measuring the dlstance from the gap m; Explicit expression for Hy(rm)
are given in Appendix C, where we find Hj(r,,) to be a “tridiagonal” matrix whose only
significant components are for [,/' = m,m + 1 [see Eq. (C.4)].

On substituting the simplified expression for Mz [Eq. (69)] into Eq. (47), we obtain

Cit = Y Bi(rm) Hi (7o) Vi (rm) (72)
m,l’
where
Vilrm) =3 Lig(rm)Cle - (73)
%

Combining Egs. (72) and (73) we can reduce the k index, and obtain a reduced set of
algebraic equations:

Vitrm) = 3 Hy(ront) BTyt Wi (rm) (74)

m!

where



is explicitly separable. Making use of Eq. (C.4), Eq. (74) becomes

Vilrm) = auFy(rm, ) Vi(rt) + i1 Fi(rmy 1) Vi(ri-1)

+ B Fi(rm, ric)Viea(riz1) + BiF(rm, 1) Viga (1) (76)

With the definition X; = Vi(r), ¥; = Viz1(r1), the closed subsystem m = I,] — 1 leads to the

following recurrence relation:
(1 — oy Fy(ri,m) —ﬂze(Tz,Tz)) (Xz)
—aFi(rieg,m) =BiFi(ri,m) ) \ Y

Bi—1Fi(ri,rim1) a1 Fy(ry,m21) X1 '
_ - . (77)
B Fi(ri-1,mi21)  eum Fi(rimy,mies) — 1 Y

Let s and t denote the radially inner- and outermost gaps, respectively, then all quantities
to be evaluated at n; With gap index [ < s —1 or [ > ¢t + 1 must vanish, so we have
[1 = s Fy(rs,ms)]Xs = [B Fi(rs,m5)]Ys = 0,
—[BeFesa(re, re)] Xs + [1 — cwFipa(re, 7)Yy = 0
This equation, together with Eq. (77) which relates (X, Y;) to (X%, Y;), provides the disper-

(78)

sion equations to be solved. The two-dimensional eigenfunction for the discrete TAE modes,
Eq. (50), also simplifies and can be expressed in terms of X; and Y directly. Substituting
Eq. (72) into Eq. (50) we obtain

sea-peran Sy o

i 7=0

where

Qu(r) = (auXy + BY) Fi(r, 1) + (u1Yicy + Bima X1 ) Fi(ry riza) (80)
In the case of a single gap m, we have s = ¢ = m, so Eq. (78) becomes
(1 = amFon (T Tm) 1 Xom = (B Fon Py T )Y = 0,
— B Frnt1(Tm, )] X + (1 = @ Frnt1 (P T )| Yo = 0. 81)
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Setting the determinant of Eq. (81) to zero, and using Eq. (C.7) for ¢, and 8,,, we obtain

an expression which gives the real frequency shift g, (defined in Appendix B):

e 6 (L= (0 ol e o)) )
m T2 Fo(rmyTm) + Frag1 (Tomy ™)
This expression is very similar to that obtained previously using boundary layer analysis.”37
Finally, we can actually sum the series in Eq. (75) and obtain a simple expression for
Fy(rm,rm). Using Eqs. (66) and (67) we have \

Firs ) = [A,W)Z &k’"m]{;l’;(&krm)

+ / drB(r’)Z 5”‘"}‘]’(5”“’")} - (83)

The summation of the Bessel function series can be carried out using the identity (for I # 0)

Jlur)JilGwr’) 1 | (re lll_ ) | :
27 T [() ] &

k

where r¢ = min(r,r') and r5 = max(r,r'). This identity is a simple corollary of Eqs. (13)

and (14). Thus

max (T, Tm!)

+[ @B [(%)1 - (rmwy] b (55)

For the special case m = m’, we have

ilrms 7o) = | ) [(m_<__>) _ (,,m,,m,),J

Bty m) = i [A:(rm)a—r”w [ arBi@et -] | (56)
which is used in Eq. (82).
V1 Conclusion

We have developed a general, two-dimensional theory for analyzing shear Alfvén wave prob-

lems in toroidal geometry. Instead of using the usual poloidal harmonics, we expand the
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wave function in the natural basis provided by the eigenfunctions of the toroidal Alfvén

continuum, which allows us to reduce the system to a few integral equations valid for arbi-

trary mode numbers n. These basis functions themselves embody the essential aspects of the

shear Alfvén physics. They are the solution of an ODE, so analytic expressions can often be

~ found. It is important to note that the ODE description of toroidal Alfvén continuum rests
solely upon the assumption of axisymmetry. Accurate analytic expressions for the contin-
uum eigenfunétions and the associated eigenvalues, combined with the small number of the
reduced equations, makes this new approach very powerful for practical calculations. More-
over, the integral equations of the reduced system have the same structure as the Vlasov
equation, so there is a rich source of materials that we can tap to further our search for
solutions of the toroidal Alfvén wave problems.

