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Abstract

The gyrokinetic integral equations for the study of the ion temperature gradient
driven mode (7;-mode) in toroidal geométry, at low plasma pressure, are extended to
include equilibrium ion parallel vg)(r) and perpendicular ve(r) sheared flows, where 7
is the minor radius of the flux surface. Magnetic gradient and curvature drifts of the
ions as well as finite ion Larmor radius effects are included. The parallel sheared flow
is shown to be destabilizing. The perpendicular sheared flow is a stabilizing mecha-
nism. Mixing length estimates show that the 7;-mode induced ion thermal transport
increases with increasing parallel flow shear, and decreases with perpendicular flow
shear. The decrease of the ion transport is due ﬁot only to the decrease of the mode
growth rate but also to the shrinking of the mode width. Using the mixing length for-
mulas for the thermal transport associated with the unstable modes we show that the
results are consistent with the experimental observations concerning the improvement
of cénﬁnement in H-mode discharges coincident with the increase of cross-field sheared

flows.
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I. Introduction

Experimental observations!~3 and theoretical studies?® indicate that the ion temperature
gradient (ITG) driven drift wave instability is the most plausible candidate responsible for
the anomalous ion thermal transport in tokamak plasmas although there are still some is-
sues that need to be cleared up to make a final conclusion. Recent experimental results
show” ! that stabilization of edge turbulence by nonuniform radial electric field E. (r) with
the related E x B sheared flows is a potential explanation for the confinement improvement
seen at the L to H transition. Motivated by those new facts several authors have studied
the correlation between n;-mode (ITG mode) and perpendicular flow shear.’?~'* Hamaguchi
and Horton!? show from fluid theory in a sheared slab geometry that ITG driven turbu-
lent thermal transport is significantly reduced in the presence of sufficiently strong sheared
poloidal flows. With kinetic considerations stability studies'®='* show that poloidal sheared |
flow has a significant stabilization effect on the linear 7;-mode in slab geometry under the
approximation that the mode wavelength is much longer than the ion gyroradius so that
the finite ion Larmor radius effects are weak. In addition, it is indicated!® that the results
obtained with kinetic theory are significantly different from those obtained with the fluid
approach.

In the early 70s'® stability analysis showed that radial shear of the parallel velocity can
drive microinstabilities in an inhomogeneous plasma with a sheared magnetic field. Moti-
vated by the observations that significant levels of radially sheared toroidal flows have been
measured in neutral-beam-heated discharges the effects of such flows on the slab 7;-mode are
studied and found to be destabilizing.'®> The toroidal flow is essentially a parallel ion mass
flow vg)|(r) in tokamaks. At the same time, parallel sheared flow is studied in an attempt to

explain the edge turbulence recently.!®




It has long been known that the finite Larmor radius effect is important for drift-type
microinstabilities such as 7;-mode in plasmas of interesting parameters. In addition it is
realized recently!” that ion curvature and magnetic gradient drifts, which are neglected in
slab geometry studies, have substantial destabilization effects on ITG driven mode and that
the theoretical results after taking into account such effects are closer to the experimental
measurements than the slab results are.

The integral equations which take into account full ion dynamics such as finite Larmor
radius effects, curvature and magnetic gradient drifts wp (vﬁ, v?%,0) as well as parallel transit
kv relevant to the 7;-mode in toroidal geometry!” are extended to include equilibrium ion
parallel vy (z) and perpendicular vg(z) sheared flows in this work, where z = r — ro with
r being the variable in the minor radius direction and ro the minor radius of the mode
rational surface. So-called quasi-toroidal model'” in which the ion curvature and magnetic
gradient drifts are taken to be constant over a flux surface and equal to the maximum values
at = 0 (the outside of the torus), and the mode coupling introduced due to the toroidal
feature of the equilibrium magnetic configuration is neglected for simplicity. This means
that the driving force for the instability is overestimated for most parameter regimes except
when the mode width A9 > 7/2 and magnetic shear § = rdg/gdr > 1.7 In this parameter
regime the mode coupling has strong destabilization effects so that the quasi-toroidal model
underestimates the mode growth. Fortunately, the errors introduced by the quasi-toroidal
model are negligible for most of the parameter regimes presented in this work. The ion
bounce motion and trapped ion effects are neglected due to less relevant to n;-mode and

electrons are considered to be adiabatic for simplicity.

In the stability analysis we introduce the six dimensionless parameters 05 = (Ln /vsi)dvg/dz,

66“ = (Ln/vy)dvgy/dz, L= Ln/Ly, n;i = Ly/Lzi, € = Ly/R, 7. = Te/T; and show the
parametric dependence of vL, /vy = f(U7, v(')“,m,f, €n, Te, kop;) and other numerical results,

where L, and Lg; are the density and ion temperature gradient scale length, respectively,




L, is the magnetic shear scale length, vy = (2T;/ m)l/ 2 the ion thermal velocity and R the
major radius of the torus.

The remainder of this work is organized as follows. In Sec. II the equilibrium distribution
function of the ions in the presence of sheared flows are obtained and some approximations
made to simplify the problem are discussed. The integral equation in the presence of sheared
flows is derived and discussed in Sec. III and the numerical results are presented in Sec. IV.
Section V is devoted to the discussions and conclusions of this study including comparisons

with the experimental data on sheared flow.

