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The fluctuation-dissipation theorem is used to study fluctuation power
spectra,. in various plasmas, particularly at low frequencies. Gaseous and de-
generate plasmas are studied. Careful application of the theorem shows that
- a cold, non-magnetized plasma has a sharp zero-frequency peak in its mag-
netic field power spectrum. When a uniform magnetic field is applied to the
plasma, the energy under the zero-frequency peak is shifted into the Alfvén
and cyclotron modes. A simple relation between the fluctuation spectra and
dispersion relations of electromagnetic waves is found in deriving this result.
Using a kinetic theory treatment, a warm, isotropic plasma is shown to ex-
hibit a zero-frequency peak in its magneti’c power spectrum, with a different
functional dependence on frequency. In a stationary degenerate plasma the
magnetic power spectrum again has a zero-frequency peak. In a degenerate
plasma with net drift velocity, a white noise spectrum in voltage fluctuation is

found. This spectrum is similar to shot noise.
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Effects of fluid expansion on the Rayleigh-Taylor instability are stud-
ied. Overall fluid expansion often has a retarding effect on the growth of
Rayleigh-Taylor (RT) instabilities. Two new analytical examples of this phe-
nomenon of reduced growth or stabilization are given. Confirmation of this
phenomenon is also obtained from a new MHD code constructed specifically
for modelling fluids undergoing nearly homogeneous expansion or contraction.
In the code, expansion is treated by making each point of the computational

grid co-moving with a predetermined overall expansion.

Short-range force effects on the Rayleigh-Taylor instability are also
studied with the help of a new PIC MHD code. It is to be expected that short-
range forces would effect the instability much like surface tension, slowing the
growth Qf the instability. Comparisons of simulations with and without short-
range forces do not give unambiguous confirmation of this expectation, however.
Limitations to the accuracy of the code exist at short wavelengths, where the

effects of the short-range forces would be expected to be most pronounced.
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Chapter 1

Fluctuation Power Spectra in Gaseous and Degenerate
Plasmas

1.1 Introduction and Outline

In a plasma, quantities such as local electron density, ion density, elec-
tric field, and magnetic field are all smoothly varying and well-defined functions
of space and time, on some practical or coarse-grained scale. This is part and
parcel of the definition of a plasma. However, since the constituents of a plasma
are discrete particles, these quantities are in a constant state of flux in the most
quiescent of plasmas, always rising and falling about their well-defined mean

values.

The fluctuations in electromagnetic field are the main concerns of
this paper. These fluctuations may be aptly described as random fluctuations
for the cases of weakly correlated plasmas such as gaseous plasmas and ideal
degenerate pl;msmas. The statistics of these fluctuations — their root-mean-
square amplitudes, for instance — are completely determined by the mean
values of the plasma quantities in thermal equilibrium. In particular, the power
spectrum of a given quantity’s fluctuations is determined completely by: 1) the
amount of energy needed to produce a fluctuation of a given size in a given
mode, 2) the temperature of the plasma, and 3) the dissipation mechanisms at
work in the plasma. This determination is expressed for weakly correlated (and

nearly linear) plasmas not far from equilibrium by the fluctuation-dissipation



theorem [1,2,3]. In this report, we apply the fluctuation-dissipation theorem to
plasmas in thermal equilibrium, and derive the power spectra of fluctuations
in the plasma magnetic field. An alternative method for deriving the spectra,
which we will not use here, would be to derive the kinetic theoretic equation
applying the superposition principle [4,5].

We begin in Sec. 3 with a homogeneous, isotropic, non-magnetized
cold plasma. (We will say a few words about Sec. 2' momentaﬁly.) We see
that the fluctuation spectra of the magnetic field is particularly interesting
because it exhibits a strong zero-frequency component. This zero-frequency.

component is a Dirac § function in a non-dissipative plasma, and is broadened

into a Lorentzian curve in a dissipative plasma. This phenomenon may have, ...

implications for the physics of the early universe. Because of this, much of
our calculations in this section are made for an electron-positron plasma whose
temperature and density have been chosen so that it, presumably, describes

the universe in the early radiation epoch.