In this paper we have considereci the standard TAE model. We have shown that the new
method leads to a.‘nalytic expressions for the dispersion relation, for the eigenfunctions of the
discrete TAE modes, and also for the eigenfunctions of the continuum TAE modes. We have
also demonstrated that, unless all the gaps line up with each other, the TAE spectrum is
purely continuous. Our results are valid for arbitrary mode numbers n and inverse aspect
ratio €, even though the model equation we use is derived for small & The dispersion
relation is expressed in éerms of Cauchy-type integrals, which makes it possible to study its
analytic continuation by choosing the appropriate Landau contours. We have found that the
dispersion function is multivalued with many overlapping branch cuts, signaling the extrerﬁe

’complexity_of its Riemann surface. A thorough analysis of the Riemann surface structure
of the dispersion function is necessary for a complete understanding of the TAE continuum
damping (within the MHD framework); Such a study may be the subject of future research.

In the vanishing € limit, we have shown that the integral equations are further reduced
to a recurrence relation. The coefficients i_n this recurrence relation are all given explicitly,

in contrast to some of the previous works based on boundary layer analysis. For the case
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of a single gap, we have obtained an explicit expression for the eigenfrequency and found it
in agreement with the previously known result. Once the.eigenfrequency is found, we can

write immediately the explicit analytic expression for the two-dimensional mode structure.
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Appendix A: The Green’s Function for V ?

This appendix contains a derivation of the Green’s function (12) for the two-dimensional
Laplacian. We will calculate it in two different ways in order to establish both Egs. (13) and
(14). Some of the materials presented here can be found in Ref. 38.

In the polar coordinates the Green’s function satisfies the following equation:

F et | Gl 0) = Lo - 50 - 0) (A1)
The boundary conditions require G to be periodic in both 6 and ¢, to be finite at r,r’ =0,
and to vanish at r,7' = 1. Clearly G depends only on thé difference 6 — @', so it can be
expanded into a Fourier series:

G(r,0;r',8") = Y~ Gi(r, r')ele=) (A.2)
g .

Substituting it into Eq. (A.1) we obtain

10 o0 P , 1 . /

r
This equation can be solved using two different methods. In the first method we analyze the
eigenvalue problem for the operator on the left-hand side of Eq. (A.3):

[1 d d [?

bk i r—z} e =—ke . o (A4)
The general solution of this equation can be expressed as a linear combination of Bessel
functions J,(}clr) and Y;(k.r). The boundary condition at r = 0 excludes all Yi(kyr), while
the boundary condition at r = 1 requires J,(k;_) =0, yieldil_'lg ki = &, with & as the kth

zero of Ji(z).- Since the functions Ji(éwr) for k =0,1,2,... form an oréhogonal and complete

set, with the orthogonality condition38

/01 drrJi(§r) Ji(€pr) = % Jh1 (€ik) e (A.5)
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we can expand Gi(r,r') in terms of Jj(£yr):

G((?‘, 7"') = Za;k(r')Jz(ézkr) . (A.6)
k
Using this in Eq. (A.3), and applying the orthogonality condition (A.5), we obtain
Ji(&ur’)
I —_ee——_—
au(r') = o NL (A7)

where Ny is giveh by Eq. (15). Substituting it into Eq. (A.6), we then arrived at Eq. (13),
the first representation for G(r,r’).

The second method of solving Eq. (A.3) considers the homogeneous equation for the two
regions r < 7’ and r > r' separately, then match the solutions at r = . For [ # 0, the two
linearly independent solutions are r*!. Taking into account of the boundary conditioﬁs at

=0 and 1 we have
| A(r')yrlt ifr<r;
Gir,r'y =< (A.8)
B({r)(r ==y | i r >t |
From Eq. (A.3) we find the matching conditions to be

lms—yo [Gi(r' + 6,7") — Gi(r' = 6,7)] =0,

(A.9)
lims10 [0-Gi(r' + 8,7") — 0,Gi(r' = §,7")] = 27}7_, .
Substituting Eq. (A.8 )into (A.9) and then solving for A and B, we obtain
A(r') = (r — =l f4rll] -
(A.10)

B(r') = rM/4x|i| .