II. Equilibrium Distribution Function in the Pres-
ence of Sheared Flows

The local velocity distribution functions in the presence of parallel sheared flow are Maxwellian
distributions with a shift in the velocity component v in the magnetic field direction. De-

tailed derivation of the particle distribution function in the presence of perpendicular sheared

flow can be found in literature.’® Here, only the outlines are given for the convenience of

discussion.

The equation of motion of a charged particle in an electric field E(x)X and magnetic field

B(z) is given by

dr e ~ o~

where v = dr/dt, Q = eB/mc is the particle gyrofrequency, and e,m and B are the charge,

mass and the ambient magnetic field, respectively, ¢ is the speed of light in vacuum; X is
the unit vector in the z direction and b in the magnetic field direction. The constants
of motion are (i) the total energy related to perpendicular particle motion, o = (v2 +
v2)/2 + e®o(z)/m with E(z) = —08o(z)/0z; (ii) the thermal energy due to parallel motion,
B = (v)—voy(z))?/2; and (iii) the position of particle guiding center X; = z+[v, —vg(X,)]/%,




where vg(X,) = —cE(X,)/B.
The general form of the distribution function of the charged particles in the presence of

the electric field E(z)x, magnetic field B(z) and parallel flow shear vg(z) can be written

&818

2 1,2 e &,
fo(a,ﬂ,Xg) = 3/ U? g(Xg) exp _('Ux:t;vy) _ (’Ull Z'UOII) . ‘;()gj)) (2)

Uy

where v, = (2T(X,)/m)Y/? is the thermal velocity of the charged particles, and g(X,) is a
function determined by the normalization condition [ fo dv = n.
By expanding

Bo(a) = Bo(X,) + T2 (0 = X,) = o(X;) +

Bvy  Bugyy
) )

and substituting it into Eq. (2), the equilibrium distribution function in the presence of

sheared flows is obtained as follows:

_ n(Xg) ”g + ('Uy - 'UE)2) ('Ull - UOII)Z
fo(a,ﬂ,Xg) = m exp l— 2 - 2 (3)
where vg = vg(X,), voj = vo)(X,) and
n(X,) 1 vy
0(0) = 20 cxp [ca(,) gt + 22 @

has been obtained from the normalization condition mentioned above. We note that all the
terms of order € = vj(X,)/Q or higher are neglected, compared with unity, for simplicity.
Physically, this means that only weak perpendicular flow shear is considered here. Those
high order terms have to be kept if instabilities such as the Kelvin-Helmholtz (KH) instability
driven by strong shear in the flow velocity are considered. For such cases the equilibrium
distribution function is complicated. However, the procedures presented in this work are

still valid but become more complicated.




ITI. Integral Equation in the Presence of Sheared Flows

We consider a slab magnetic configuration B = By (2 + & Sf), where L, is the scale length
of magnetic shear. The ion drift motion due to magnetic curvature and grad-B is taken to
be vp = (v} /2 + v})/QR over a flux surface, the value at § = 0 point, where R is the major
radius of the magnetic configuration and 6 is the poloidal angle.

By linearizing the distribution function f = fo + f1 and substituting it into Vlasov

equation, the perturbation of the distribution function is obtained,

filz,v) = —% {fog(m) + li(“’ —k-va)fo—- z%g 86)]2]

X /_too d(z') exp [—iw(t' — 1) +iks(y' — y) + k(2" — 2))] clt'} (5)

where vy = Vg + vy|| b.

From the particle motion equation given by Eq. (1) it is easy to see that vy = Q(vy—vE),
or vy, = Quy, and 4, = —Quv,; with uy = v, — vg(X,) where the dot is the derivative with
respect to time. Introducing w} = v2 +u2, 7 =’ —t, and § = 6+ {7, the phase of the
particle gyromotion at the time ¢/, then Eq. (5)Amay be written for the ions as

filz,v) = —%{fo&f(x) + [i(“’ — k- va)fo— z%&? aaii,

U)-zLT ’U%T

o .
X / drd(z") exp [— i(w — ko vE — Ky vo) )T — zenTw*e (

: v v
2wy vg / i)ﬁ_?: ; ____ka YL (sin 6’ — si
+ v (_Cos §' — cos 6) + 2 vZ + 0 (sind’ —siné)| ¢, (6)
where
o n(Xy) wi (o) = vop(X))?
fole, B, X,) = 732 03(X,) &P [ vE(Xy) vi(Xo) , "

€n = Ln/R with L, being the density gradient scale length, wex = (ky cT.)/(eB Ly) is the

electron diamagnetic drift frequency, and v;; is the ion thermal velocity. From Eq. (7) it is
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straightforward to obtain,

dfo _ n' T wﬁ_ 3 (’U” — '00”)2 , m(v“ — ’00“) , MUy
5Xg—{7%—+f'(v%“2+ R e el v R

with the prime ' ” being the derivative with respect to Xj.

The Fourier component of the perturbation of ion density is

\/_/nz(m ) exp[—ikz]dz = 127r /exp[—ikm]dw/f1 av ,

and electrons are adiabatic
~ en
ZOBEF O
where 35(1:) is the Fourier component of the perturbed electrostatic potential.
Substituting Eq. (6) into Eq. (9) gives
. ne ~ 1€ dk’' dz . 0
() =~ 8 - 7 | =8 [ 7= il — sl |

2
vf’ Wike T] H(r,z)dr

Te Ut’l.