Since we assume, in beginning, an isotropic, non-magnetized plasma,
it is curious that our mathematics should tell us that we actually have a plasma
with a magnetic field which is nearly stationary in time (even though it is far
from uniform in space). Does a plasma in a presupposeci stationary magnetic
field exhibit a similar fluctuation spectrum? As a consistency check, then, we
study in Sec. 4 the fluctuation spectra of.a thermal equilibrium plasma in a
uniform, constant magnetic field Bg. On the way to deriving the spectra, a
relationship between the dispersion relation of an electromagnetic wave and its
fluctuations is found. We find a substantial amount of low-frequency fluctua-
tions, but they are not concentrated in the Dirac é-function we found for the

isotropic plasma. Rather, it is seen that the imposed magnetic field transfers




energy out of w = 0 into a range of frequencies running from w = 0 up to the
lower hybrid frequency. We find, however, that the limit, By — 0 is completely

consistent with the results of Sec. 3.

We take another look at the isotropic plasma by way of kinetic theory
in Sec. 5. We again find a zero-frequency peak in the magnetic field fluctuation
power spectrum, though its frequency dependence differs from that of the peak

found in Sec. 3.

In Sec. 6, we discuss magnetic field fluctuation spectra obtained from
computer simulations of thermal equilibrium plasmas. In these particle simu-
lations, the fluctuation spectrum of the magnetic field has been recorded. We

discuss its size and shape in light of the predictions made in Sec. 3.

- Throughout our calculations, we need to introduce a phenomenolog-
ical cutoff in wavenumber k. The legitimacy of such a cutoff is established in

Sec. 7 by way of quantum mechanical considerations.

In Sec. 8, we address the Bohr-van Leeuwen theorem, namely, that
classical statistical mechanics does not allow the magnetization of a physical
medium. This might seem to present a contradiction to our result of finite mag-
netic field energy at w = 0 in the non-magnetized plasma. This contradiction

is shown to be only apparent.

In Sec. 9 we look at electrostatic and electromagnetic fluctuations in
a degenerate electron gas. We find that electric field fluctuations and particle
density fluctuations vanish at zero frequency. However, magnetic field fluctua-
tions diverge at zero frecquency. This divergence is proportional to w™! over a

large frequency range.

In Sec. 10, we examine some possible cosmological consequences of

our results. Low-frequency magnetic fields may have consequences for structure



formation in the radiation epoch of the early Universe. They might also be the

seed fields for the presently observed galactic magnetic fields.

In Sec. 11, other possible consequences are considered. The low-
frequency magnetic fields we discuss may effect particle transport in plasmas.
They may also be responsible for anomalous spin relaxation in condensed mat-
ter.

Before we discuss these subjects for real plasmas, however, it may be
instructive to begin with a model problem which involves the Brownian motion
of a system described by a one dimensional wave equation. In such a system,:
the resultant fluctuations can be treated as random fluctuations without any -
correlations. This section should involve some familiar physics, but is intendv‘edi‘ai« .
to elucidate the theoretical foundation of the present paper in a simplified

model problem. This is treated in Sec. 2.

1.2 One-Dimensional Waves with Brownian Motion

The point to this section is to provide the reader with some examples
of low-frequency divergences in the power spectra of some simple wave motions,
before we go on to study the phenomenon in electromagnetic plasma waves,

where the mathematics may be opaque in comparison.

We consider a physical system described by a wave equation:

&%y 202?/
Fror =t (1.1)

where y(z,t) is the local displacement of some quantity from its equilibrium
value and c is the phase velocity of waves in the system. We could be speaking
here about sound waves in air or water, longitudinal waves in a compressional

spring, transverse waves on a piano wire, etc. What we want to ask is: Given




that our physical system is in thermal equilibrium, what is the power spectrum

of the motion it undergoes because of thermal fluctuations?

To this end, we make our wave equation a little more realistic, adding

two terms to it:

oy 0% Jy
— === —n— t). 2
g =S T T (1:2)

The first new term is a damping term. It could have as its source some internal
friction of the system, or it could be the dissipative effect of thermal fluctuations |
such as whaf we see in Brownian motion. a(z,t) is a spatially and temporally
random function, describing the fluctuating accelerations imparted to local
elements of the system. If we were describing a piano wire here, a(z,t) could
represent local accelerations from internal thermal fluctuations in the molecules
making up the wire, or it could describe the momentum transferred from air
molecules constantly bombarding the wire. In the mathematics that follows, we
make the reasonable assumption that (a(z,t)) (the ensemble average of a(z, 1))

is equal to zero and that, therefore, (y(z,1)) is equal to zero.

