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Abstract

The stability of kinetic toroidal Alfvén waves with multi-gap coupling is analyzed
by using the two-dimensional ballooning transform. An alternate convergence scheme,
based on the smallness of the inverse aspect ratio, is devised. The resulting wave
functions are oscillatory and do not balloon in contrast to the wave functions of con-

 ventional ballooning theory. It is shown that the single-gap theory is a special, weak
shear (s — 0) limit of the formalism. Analytical and numerical results for the two
fundamental branches, the ideal toroidal Alfvén eigenmode (TAE), and the kinetic

toroidal Alfvén eigenmode (KTAE) are presented and discussed. :



I. Introduction

The toroidal Alfvén eigenmodes (TAE) received great attention recently, because of their
possible importance for burning plasma experiments.!=!! It has been suggested that these
modes are likely to be excited by fusion alpha particles,’ and could cause deterioration in
alpha particle confinement, and hence of the self-sustained heating efficiency. In the light of
recent experiments,® which showed that the TAE instability thresholds may be much larger
than the prediction of the earlier theories, it is crucial that a thorough investigation should be
made of all the possible damping mechanisms present in the plasma. Since then, within the
framework of the ideal magnetohydrodynamics, much effort has been spent on the calculation
of damping rates due to Alfvén resonance; the so-called continuum damping.6=®!° Very
recently, however, investigations of kinetic effects on TAE revealed the intrinsic importance
of the combination of toroidicity and kinetics for Alfvén waves.!

A novel branch, the so-called kinetic toroidal Alfvén eigenmode (KTAE), emerges from
the continuum due to electron kinetics; this mode smoothly goes over to the well-known
kinetic Alfvén eigenmode in the slab limit.!?=1* The electron kinetics also cause a strong
stabilization of the ideal TAE. The kinetic effects on the stability of both the KTAE and the
TAE (with a well-defined ideal limit) have been carried out in Ref. 11, where the theoretical
framework is built around a single gap. This assumption seems to be plausible for very low
toroidal mode number (n) and small magnetic shear, for which the adjacent gaps are well
separated,.and the tunneling would be insufficient to induce a strong coupling between the
gaps. However, for either moderate n-number and/or moderate magnetic shear, the coupling
of gaps could be quantitatively s_igniﬁcant. It is the purpose of this paper to evaluate the
multi-gap effects on these two fundamental branches, the KTAE and the TAE.

A multiple-gap calculation is fundamentally a two-dimensional calculation, and must in-



voke an intrinsic toroidal coupling scheme. The conventional ballooning theory*®~'® (with
its quota of successes in dealing with the ideal system) encounters the problem of a complex
solvability condition for non-ideal systems.!®?° Taking advantage of an additional small pa-
rameter, the inverse of the large aspect ratio, an alternate scheme is devised for the intrinsic
toroidal coupling. The scheme is based on two-dimensional (2D) ballooning transform,®
and exhibits several distinctive features. Among others, the eigenvalue of the 2D system is
determined as an average over the eigenvalues of the parameterized ballooning equation as

a consequence of the periodicity constraint imposed on the ‘non-ballooned’ wave function.

In the conventional ballooning theory, on the other hand, the 2D-eigenvalue is determined

15-20

by a local parameterized ballooning eigenvalue. at the extremum, e.g. A =0, 0r A = 7.
The necessary details of the formalism are given in Sec. II, while in Sec. III the analytic
and numerical results are presented for the two fundamental branches. Comparison with the
single-gap results will be discussed in Sec. IV, where we also show how the basic equation-

for the single-gap theory of Ref. 11 can be obtained from the ballooning formalism.

II. Ballooning Theory for Toroidal Alfvén Waves

The 2D eigenmode equation describing the Alfvén waves in an axisymmetric tokamak with

circular cross-section is modelled by
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where ¢, is the Fourier component defined by the physical electrostatic potential ®(r,8,¢) =
exp(in{—imf) Y-, exp(—1il8)¢s(z), z = n(g—qo) labels the radial position, § (¢) is the poloidal
(toroidal) angle, m is the leading poloidal mode number, go = m/n, s = (dfn q/dfn 1),=4,

is the magnetic shear, {} = w/w, is the mode frequency normalized to the Alfvén frequency



wa = va/(2Rq), va is the Alfvén speed, f(z) represents the radial variation of the Alfvén
speed, € = 57/2R, is the toroidal coupling constant, R(r) is the major (minor) radius, b
stands for the non-magnetohydrodynamic effect (primarily the electron parallel response)
measured by (p, kg s)2/4 plus an imaginary part representing the electron Landau damping,
and ks = m/r is the poloidal wave number.