Inserting this into Eq. (A.8) we finally obtain a concise expression for Gi:

r o\ M ,
Gz(r,r') - %Ill {('r‘r’)lll - (_<) :l o (A.11)

>
where r. = min(r, '), and rs = max(r,'). The result for / = 0 can be derived in a similar
< 9 ’ > ) :

manner, and the result is

1
Go(r,7") = %lng . (A.12)
Thus we have proved Eq. (14), the second representation for Gi(r,r’).
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Appendix B: Continuum Eigenvalues and Eigenfunctions |

In this appendix we calculate the eigenvalues and eigenfunctions of the toroidalAlfvéncontinuum .

in the limit of small €
The eigenvalues ); of the Mathieu equation are to be calculated from Eq. (30). For
small values of b, the Hill’s determinant A(),b) can be expanded to order b?, yielding an

approximate eigenvalue equation:®®

70 sinmvV/A
cos v = cos TVA + ———— 3" L OB | B.1
We shall see in a moment that this approximation gives eigenvalues accurate to the first

order in b, which is adequate for our purpose. From Eq. (32) we have A — v2 as b — 0, so

let us expand the right-hand side of Eq. (B.1) into a series of A — v2. To the second order

we obtain

AW)(A=v*)?+Br)(A—v®)+Cv) =0, : (B.2)

where _
A(v) = T [m/ COS TV — sl 7r1/] + O, (B.3)

8 v3

_ wsinmv | wb? [(v2 —1)(nvcos v —sinwv) — 2u2 sin 7y 4
Bv) = - 2v 8 [ v3(v? —1)2 +00), (B4
2 .

Clv) = =SBV o) (B.5)

4 (2 =1)
The discriminant of this quadratic equation is remarkably simple:

7?sin? Ty

2 _ - T
B! —4AC =

(2 =12+ 8] + O(p") . ~ (B.6)

Thus the solutions of Eq. (B.2) are

2C

A— =
Y T TBx VB —4AC
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wb%sin v

o 2v(v? ~ 1) +O(B) (B.7)

msin v mlsinfry r o, g
2v * \' 4v2(v? —1)? [(U R ]

1)t VA =12 48 + 00 .

Notice that the accuracy of this result changes as v varies: the error is O(b%) for [v2—1| > b,
but increases to O(b?) for |v? — 1| < b, when the two solutions become.nearly degenerate. It
is important to note that with this accuracy we can only resolve the gap structure between
the lowest two eigenvalues Ao(r) and A;(r). The choice of signs for the two eigenvalues can

be determined by inspection. Denoting so = —1, s; = 1, we have, for 1 = 0 and 1,

/\i(r) ~ 1+ Sm/(l/iz - 1)2 + b2 . » (B8)
From Eq. (34) we find the continuum eigenvalue o;(r,w):
1 2
oi(r,w) = 17 (242" = M) | (B.9)

Setting oi(r,w) = 0 we can explicitly solve for the continuum eigenfrequency wi(r). The

result is

) = ( vy )2 L+ siy/(vF — 1) + @022 — 1) | (B.10)

2qR, 1—-¢€

The curves in Fig. 2 are plotted using these formulas.
Now that we know A;(r), we can calculate the continuum eigenfunctions using the recur-
rance relation (29). In the small b limit, we can neglect all u} for || > 2. Then from Eq. (29)

we obtain
i
Uyy b

wp A= (nE2)?] (B.11)

This equation indicates that, away from the gaps, we have u},, = O(b), which is also neg-
ligible. In the vicinity of a gap, where |v;| & 1, one of the u), components can become

comparable to uf (which one depends on the sign of v;. As pointed out in Sec. III, y;
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changes sign at the gaps.) Figure 3 summarizes graphically the values of the functions m;(r)
and v;(r) near the gap m whose radial location is determined by Eq. (70). Also shown are
the significant components of ui, which we shall discuss below.

First we observe that, for frequencies in the gap region, (2¢Q2)? ~ 1. It is therefore
convenient to introduce a function g,, to represent the relative displacement of frequency
from the center of gap m, defined by g = [(2¢mQ)? — 1]/&,, Where &, = €(rm). In what

follows we denote ¢ = r — Tm, and keep only the radial variation of v;(r); thus we have

Now consider the continuum with ¢ = 0. To the left of the gap, where z < 0, we have

mo(r) = m, so from Eq. (33) we find
vo(r) =2(m —ng) = -1 - 2nq,z , ('B.12)

Substituting it into Eq. (B.8) we obtain

Ao(r) & 1 — \/(4nan:v)2 +é2 . | (B.13)

Then from Eq. (B.9) we have

1
oo(r,w) = Iz [Emgm + \/(4nq;na:)2 + efn} . (B.14)

Substituting Egs. (B.12) and (B.13) into Eq. (B.11) we find

U_q ~ Uy
~=i = — B.1
ug O(E) ’ ug Mo ( 5)

where

€m
no(r) = . B.16)
o7 V/(dnglz)? + €2, + |4ng! 2| (

Thus the ratio u?/ud approaches 1 as z — 0.