X exp [—-in + ik, vgT — 1

where 7, = T./T; and
L
H(r,2) = =77 [ doyda? dé Jo (“’B“) Jo (“’lﬂh)f

o, - . . €n 3 L o
X exp [—(uﬁ + @) + ik oy T — ¢ — Wae (%2 + Qvﬁ)] )

with

kv k, 3 . o o~ ~ o~
[l 0” UE == 4 — + ( ——2-—}-’u,|2|> —2U6||U|| —2uyv§5] ’

Whe Wike Te

F = wx, l&}—

(10)

(11)

(13)

where n; = Ly, /L. with L7, being the ion temperature gradient scale length, & is normalized

t0 Wske, W, ||, Do||, U are normalized to vy.




The integrations over velocity space in Eq. (12) can be carried out analytically and give

_ 2nwske g b? o k” ’Uo||(37) k, ve(z)
H(r,z)= Jell+a) To(ky, k) exp [—c +19% e ore

2"7/ 1 ~ 1k Vi
_ T—OH [(E - 1) () + — T] } (14)

where

b= ——(250” + 'ik” Vg T) ,

a=1+i26"

Wke T
e

B4k kR L
2(l+a) (L4a) L’

F():l—

Sheared flows vg(z) and vo(z) are expanded and the terms of higher derivatives are ne-

glected,

vg(z) = ve(0) + vpT
vo|| () = voy(0) + v{,”:c =+ vé,”w .

Substituting Eq. (14) into Eq. (11) and performing the Fourier integration analytically gives
the ion density perturbation in Fourier space. Then the Fredholm homogeneous integral
equation of second kind can be obtained from quasi-neutrality condition as the mode dis-

persion equation

. +oo R/ -
(L+7)o(k) = | \/—2—;K(k,k’)¢(k’) (15)




0 \/i €Xp |: <w + ';:L —3'2(—)'> Tw*e] 1
K(kK)=—i [ wsdr : exp [—@2 _ (1 _ 5) ag] {ao Toe

~oo Va(l+avX

2are (. gL 3 i k2 + k" kLK, L
Zv—e S Tl LAy [ -
(v + )®+1 +(1+a) [ 21+a)re (1+4a)re Lo

Fa(-0) () B-Bow o) gy (5 o) - o] s,
(16)

k—Fk Uy  vplnva Va
O=vx Tva T Ly

2 2
)\:_T_<_Ii’l> Wi,

Tet \ L
Do = w_—%*v_E(i)w | (17)

B, o
Lo =1Io <(1 T a)) eXp [_(I"J. + kl)/z(.l + “)] )

K2 =Rk, K, =k4+E

k, k' and ke are normalized to pi* = Q/vy and z and X, to p;, and I;(j = 0,1) is the
modified Bessel function of order j.

The flat density profiles (L, — oo) are not considered in this work so that the mode
frequency is normalized to the electron diamagnetic frequency ws, and the time integral
variable 7 is normalized to wg, in the equations. No essential changes are needed in Egs. (16)
and (17) except for rea.rranginé those normalizations if flat density profiles are considered.
Usually Ly; instead of L, is used for normalization in flat density profile cases.

It is easy to note that all the terms having %o vanish in slab limit (a = 1) except for the

terms in ©. The vanishing terms come from the ion curvature drift while the nonvanishing

“

<

S S



terms come from magnetic shear (vo” k= vo 3 L ) because parallel sheared flow instead of
toroidal flow is considered here. Hereafter the flow velocities vo = vg(0) = 0 are used since
the emphasis is put on the effects of the flow shears. In this case the effects of a parallel
sheared flow and a toroidal sheared flow should be the same.

Equation (16) is an extension of the formalism of Eq. (18) in Ref. 17 to include parallel
and perpendicular sheared flows. By putting 0y = %o = tp = 9g(0) = 0 we find that
Eq. (16) reduces exactly to Eq. (18) in Ref. 17.

Another interesting case for Eq. (16) is the slab limit. If we put @ = 1, which means that

L,/R=0,in Eq. (14) and substitute the results into Eq. (11) then we have

ni(k) = —% [nq’g(k) -I-/ d;c ’)/ Ton exp [i(k' — k)z] S(z, k k')] (18)

where

0 ‘ A
S = z/ dr exp [—iwt + 1k, vET] - nwxke Lo exp [—5(2,” + i (2'80” + iky vti'r) 2] {CD - Lu_v%(m_)
—00 - Wke

]» vE(x) 7)1 3 1 k‘” (U 2 266” L'n, Z'k“ Vi
Wke Te+Te F0—2+2_ 2 T B Te 2 T
= nfo W [ + — + T (Fo — 1)] — Z(() + : Gi— . Z(¢:)
| lwke T T ky vy ‘ Te L Vi G 2

26{,“Ln 1

Te  kjvu

+ C?Z(Ci)l - L+ CiZ(G)]} ;

with
w — kjvo| — kyvE

G = Ky s

and Z(¢;) is the plasma dispersion function. Finally, considering electrons as adiabatic we

have the dispersion equation in slab case,

(1+7.)3 / KK (k, ) (19)
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where