The physical meaning of individual terms in Eq. (1) is transparent: the first two constitute
magnetic bending and ion inertia; and the remaining represent the toroidal coupling, and
_ the electron kinetics respectively. Neglecting  in Eq. (1) yields the commonly adopted ideal
TAE equation.'**%7 For ¢ = 0, Eq. (1) reduces to the equation for the kinetic Alfvén wave
in slab geometry.'*=1* Although the coefficients of the last two terms of Eq. (1) are small,
these two terms should not be treated as mere perturbations because they may (and, indeed
do) create new branch of eigenmodes.

In the 2D system of Eq. (1), the ballooning symmetry, i.e., the invariance under the
translation z — ¢+ 1, £ — £+ 1, is violated by the radial dependence of f(z). To solve this
problem with broken ballooning symrﬁetry, we shall adopt a systematic procedure based on
the 2D ballooning transform. For the toroidal Alfvén waves, it is appropriate to consider
Q% f(z) = 1+ eg(z) with g(z) = g + 2z/me + ... where € = ¢/[0¢n(q%/v})/0nq?| =4, and
g is the 2D-eigenvalue of order unity, measuring the frequency shift from the center of gap.

Making use of the 2D ballooning transform®®
be(z) = f dXdk exp [ik(z — £) — iM] @(k, ) 2)

and neglecting higher order effects, we obtain a 2D equation in the k£ — A representation

82 1 + 6§ . € . 32
oz Pk ) + ==k, 2) + 5 cos(k + Nk, A) — m@(’c, A)
= b(1 + s*k*)p(k, ) = 0 (3)

for the scaled variable ¢ = @v/1 + s2k?, which must satisfy the evanescent boundary condi-
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tion at large k, and the periodic boundary condition in A. In Eq. (3), b = (pske)?/4 +1...,

and

~ o0
gEg-(Zz/me)ﬁ.

contains derivatives with respect to A. Defining the self-adjoint ballooning operator

3 1+eg(N) | € s?
LA = o T 4g( ) +3 cos(k + A) —

mg + (1 + S2k2) (4)

where gG()) is the parameterized (A—-dependent) eigenvalue of L[], we rewrite Eq. (3)
(correct to the first order of €) as '

[+ 500 = 50) = 5z | 9k 1) = 0, )
which will be solved perturbatively. Notice that in Eq. (5), we have neglected the higher
order derivatives (with respect to A) such as (1/m?)9?/0)? arising from the “higher order”
symmetry breakings associated with (z/m)? or (¢/m)? ... terms. This is possible only if
(1/m)0/0X is shown a posterior: to be proportional to a small param;ater intrinsic to the
system (here, the inverse of the aspect ratio ¢€), so that the perturbative solution to the first
order can be justified.

Following the methodology of Ref. 19, we choose X(k,\) to satisfy the zeroth order
ballooning equation

LAX(k,A) =0, J (6)

for which the A-dependence of X comes merely through cos A and sin A [Eq. (4)]. The lowest

order wave function is constructed to be U(A)X(%, /\), where ¥()) is assumed to have a fast

variation in A. Assuming that the mode number m ~ €2, and expanding the total wave

function

ok, ) = TW)X(k,A) + oM (k) + ... )

as a perturbation series, we can readily obtain the first order equation

L + £l = G TNk ) - 5z T

X =0. .
2me  dA (k, ) =0 (8)
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Due to the self-adjointness of the ballooning operator £, standard manipulations reduce

Eq. (8) to a first-order differential equation in A

2 ) g gonem =0, )

with the general solution

me [A -
v = exp (55 [ ¥ty 500)) . (10)
The imposition of periodic boundary conditions on ¥(A)[A, (0,27)] determines both the 2D-

eigenvalue g, and the wave function ¥:
2N
= ¢ d\j()) — — 11
9= f DGO - ==, (11)

where N is an integer. It is clearly evident from Eqs. (10) and (11) that ¥() is fast varying,
but non-localized in A-space, in contrast to the localized ¥ () of the conventional ballooning
theory.15-1°

We must also emphasize that, for the present case, the perturbative “expansion param-
eter” (1/m)d/8A of the ballooning formalism comes out to be ¢, in lieu of 1/4/n for the
conventional ballooning theory. For Alfvén waves in typical tokamaks, this parameter in-
deed happens to be smaller than unity justifying the relevance of our approach to the realistic
scenario. This fortunate situation, in general, does not pertain; for weakly dissipative drift
waves, for example, the effective e (the coefficient of the toroidal term with appropriate nor-
malization) turns out to be 2¢/s, a quantity greater than unity throughout the machine.
Thus the neglect of all higher order derivatives in Eq. (5) cannot be justified, and as a con-

sequence, the non-localized W()) is unlikely to be a proper description for drift waves unless

some other realistic small parameter can be identified in the system.