First of all, we Fourier transform our new equation to get
(—w? + k? — ipw)y(k,w) = alk,w). (1.3)

Let Y (k,w) be the ensemble averaged intensity of y(k,w) and let A(k,w) be

the ensemble averaged intensity of a(k,w). Then we see

A(k, w)
(—w? + c2k2)? 4 n2w?’

Y(k,w) = (1.4)

The simplest assunption is that a(z,?) is a series of Dirac-é functions
randomly distributed in space and time. That is, we assume that the fluctuating

accelerations take the form of momentum impulses delivered over very short



lengths of the system. The fluctuations are uncorrelated with one another,
and have a white-noise power spectrum. This being given, a(z,t) will have a

correlation function given by
(a(zo, to)a(zo + z,t0 + 1)) = a6(1)6(z), (1.5)

where a? is a number derived from the distribution of the strength of the random
impulses and the space and time intervals between them. The dimension of a?

is that of (a(z,1))? times length and time. From this it follows that
Alk,w) = / clt(lme_ikx+'iwt((z(:zzg, to)a(zo + z,to + 1))
= a?. (1.6)

Eq. (1.4) then becomes

Cl,2

(_wZ + C2k2)2 + 1]2(4)2.

Y(k,w) = (1.7)

- Now we find Y'(k,t) by Fourier transtorming Y (k,w):

9-

Y(k,t) = él;/(lwe_iwt( ¢

T —w? + 62k2)2 + 772‘—”2
(/.26—7]“‘/2 77
= ———[cos(w;t) + — si t 1.8
g looslunt) + 1 sin(unt) (19)

where

SL2
w = (czi.:2 _ l)1/2.'

From this, it immediately follows that

(L2

Y(k,t =0) = (y(k)y(k)) = Tk (1.9)

If we assume that the system is in classical thermal equilibrium with some heat
bath at temperature T, we are constrained by the equipartition law to say

WSk () = 5 (1.10)




where u is a constant representing the inertia of the system. If our system is a
wire, g is the mass per unit length of the wire. It follows from Eq. (1.9) and

Eq. (1.10) that
. 2T

I
and

20T/
(w2 — 2k?)? + n2w?

Y(kw) = (1.11)
To find the limit of ¥ (k,w) in the limit n — 0, we make use of a
standard definition of the Dirac é-function to obtain:

2T7r5 (—uﬂ + czk2>

fw? w

Y (kw) = (1.12)

Note that each mode in k-space behaves exactly like a Brownian par-
ticle in a harmonic oscillator potential with a characteristic frequency wy = ck.
This can be seen most clearly by comparing the current results with Kubo’s
results for the Brownian motion of a harmonic oscillator [6]. In a sense then,
there is nothing new here. And yet, some interesting results appear. We can
content ourselves with examining the simpler form of Y (k,w) in Eq. (1.12). If
we want the fluctuation strength as a function of wavenumber alone, then we
integrate Y (k,w) over dw and divide by 27. If we want the fluctuation spec-
trum of frequency alone, we integrate Y (k,w) over dk and divide by 27. We

find

(1.13)

and

(1.14)



If we have a harmonic oscillator of mass m and frequency wp, vi-
brating with an amplitude A, the potential energy of the oscillation W(wp) is,
on average, mA%w?2/2. Each mode k of our oscillator is a harmonic oscillator

of mass density p and frequency ck, vibrating with an amplitude of /Y (k).

Therefore, the wavenumber power spectrum W(k) is given by
.2 k2 T
Wik =L yk) == (1.15)
2 2
Also, since W (k)dk = W(w)dw,
T
Ww)=—. .
(@)= o (1.16)

W (k) and W (w) both integrate to give the same total energy density
E. The two spectra are consistent with each other and with Parceval’s theo-
rem. In this purely classical treatment, however, both spectra integrate to give

(1/27) f T/2dk, resulting in a one-dimensional ultraviolet divergence.