I{(k’ k/) - _ /::o _d\/g_; exp [Z(k' _ k)a:] {Cz Z(C‘i)"'e + ]:ltl)t:_ [Z(Cz) +n; (( - bl + bI]_/Io — %) Z(Cz)

%

+ G+ CiZ(Ci)) — 20 L (1 + CiZ(Ci))} }Fo(h, ) (20)
’ k2 kl2
b= kl;“ , by = —l—jl’——l— : (21)

In the shearless case kj, vo||, and vg are all constant then Eq. (19) can be further simplified

to the local dispersion equation,

1+7)l+ FO(’“L)Q’Z(Q)} + l::’:; {Z(Q)I‘o + s |G + (Cf - %) Z(¢) | To
- g0, B0 [Fo(’ﬂ) - Pl(lu)} } + i;’;‘ By (L+GZ(C) =0, 22

which is equivalent to Eq. (35) in Ref. 13.

It is easy to realize from Eq. (22) that vg does not change the stability of the mode
but causes a Doppler shift of the mode real frequency relative to the laboratory .fra,me
in the local approximation since vg enters the equation only through (;. Such frequency
shift is a function of z and will certainly change the particle-wave resonance and then the
stability of the mode in the nonlocal case. This mechanism is analogous to the magnetic
shear stabilization. The difference is that the wave-particle resonance parameter (; changes
through kj(z)vy in the magnetic shear stabilization while it does through kyvg(z) in the
poloidal flow shear stabilization.

Besides introducing a Doppler shift in the mode real frequency relative to the laboratory
frame as vg does, v has an extra effect on the mode, which is presented by the last term
in Eq. (22). It is this term which makes the effects of the parallel flow shear on the 7;-mode

completely different from that of the perpendicular flow shear. Here an attempt is made
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to show the effect of this term. In the long wavelength regime, ki pi < 1, Eq. (22) can be
written as a second order differential equation which is discussed in detail and numerically
solved for a variety of parameter regimes in Ref. 13. In the fluid limit, ¢; > 1, and vg =0

case this second order differential equation reduces to

d*¢ 1-& (Ln/Ls)?a? voyLn(Ln/Ls)z
bt S A [ 7 T LGtmi+Din

dz?  °

Jo-o o

where b, = k3p?, & = w/wx,, and = is normalized to p; = ¢,/ = /1.//mi{). The dispersion

relation obtained from Eq. (23) is

(k202 + 1)@* +

2
I oo L2 /42
_ 2 2 . | == A g
1+kgps(1+m)/7e+%(Ls)(2”+1)+a+(m+1)/fe ?

+z<%> 2n+1)14+mn)/7e=0. . (24)

It is easy to notice that the parallel flow shear effect on the instability is independent of the

sien of the derivative of the flow v/,. One approximate solution is that for &jp? (tm) 1
g of] P 0Ps 1,

and v:;”sz/cg S4(1+m)

5 o i LnTe/Ls(2n 4+ 1)(1 4 m:)
— 012 L% .
L= 2z(trm)

(25)

The condition |vgy|Ln/cs(1 + )2 S 1 is satisfied except in regions of strong vy and flat
density profile. From Eq. (25) we see that the last term of Eq. (22) has a destabilizing effect
on ni-mode. The numerical solutions of Eq. (24) given in Fig. 2 show the destabilization
mechanism for a general parameter regime. Such a destabilization mechanism is due to the
coupling between ion parallel transit motion And the radial shear of the parallel flow v(’)”.
The mechanism is very similar to the n; destabilization mechanism but with ion temperature
gradient replaced by the radial shear of the parallel flow. Because of this it is not surprising
to find out numerically that instability is still possible for n; ~ 0 if |vg| R (1 —2)vy/ Ly, (see

Sec. IV) which can be satisfied for flat density profiles or strong flow shear.
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IV. Numerical Results

A computer code is written to solve the integral eigenvalue equation Eq. (15) with the
kernel given by Eq. (16). The main difference from the case without sheared flows'” is that
the symmetry properties such as K(k, k') = K(K',k) and $(k) = ¢(—k) which exist and
significantly reduce the number of kernel evaluations in the case without flows are broken
by the presence of equilibrium flows vo|(z) and vg(z). This symmetry breaking increases
the required computer time by about 4 times for getting an eigenvalue and an eigenfunction.
Nonuniform grids are used to reduce the computer time needed without an appreciable

decrease of accuracy.

A. Parallel Sheared Flow Effects

We first study the parallel sheared flow effects on the ni-mode by putting vg(z)-=-0/in

Eq. (15). The normalized mode growth rate ykgp; Jwxe = (YLn/ cs)\/i/Te versus poloidal

wavenumber of the mode kgp; is given in Fig. 1 for ﬁ(’)” = fj—:— d—;’%‘L = 0.0,0.2 and 0.5. It is |
seen that for the parameters studied here the parallel flow shear is always destabilizing over

all unstable kgp; region. At the same time the maximum growth rate remains at kg p; ~ 0.7

regime regardless of the parallel sheared flow. The mode real frequency is essentially not

changed by such small parallel sheared flow.