III. 2D-Eigenvalues and Mode Structure

In the ideal limit the zeroth order ballooning equation [Eq. (6)] reduces to

9% 1+€g(N)
TR

+ 5 cos(k + A) — F(k)] X(k,A) =0 (12)

with F(k) = s2/(1 + s*k*)%. It has been shown that in the small ¢ limits, Eq. (12) can be

manipulated to yield the analytic dispersion relation,”°

D1g(A) 4+ Day/1 — G*(X) = cos A, o (13)

where D; and D, have been tabulated in Ref. 7 for various values of magnetic shear. In
particular, for weak shear, both D; and D, are exponentially large, so that §(A) tends to be
exponentially A-independent. On the other hand, as the magnetic shear becomes la.rge D,
goes to zero very rapidly. As a result, the 2D-eigenvalue, g, also goes to zero on averagmg
cos A over A.

In the general case, Eq. (13) can be solved for the physical (1)), and the result substituted

in Eq. (11) to obtain the ideal eigenvalue

2D, ( 1 )
g=- E , 14
m/D?+ D2 \Di+D} (14

where E(x?) = [7/* d$\/1 — k?sin® ¢ is the complete elliptic integral of the second kind.

With the electron kinetics, the 2D-eigenvalues are obtained by numerical methods. We

first solve [using a shooting code] the ballooning Eq. (6) to obtain the parameterized eigen-
value §()). The numerically obtained G(A) is then averaged over A to yield the kinetic
eigenvalue g, which now contains damping. For the TAE branch, the A dependence of the
real (imaginary) part of §()) is displayed in Fig. la [Fig. 1b] for various values of the shear
parameter s = 0.2, 0.5, and 1.0. with ¢ = 0.2. The complex parameter b is represented by its

absolute value |b] and the phase Arg b = tan™?(Im b/ Reb), for which we use |[b] = 6 x 1075



and Arg b = —0.2. The A-dependence of § is qualitatively similar to that described by the
analytic dispersion, Eq. (13) for the ideal mode, i.e., it is very weak at small shear, and
tends to be oscillatory around zero for large shear. The large damping rate for A = 7 in the
present ballooning calculation would make the average damping rate to be quite different
from the lowest (A = 0) damping rate predicted by the conventional ballooning approach.
This intrinsic 2D effect will have important consequences for the stability of TAE. For the
KTAE branch the A—dependence of § is much weaker than that for TAE, and Reg is never
near zero. These two features suggest the one-dimensional origin of the mode, and indicat;e
that the effects of multi-gap coupling on KTAE are expected to be weak.

The result of Figs. la and 1b also indicates that Reg is much greater than Img. As a
result, U()) is essentially a purely oscillatory function of A. This implies a non-ballooned
mode structure in poloidal direction, even if the magnetic shear is not small. The radial
extension of this non-ballooned mode is measured by Ar ~ er with a suppression factor
arising from the weak A-dependence of g either for the small magnetic shear or for the
KTAE branch.

The 2D-eigenvalues for TAE (KTAE) are plotted in Figs. 2a, 2b (Figs. 3a, 3b) as functions
of the parameter |[s?, which measures the strength of the kinetic term. For all these cases
¢ = 0.2, and the shear values of 0.2, 0.5, and 1.0 label the curves ¢,b and ¢ respectively.
In addition, the curves with the subscript 2 are obtained from the present theory which
naturally includes the multi-gap coupling, whereas the curves with subscript 1 are from the
single-gap theory for comparison. In Sec. IV, we will show that the single-gap theory of
Ref. 11 is a limiting case of the present theory. Large shear pushes the Re g of TAE towards
zero, i.e., towards the center of the gap. However, the shear effect on the real eigenvalues of
KTAE, which resides in the continuum, is not as it is strong as for the TAE.

The magnetic shear augments damping rates for both TAE and KTAE, and stronger for

KTAE. However, the TAE suffers stronger damping than KTAE in regions of parameters



where kinetic effects are moderately strong; i.e., for high temperature, moderate shear and
moderate mode numbers. It may be thus easier to excite KTAE than TAE in the interesting
parameter regimes. This tendency is demonstrated in Fig. 4, where we find that as 18]
increases, there is a critical value (dependent on s) beyond which KTAE is less damped than
TAE.

The strong kinetic damping on TAE is also related to the kinetic effects on the mode struc-
ture. The ideal TAE mode extension in the k-space, primarily measured by k ~ 4/ey/1 — g2,
. could be greatly modified by the electron kinetics that tends to capture the mode in a much
less extended k region. This mechanism for the enhancement of damping rate due to electron
kinetics requires an intrinsic inclusion of the kinetics; a simple-minded perturbative estimate
presuming ideal mode structure will not do. These conclusions are supportive, and are in

essential qualitative agreement with the basic results of the single gap theory of Ref.-11.