What happens if we add a “mass” to our system? We may get an

equation like:

-

9y _ ¢ Ty _ wiy =7 %y
ot? Oz T ot

We now have an equation more nearly describing a plasma wave, or a massive

+a(z,t). (1.17)

Klein-Gordon field, or a taut piano wire sitting on top of a set of uncoupled
springs. Now, to study this system, we run through all of our above mathe-

matical analysis with the substitution ¢®k? — ¢*k? + w2. We find for Y (k,w)

20T/ u

)/'(k,(d) = (w2 _czkz_wg)2+772w2' (1-18)
If we take the limit n — 0 again, we find
) 9 2 _ 212 _ 2
¥V (k,w) = ”f5 (“’ ch “’°> , (1.19)
Hw w
Y(k) = T (1.20)

w{c2k? + wd)’



and

T
Y(w) — ;Lcw(wg—-wg)lh |w‘ 2 Wo (121)
0 |(4)] < Wp

Y (w) diverges as (w? — w?)™1? at w = wp.
Since w(k) = (*k*+w?)Y/?, W (k) = T/2, again satisfying the equipar-
tition law. However, since, once again, W (k)dk = W(w)dw, we find

W(w) = r w (1.22)

2 o(w? — W)/
Without the system “mass,” Y (w) diverged at w = 0 but W(w) remained finite.
Now W(w) diverges as well. It would appear that this effect is real, despite
the fact that the integral of W{w) over all w is infinite. The divergence in the
integral is caused by contributions to the integral from w — oo, not from w ~
wp- In other words, the divergence in the integral is an ultraviolet divergence. It
éorresponds to the ultraviolet divergence we get when we integrate W (k) = T'/2
over all k. In fact, [ W(w)dw = [W(k)dk. Therefore, once again, the two

spectra are consistent with one another and with Parceval’s theorem.

The ultraviolet divergence we see here is, as well as in Eqgs. (1.15)
and (1.16), in essence, the blackbody radiation problem Planck solved by in-
troducing his quantum mechanical energy distribution. The general quantum
mechanical fluctuation-dissipation theorem is presented in detail by Sitenko [3].
It might be worthwhile, however, to review it here, and present the quantum

mechanical analogue to the work we have done thus far.

Suppose we have some kind of quantum mechanical, Hamiltonian sys-
tem. It can be a hydrogen atom or a harmonic oscillator or anything describable
by quantum mechanics. In this system, we will have a potential energy, V (z, t).
Let us assume that we can break this potential up into a fairly smoothly vary-

ing part and a random part. Let us also assume that the random part of the
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potential couples to the expectation value of some current in the system so that
waz—/mAmng@ﬂy (1.23)

For instance, j(z,t) could be the electrostatic current in a dielectric and A(z,t)
could be the vector potential. We make two more assumptions: First, V(t) is

the only explicitly time-dependent part of the Hamiltonian. Then

%5_*2 = — [ deA(a, 1)(i(a,1). (1.24)

Lastly we assume A(z,t) and j(z,t) are related to one another by some linear

operator so that

jilz,t) = & A; (e t) 7 (1.25)"

or, after Fourier transforming in z and £,

ji(k,w) = Ofij(ku))Aj(kw). (126)

The spectral distribution of the space-time correlation function (Jids)re
will be denoted by (ji7;)x .- It is related to the expectation value of the product

of the Fourier components of j by
(57 (k)75 (K))w = (27)%6(k ~ K')(jids)xce- (1.27)

A calculation of the transition probabilities arising from the action
of A(z,t) on the system shows that the energy absorbed per unit time by the
system is

Q=1 3 Ailke) A5, ) { (G RGN = G RIG)), (1.28)
where

(7 ()i (K)o = 27 3 f(Bn)ji (K)nmdi(K)mnb(w — wrm),

m,n
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and
Grk)j;(k))r = 27 Z F(En = hw) i (K)aml; (K mab(w — wm).

In the above expressions, wnm = (E, — En)/h, and f(E,) is the statistical

distribution of the states of the system.