The growth rate of the mode is given as a function of paré.llel flow shear in Fig. 2 for
¢, = 0.0, 0.1 and 0.25. Destabilization effects induced by the ion curvature and magnetic
gradient drifts are clearly shown and such destabilizing mechanism does not change in the
presence of parallel sheared flow. However, the differences between the three growth rates
seem to decrease with increasing of 0y which means that the parallel sheared flow destabi-

lization effect slightly decreases with €, the toroidicity parameter in the quasi-toroidal model

approximation. Also shown in Fig. 2 are the solutions of Eq. (24), the dispersion equation
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for the fluid approximation in sheared slab. The mode growth rate obtained from the fluid
approximation is about five times higher than the kinetic result. The destabilization effect
of the parallel sheared flow is independent of the sign of 6{)“ so that the curves are symmetric
with respect to the vertical axis and only the results for g > 0 are presented.

The mode growth rate and real frequency versus ; are presented in Fig. 3 for g = 0, 0.5,
1.0, and 2.0. It is easy to notice in Fig. 3(a) that the parallel flow shear not only increases
the n;-mode growth rate but also decreases the threshold value of n;. Even for n; = 0 the
instability is still possible if vy, is large enough (v 2 1.5v;/L,). The mode growth rate
for n; = 0, Uy = 2 is the same as that for 7; = 2.2, ¥ = 0 for the parameters used here.
This may provide comparison between the free energy sources related to the temperature
gradient and the parallel sheared flow. Theée results are different from the results obtained
for the long wavelength mode in the slab,'® which show that parallel sheared flow does.not
change the threshold value of 7; although it increases the mode growth rate when the mode
is away from the marginal stability. The corresponding real frequency of mode is given in

Fig. 3(b) which shows that the frequency increases with parallel sheared flow.

B. Perpendicular Sheared Flow Effects

The perpendicular flow shear v}, effect on 7;-mode is shown in Fig. 4. It is seen that perpen-
dicular sheared flow has stabilization effect on 7;-mode over all wavenumbers in the unstable
spectrum except for the short wavelength region kgp; > 1.2. The dimensionless perpendic-
ular flow shear ¥} needed to have a notable stabilizing effects on the mode are about one
order of magnitude lower than the ¥, values which show strong destabilizing effects. This
may due to the small ratio of the poloidal to the parallel component of the wave vector scales
that ky ~ ks < kg for the modes studied here in tokamak geometry.

The normalized mode growth rate v/wx. (a) and real frequency w/wx. (b) versus v are

given for 6(’)“ = 0.0, 0.5, and 1.0 in Fig. 5. For ¢, = 0.2 the perpendicular sheared flow
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always stabilizes the mode and such stabilization is almost independent of vy and the sign
of v};. However, for slab geometry (e, = 0.0) and vg) > 0 (the solid line in Fig. 5(a)), vg is
destabilizing first then stabilizing when it increases from zero to positive values while it is
always stabilizing for negative values. This result is in agreement with that obtained under
the long wavelength approximation.'?'® The mode growth rate for ¢, = 0.2 is twice that
for €, = 0 when vjy = 0. However, the 95 values required to completely stabilize the mode
for the former are almost the same as that for the later when vy < 0 and even smaller for
vl > 0. This means that the stabilization effects from the perpendicular flow shear on the
ni-mode are stronger in the toroidal geometry than that in the slab.

The stabilizing effects of perpendicular shear flow on the n;-mode is significant but the
mode real frequency does not change very much with such flow. The mode real frequency
changes rapidly with 9 only when there are parallel flow shears coexisting with the-perpen-
dicular flow shear as shown in Fig. 5(b).

The threshold n; changing with 9% can be found in Fig. 6 for kop; = 0.75, Ln /Ls = 0.1,
€, = 0.2, 7. =1 and 66” = 0.5. The threshold value of n; increa_ses from 7 et ~ 2/3 ~ 0.7
for 5% = 0 to ~ 1.8 for % = 0.08. At the same time, the mode growth rate for 0% = 0.08 is

about an order of magnitude smaller than that for 9% = 0.0 when 7; = 2.0.

C. Magnetic Shear Effects

The magnetic shear parameter 5(r) = rdg/qdr in a tokamak plasma is usually small at the
center and has the maximum value at the boundary. Experimentally observed perpendicular
flow shear exists only in a narrow region of plasma minor radius and is typically most
important in the L to H transition. A natural question to ask is where this shear flow layer
should be located in order to get the maximum benefit. In other words, where the location
of the sheared flow is when the confinement improvement is observed if the suppression of

n; turbulence is responsible for the improvement in the confinement.
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The mode growth rate versus magnetic shear L,/L; = €,5/¢ is given in Fig. 7 for g, =
0, 1 and 3% = 0, 0.05. Comparison of the solid line (% = g = 0) and the short dashed line
(O = 1.0, ¥ = 0.0) shows that the destabilizing effect of ¥y becomes slightly stronger with
increasing magnetic shear for v = 0. The destabilizing effect of '56“ =1 (dvg)/dz = v /L)
is overcome by the stabilization effect of o = 0.05 (|dvg/dz| = vi/ 20L,) when L, /L, 0.1
(see the dashed line and the dot-dash line) while the destabilizing effect increases with the
magnetic shear and even enhanced by the perpendicular flow shear when L,/L, 2 0.3 (see
the short dashed line and the dot-dash line) for 9% = 0.05.