IV. Transit to Single-Gap Theory

In the small shear limit, the balloorﬁng equation [Eq. (6)] can be converted to a solv-
able system by taking averages over the fast scale arising from toroidicity. Defining ¢ =
@, cos(k/2) + ¢, sin(k/2), and averaging Eq. (6) [over k] weighted with sin k/2 and cos k/2,
one obtains a set of coupled equations for ¢., and ¢,.! These two equations can be expressed

in terms of a new pair of fields 1 = @, £ 1,:

’ _dE2 + l-&z SP— = _'Z- eXp(Z )QD+ ’ _
&2 . d - € ,
<W —' o + h(k)) Y+ =7 exp(—id)g- , | (16)

where k denotes the slow scale distinct from the fast scale k, and h(k) = eg/4— F(k) —b(1+
s2%°). The explicit A dependence has no effect on the eigenvalue determined by Eqgs. (15),(16),

because exp(+i)) can be absorbed into the wave amplitudes .. For example, one can intro-



duce @, = w4 exp(i)), so that both the &, and ¢_ are A-independent. This A-independence
of the averaged equation is not surprising, for A is just a phase shift, which is effectively
averaged along with the average over the fast scale. For averaged equations, the scale length
of k is much greater than unity due to its slow variation, so that the second derivatives
can be neglected. Then, the coupled equations (15) and (16) are reduced to two first order
differential equations, the basic equations derived under the single-gap assumption,!! except
that in % the G-term of Ref. 11 is replaced by the F-term. As sk > 1 (for small but finite
b, sk ~ (s/b)/3 > 1), there exist only two independent parameters (the coefficients of the
F-term and the kinetic term) that may enter into the dispersion. For the KTAE branch,
since the F-term is not crucial, only one independent parameter (4sp,ks/€)? (= 7/ of
Ref. 11) may come into the dispersion. This is just the KTAE scaling of Ref. 11.

It is worth noting that the small shear limit implies a weak A-dependence for the param-
eterized eigenvalue §(\) of the ballooning equation. Since the exponential factor of Eq. (10)
is then suppressed by the weak variation of §(\), the wave function ¥(A) can no longer vary
on a fast scale. This relative A-dependence of ¥ implies that now the entire wave function
in the k — A space is descril:;ed by X(k, ) alone. The averaging scheme then yields a mode
structure X ~ (k) exp(—i\ — ik/2) + ¢_ (k) exp(ik/2). Substituting this expression into
the 2D-transform [Eq. (2)], one can readily find that _ stands for £ = —1 component, and
w— stands for £ = 0-cornponent; both these components are peaked at z = —1/2. The
delineation of the reduction to the single-gap theory is thus complete. Physically, the weak
shear implies that the separation between the gaps becomes large and the wave function
localized in these gaps do not overlap.

Quantitative comparison of the theory with multi-gap coupling, to the single-gap theory
is also presented in Figs. 2a, 2b (Figs. 3a, 3b) for TAE (KTAE). The numerical results for
the single-gap theory are obtained by solving Eqgs. (15) and (16) with the second derivative

terms (d*/ dEZ) neglected. For magnetic shear near 1.0 the theory with multi-gap coupling

10



predicts a stronger damping rate than that given by the single-gap theory (by a factor of ~
2) for the TAE branch. However, the effect from multi-gap coupling is not significant for the
KTAE branch. The discrepancy between the two theories is noticeable for large shear and

tends to become negligible as the magnetic shear becomes small.
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Figure Captions

la(1b). The real (imaginary ) parameterized eigenvalue of the TAE mode as the numerical
solution of Eq. (6). The curves a, b, and ¢, stand for s = 0.2, 0.5, and 1.0 respectively
with |6 = 6 x 1075, Arg b = —0.2 and ¢ = 0.2.

2a(2b). The real (imaginary) 2D-eigenvalue of the TAE mode vs. |b|s® with € = 0.2. The
curves a, b, ¢ and d stand for s = 0.2, 0.5, 1.0 and 2.0 respectively. The subscripts 1

and 2 represent the results from the single-gap and multi-gap theory respectively.

3a(3b). The real (imaginary) 2D-eigenvalue of the KTAE mode for the same scenario of
Figs. 2a and 2b.

4. The comparison of the damping rate (—Img) for TAE (Curves T, — T.) and KTAE
(Curves K, — K_.) for the same scenario of Fig. 2b. The subscripts a, b, and ¢ stand for

s = 0.2, 0.5, and 1.0 respectively.
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