To the right of the gap, where z > 0, we have my(r) = m + 1, so

vo(r) =2(m+1—-ng)=1—-2nqg z. (B.17)
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- It has been pointed out in Sec. IIT that A;(r) and oi(r,w) vary continuously across a gap,
so Egs. (B.13) and (B.14) remain valid for this region. One can also see this fact by noting
that Ao and o are even in z. Using Eqgs. (B.13) and (B.17) we find

0 0
Yot U _ o
o 7o , : O(e) . | (B.18)

For the continuum with 7 = 1, the calculations are similar. For £ < 0, we have m; (r) =

m +1, and 1y (r) & 1 — 2ng,,z. From Egs. (B.8) and (B.9) we have

M(r) ~ 1+ /(dngha)? + &, (B.19)
I I
| o1(r,w) ~ Ezn— [emgm - \/(4nanm)2 + efn] , (B.20)
Which are also valid for z > 0. Similarly Eq. (B.11) yields
% S g—% =09, (B.21)
where
m(r) = Er (B.22)

V(énglz)? + &, — ldng,z|

For z > 0, we have m;(r) = m, implying v (r) & —1 — 2n¢/ z, and

1 1
ul, . ul
_ — (j s - B.23
u} OF u} 771 ( )

The principal results of this appendix are contained in Egs. (B.15), (B.18), (B.21), and
(B.23). .From these we obtain the following Fourier coefficients for the continuum eigenfunc-

tions: For z < 0,

u?(r) ~ b0+ no(r)éiy
(B.24)

_ ui(r) = 610 — n1(r)6,-1 ;

for z > 0,
uf(r) & 810+ no(r)éi,-1
up (r) = —[610 — M (r)é11] -

Here we have chosen the normalization factor so that the continuum eigenfunctions ;(r,6)

(B.25)

[Eq. (35) are continuous across the gap.
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Appendix C: Calculation of Hy(r,)

In this appendix we use the results obtained in Appendix B to calculate the functions H 1w (Tm)
as defined in Eq. (71). From Egs. (B.24) and (B.25) we have, for z < 0,

u?—mo = é‘I,m + 7706[,717.-}-1 ) (C 1)

1 _ .
Ui, = Slm+1 — MOim ;

and for z > 0, .
Ul g = Otymt1 + M001m

(C.2)

| ull—ml = _(61,"71— - 77151,m+1) .
Substituting these into Eq. (71) we obtain

0

5m 5m 6’771, 5lm 6m - 67” 5'm - 6Im
Hll’(rm) — /da: (1, + No0y, 2~1-1)( i',m + Moo, +1) + ( Lm+1 — 21, )( I'ym+1 = 7100, )]
(1 +ng)oo(rm + z,w) 1+ n)o1(rm + 2, w)

hand =]

4+ f dz [(&,m—}-l +77061,m)(51’,m+1 + 77051’,177,) +
0 .

(1 + 778)00(7”711 + ;U,LU)

Since the functions 7; and o; are even in z, we can extend the limits of both integfals to o0

(81m — 1161,m41) (81t — M1 m+1)J
m = MOmia) (o, mt)| 03
@+ m)or(rm T 2,0) (€3)

and divide the result by 2. Straightforward algebra shows that Hy(ry,) is tridiagonal:
Hll’("'m) = am(6l,m51’,m + 51,m+161’,m+1) + ;Bm(5l,m+161’,m + 51,m51’,m+1) 3 (04)

* where am and B, are functions of frequency, defined by

.1 e 1 1 »
oo | m 1 o1
= . d — - —, .6).
g /—oo ? [1—1—7}300 1+771201J (C-6)

Using Eqgs. (B.14), (B.16), (B.22), and (B.20) we find, after some algebra, the following

simple formulas:

2 2
—Gm 1
~Tn =9 = m (C.7)

R o i

These results are used in Sec. V.
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Figure Captions

1. A stability diagram for the Mathieu equation. The shaded regions are the forbidden
zones where the eigenfunction is unbounded, and the unshaded regions are the allowed
zones where the eigenfunction has the Floquet form. The dashed lines depicts how the

parameters typically change as r increases.

2. A schematic diagram for the toroidal Alfvén continuum. Only the lowest two continua

are plotted. The vertical dashed lines indic@te the radial location of the gaps.

3. This diagram summarizes the behavior of various functions in the vicinity of gap m. -

The functions m;(r), v;(r), and the Fourier coefficients for the continuum eigenfunction

uf (r) are displayed. Detailed calculations are given in Appendix B.
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