The curves of 3y = 0.0, 95 = 0.0 (the solid line) and ¥y = 0, 0 = 0.05 (the dashed
line) show that v} stabilization effect is very strong in low shear region (Ln/Ls < 0.05). For
Ln/Ls > 0.1 the effectiveness of the v stabilization decreases with the increase of rhagnetic
shear. For the parameters used here the stabilization effect on the mode from g =0.05
is almost negligible when L, /L, R 0.3, although the perpendicular flow shear seems always
stabilizing in the absence of parallel flow shear (see the solid line and the dashed line). For
high magnetic shear, much higher 9% is needed to suppress the n;-mode even without the
parallel sheared flow. The high effectiveness of the vy (r) stabilization at low magnetic shear
suggests that even in a shearless configuration the turbulence can be suppressed. by. flow
shear as a substitute for the magnetic shear.

The perpendicular flow shear 9 = 0.05 can be either stabilizing or destabilizing depend-
ing on the value of the magnetic shear if there is parallel flow shear present. For % =1 and
9 = 0.05 (dot-dash line) perpendicular flow shear stabilization effect dominates in weak
shear region (L,/Ls S 0.1) compared with the solid line. Such stabilization effect is even
enhanced by the presence of the parallel flow shear ¥y, in the region L,/Ls S 0.05, compared
with the dashed line (% = 0 and ¥ = 0.05). Comparison of the short dashed line (% =1
and 9 = 0) and the dot-dash line (9 = 1 and 9 = 0.05) shows that 0% = 0.05 is stabilizing

for L,/L, < 0.25 while it is destabilizing for L,/Ls 2 0.3 when 'ZF(’)” = 1. This is in line with
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the idea that edge turbulence may be caused by parallel flow shear of plasma in tokamaks.®

The magnetic shear effects are more clearly shown in Fig. 8 where the mode growth
rate /wsx. versus 0 are given for L,/L, = 0.2, 0.3, 0.4 and ¥ = 1. It is easy to notice
that vj is always stabilizing for 95 < 0 just like that in Fig. 5 where Ly /Ls = 0.1. The
perpendicular flow shear v} is, however, first destabilizing then stabilizing for 0 > 0 as
¥y increases. The higher the magnetic shear, the larger the destabilization region of the vg
value and the weaker the %, stabilization effect. Shown also in Fig. 8 is the mode growth
rate for L,/L, = 0.3, 56“ = 0 (the solid line). The perpendicular flow shear v is always
stabilizing regardless of the sign of vf;. Compared with Fig. 5(a) it is again clearly indicated
that the destabilization effects of the parallel flow shear increase with the magnetic shear,

especially when the perpendicular flow shear is small [0 S 0.1

D. Transport Estimate

We use the mixing length rule for transport based on the mode width Az and the linear
© growth rate to relate the results obtained in this work to some observations in. tokamak

experiments. The n;-mode induced transport is estimated with quasilinear theory,
XZ' = ’)’(A:U)Z

where ~ is the growth rate of the mode and Az is the mode width taking to be the half-width
(i.e. at the half maximum) of the real part of the eigenfunction in this work. In the units
used for v and Az the dimensional scaling of X; is wx.p?.

Normalized X; variation with parallel and perpendicular sheared flows are shown in Figs. 9
and 10, respectively. The increase of the transport ‘with the parallel flow shear mainly comes
from the increase of the mode growth rate v because the mode width does not change very
much with such flow. Roughly speaking 66“ ~1 (v(’)“ ~ vy [ Ly) is needed in order to have

noticeable effects on the n;-mode induced transport.
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For the perpendicular flow shear the decrease of the ni-mode induced transport is due
not only to the decrease of the mode growth rate but also to the decrease of the mode width.
Some typical eigenfunctions are given in Fig. 11 where the real part of the electrostatic
potential, the eigenfunction, is plotted for 95 = 0, 0.04, and 0.08. Besides shifting away
from the mode rational surface z = 0 and becoming asymmetric about it, the eigenfunction
shrinks (the half-width decreases approximately as Az o Ag(1 — aq|v|) with ag ~ 7 and
the mode growth rate decreases as 7 = yoexp(—f20%) with fa ~ 200 for vy = 0) when
|v};| increases. The eigenfunction shifts to = > 0 direction for 9; > 0 and to z < 0 for
% < 0 while its shrinkage is approximately independent of the sign of the flow shear. Such
shrinking of the eigenfunction is an essential feature in the reduction of the n;-mode induced
thermal transport by the perpendicular sheared flow. From Fig. 10 it is seen that in-order
to decrease the mixing length measure of the n;-mode induced ion transport by a factor of
9 from the value when vj = 0, the small perpendicular flow shear value of 3 ~ 0.03 is
needed assuming that ﬁ(’)” is less than 0.4 (v(’)“ < 0.4v/L,) and L, /Ls = 0.1 With the other
parameters given in the figure caption.

Hamaguchi and Horton'? performed a three-dimensional nonlinear fluid simulation in
a sheared slab geometry and showed that the anomalous ion thermal diffusivity is reduced
significantly if the poloidal flow shear is sufficiently strong. The results obtained in this work
are qualitatively in agreement with those of the simulations. Quantitatively speaking, the
poloidal flow shear needed to reduce the ITG turbulence induced transport by a factor of
two (X; — X;/2) as given by L,vg/c, > 0.2 in Fig. 7 of Ref. 12 appears to be about five times
the shear value L,vj /vy =~ 0.04 given in Fig. 10 of this work for the same magnetic shear
Ln/Ls = 0.1 and vy = 0. Of course, some .difference may be due to the nonlinear vortex
turbulence in Ref. 12 as compared with the mixing length formula used here. The nonlinear
vortex may be a self-organized state less susceptible to sheared flow stabilization.!® Another

possibility is that the flow shear stabilization effect is stronger in toroidal geometry than it
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is in a sheared slab as pointed out in Sec. IVB. A complementary nonlinear picture of the
effect of sheared flow is given in the work of Biglari et al.?® in terms of correlation functions.

In terms of possible correlation with the confinement improvement experiment we point
out that Burrell et al.2! report that the radial correlation length of the fluctuation decreases
when the plasma goes from L-mode to H-mode on DIII-D tokamak. Similar results are
observed on CCT tokamak.!® Assuming that the nonlinear effects only determine the am-
plitudes of the saturated fluctuations and that wavelengths of the saturated fluctuations are
close to that of the linear eigenfunctions (no appreciable cascade nor inverse cascade occurs),
then the shrinking fea,turé of the eigenfunction presented in Fig. 11 is in good agreement

with the experimental observations.

V. Discussion and Conclusions

Although we do not attempt to claim that ITG mode turbulence stabilization is respdnsible
for H-mode confinement of tokamak ple;sma,s in this work, it is interesting to explore the
relevance of the results presented to experimental observations. A natural way for exploring
the role of sheared flow in the edge confinement is to study the consequences of the parametric
dependence presented here by taking the hypothesis that the n;-mode controls the edge
transport.

While the shear flow boundary layer was first reported by Ritz et al?® in the TEXT
tokamak, the shear flow boundary layer studied extensively in the DIII-D tokamak provides
a more natural application for the present collisionless 7;-mode based model due to the higher
plasma temperature and the relatively large ion temperature gradient compared with TEXT
shear flow layer. Using the Doppler shift of the C+4 emission line and assuming that the
velocity of the carbon and deuterium thermal ion component are well coupled by collisional
drag, Groebner et al.?? interpret the simultaneous drop in the fluctuation level with the

abrupt change of the perpendicular (and poloidal) rotation speed in the shear layer as the
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evidence for the shear flow suppression of the turbulent transport. Here, we estimate the
dimensionless stability parameters for the L and H mode phases of this experiment in an
attempt assess the theoretical support for this interpretation of the improved confinement
with respect to the ion temperature gradient form of the drift wave turbulence.

Estimates of the gradients of the temperature, the perpendicular and parallel flow veloc-
ities in the shear layer are given in Table I as derived from the data in Groebner et al.?? The
estimates for the magnetic shear length L, and the density gradient scale length L, should
only be regarded as reference values since it is rather difficult to determine these parameters
accurately in the shear layer. More detailed profile evaluations are given in Ref. 24 but prob-
lems still remain for determining better estimates of the values of L, and L, in the shear
layer. Figure 3 in Ref. 22 is used to estimate the range of L, and the value of L, ~ 80 cm is
used.??

Even though the estimates given here'in Table II for the dimensionless stability parame-
ters are rather rough, the values when viewed with respect to our figures, especially Figs. 1,
5(a), 9 and 10 appear to reveal certain importaﬁt conclusions. It appears fairly clear that
the increase of 7% in the L to H transition is sufficient to be a strong stabilizing effect on
the turbulence. On the other hand, the change in the transport related to the values for
6{)” estimated from the C*4 data appears too small to have much effect on the turbulent
transport.

Considering that some plasma parameters such as 7;, Ln /Ls, T./T; are not from the
same specific experimental observations this comparison is very rough. Detailed comparison
is beyond the scope of this work and may be made when more complete experimental data
sets are available. Another uncertainty enters through the assumption that the thermal
jon component has the same velocity as the carbon component used to measure the flow
velocities.

In summary, parallel sheared flow has a destabilizing effect on kinetic toroidal n;-mode
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while the perpendicular sheared flow is stabilizing. The mixing length transport formula
shows that 7;-mode induced ion transport strongly decreases with the increase of the radial
shear of the perpendicular flow vg(r). The decrease of the 7-mode induced transport is
due not only to the decrease of the mode growth rate but also to the shrinking of the
eigenfunction. The parameters used in this work are reasonably close to the experimental
values inferred for the shear layer in DIII-D so that the 1',esults presented in this work are
expected to be related to the improvement of plasma confinement in the H-mode state of
the discharges.

Although the poloidal flow shear is always positive (vjg(r) > 0) in the spontaneous H
mode with plasma heating,®?%25 the appreciable effects of a negative flow shear on the
suppression of the turbulence and on the improvement of plasma confinement are confirmed
by the experiments with biased limiter.26 Thus as far as the sign of flow shear is concerned
the results presented in Fig. (5a) and Sec. IVD, which show that the stabilization effect is
approximately independent of the sign if the parallel flow shear is negligible,l are consistent
with experimental observations. (With regard to the sign of vg(r) it should be noted that
the minus sign in vg = —FE, /B is dropped in some experimental publications.)

The relative effectiveness of the stabilization from the perpendicular flow shear depends
on the strength of the magnetic shear. For weak magnetic shear L, /Ly S 0.1 the shear flow
stabilization is strong while for strong magnetic shear L,/ L, & 0.3 the shear flow stabilization
is a weak effect. This result suggests that there is a trade-off in the effectiveness of shear
flow versus magnetic shear as a mechanism for providing plasma confinement, and suggests
that further studies on the effectiveness of weak magnetic shear and high flow shear be
undertaken.

Besides the destabilization effects on the ITG driven modes the parallel flow shear can
drive instability even without the ion temperature gradient if |ug| 2 (1 — 2)vi/ Ly, which

can be satisfied for flat density profiles in the interior of the tokamak plasma or strong flow
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shear due to unbalanced neutral beam injection heating.

Various theories have been proposed to account for the source of the flow velocities®”~%°
which is not discussed in this work. The effects of particle collision are not taken into account
in this work and may be important at the plasma edge for some H mode discharges. The

self-consistent velocity source must be addressed in the future in order to understand the

fundamental physical relation between the kinetic ITG mode and the L to H transition.
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Figure Captions

1.

Normalized mode growth rate vkgp;/wx. vs. wavenumber kg p; for 1’36” = Lpdvy [vgde =
0.0, 0.2, and 0.5 and the fluid approximation. The other parameters are 7; = 2.5, -
Ln/Ls =0.1, ¢, =025, T./T; = 1.0, v = 0.0.

Normalized mode growth rate «/wsx. vs. parallel flow shear 176” = Lpdy [vgidz for
¢, = 0.0, 0.1,0.25 and the fluid approximation in slab (e, = 0). The other parameters
are 1; = 2.5, kgp; = 0.5, L, /L, = 0.1, T./T; = 1.0, v = 0.0.

. Normalized mode growth rate v/wx. (a) and real frequency w Jwxe (b) vs. n; for 66” =

Lydv/vidz = 0.0, 0.5, 1.0, and 2.0. The other parameters are kgp; = 0.75, Ln/Ls =
0.1, 6 = 0.2, T,/T; = 1.0, 8 = 0.0,

Normalized mode growth rate ykep;/wske vs. wavenumber kgp; for % = Lydve/vydz =
0.0, 0.04, and 0.08. The other parameters are 7; = 2.5, L,/L, = 0.1, ¢ = 0.25,
T./T; = 1.0, %“ = 0.5.

Normalized mode growth rate (a) and real frequency w/wx. (b) vs. perpendicular flow
shear ¥ = Lndve/vydz for T){)“ = 0.0, 0.5, 1.0. The other parameters are 7; = 2.5,
kgp; = 0.75, L,/L, = 0.1, €, = 0.20, T./T; = 1.0. The solid line is for slab €, = 0,

Uy = 1 and the other parameters are the same as above.

Normalized mode growth rate v/ws. vs. 7; for o = 0.0, 0.04, 0.08. The other param-
eters are kgp; = 0.75, L,/Ls = 0.1, €, = 0.2, T, /T; = 1.0, vg; = 0.5.

Normalized mode growth rate y/wsx. vs. the magnetic shear L,/ L, for different U and

9. The other parameters are 7; = 2.5, €, = 0.2, T./T; = 1.0, p; = 0.75.

26




10.

11.

Normalized mode growth rate 7/w«, vs. perpendicular flow shear 0 = Lndve/vsidz
for L,/L, = 0.2, 0.3, 0.4. The other parameters are n; = 2.5, kgp; = 0.75, U} = 1.0,
€ = 0.20, T./T; = 1.0.

Quasilinear thermal transport y(Az)?/ pfwse vs. Uy = Lnduoy vgde for €, = 0.0, 0.1, 0.25.
The other parameters are n; = 2.5, kgp; = 0.5, Ln/Ls = 0.1, T./T; = 1.0, v = 0.0.

Quasilinear thermal transport y(Az)?/ pfws, vs. 0 = Lndvg/vsdz for vy = 0.0, 0.5, 1.0.

The other parameters are 7; = 2.5, kgp; = 0.75, L,/ L, = 0.1, To/T; = 1.0, &, = 0.2.

The real part of the eigenfunction ¢,(z/p;) for 05 = 0.0, 0.04, 0.08. The other param-
eters are n; = 2.5, kgp; = 0.5, L,/ L, = 0.1, T,/T; = 1.0, 1’}6“ = 0.0.
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Table I

DIII-D Shear Flow Stability Parameters
Discharge #69785, B=2.1T, ] =16MA, R/a=1.67m/0.67m
deuterium T; ~ 200 — 600 ev, T, ~ 100 — 250 ev

Gradients L H
dT;
T —8.3kev/m —21.4kev/m
dr
dT.
—~7.3kev/m —7.3kev/m
dr .
L; 4.5cm 2.1cm
L. 2.4cm 2.4cm
L, 3.4cm 34cm
L, - 80 cm - 80cm
dvg ‘
— (2—4) x 10° /s (4—8) x 10° /s
- (1—5) x 105/s (5 —10) x 10% /s