However, averaging E¢. (1.24) over one period of oscillation shows

that the energy absorbed per unit time is also equal to
Q = — Z(Q:j bt Cin)Ai(kw)A;(k,w). (1.29)
Comparing Eqs. (1.28) and (1.29), and making use of Eq. (1.27) shows

(g = (idi)ke = th{af(kw) — aji(kw)}. (1.30)

If the system is in thermodynamic equilibrium, immersed in a heat

bath with temperature T, f(E,) is given by the Gibbs distribution
f(E,) = e(F=En)IT

where [7 is the free energy of the system and T is the system temperature. In

this case
(g = €™M (i)
Therefore
.. h o
(idi) = S —ged — @i)- (1.31)
Now, for our specific problem,
oV (x,t
——(C};_) = /(I‘IT/L(L(:L‘,f,);Z](;l;',?f). (1.32)
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So then, comparing Eq. (1.23) with Eq. (1.32), we see that in our piano wire
system, —A(z, ) = pa(z,t) and j(z,t) = y(z,t). From our equation of motion

we can find the factor a:

2
w
(k,w) = . 1.
(k,w) pu(—w? + c?k? — inw) (1.33)
And a little bit of algebra will show that Eq. (1.31) gives
. k 2nw?
= . 1.34
(l7]%) e lT — 1 u(w? — 2k?)? + n%w?] (1.34)
Now, since 7 = —iwy, |[7]|? = w?|y|®. So
I 2nw
3 = . 1.35
(lv1%) /T — 1 p(w? — 2k2)? + nw?] (1.35)

Note that in the limit i — 0, Eq. (1.35) will give Eq. (1.11). The power
spectrum is pw?(|y|?)/2; it equals

h nw?
enolT — 1 [(w? — c2k2)2 + nPw?]’

W(k,w) = - (1.36)

As i — 0, this expression also gives the classical limit of Eq. (1.16). In the this
quantum mechanical expression, however, the ultraviolet divergence (w — 00)
is clearly removed by the Planck distribution factor. If we add a mass term to

the system again, the result will be

I nw?
emwlT — 1 [(w? — c2k? — w2 + nZw?]

W(k,w) = (1.37)

Again, the Planck distribution cures the ultraviolet divergence, but the diver-
gence at wy remains. In the rest of this dissertation, our focus is on the lower
frequency behavior of functions corresponding to W(w) in a plasma. In many

instances we shall see infrared divergences due to plasma effects.
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1.3 A Gaseous Plasma with no External Field

Even at or near thermal equilibrium, a plasma has fluctuations. The
various fields of a plasma (electromagnetic, electrostatic, density, etc.) fluctuate
about their mean values. The strengths of these fluctuations are functions of
two characteristics of the plasma: the dissipation mechanisms present in it,
and its temperature T. The relation between these quantities can be found by
means of the fluctuation-dissipation theorem [2]. In this section, we employ the
fluctuation-dissipation theorem to derive the power spectra of magnetic field
fluctuations in an isotropic, non-magnetized plasma which we describe with

fluid equations of motion.

The following derivation closely parallels the work of Geary et al. [7].
We consider a homogeneous, isotropic plasma in thermal equilibrium. From the
fluctuation-dissipation theorem, the strength of the electric field fluctuations
as a function of frequency and wave vector is

l

o (BB ~ (E:Ey)) = in{A5! = A5}

where
C2k2 klk
At](wak) = —Z)T( /C27

¢;j(w, k) being the dielectric tensor of the plasma (3]. (E:E;)i and (E;E;)xw

— &) + €5 (w, k),

are related to one another in the same way as (5;7;)5 and (jij;)i. were in the
previous section.

If the plasma is in thermal equilibrium, then
(E,Eﬂﬁ:’, = ehW/T<EiE.7)ku’

as can be inferred from the results given in the previous section. Therefore,

h

! _ 1%
(E L ) = EWT{ \ Aijl }

8r
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Consider an electromagnetic wave in the plasma; call its wave vector k = k2.
Invoking Faraday’s law, we find

(B, i A k. .
= = 'Q‘eﬁw/T —1 o2 {ABB _A331 }a

and
B2 kw Z ﬁ c2k2 _ .
| gﬁ' T 9 eIT ] o2 {Azy =A%}

where the subscripts 1, 2, and 3 refer to the z, y, and z directions respectively.

So the total magnetic field fluctuation strength is

B:h, i h o kRE_ _ e :
( ts;> = 9 hw/T _ | w2 {/\221 '{'Ass1 “Azzl —A331 } (1-38)

We now find €;;{(w, k), in order to determine A;;(w,k). First, we, . .
specify the equation of motion of the plasma. From the equation of motion, -
we find a relationship between the electric field and the current. The dielectric

€;j(w, k) will follow from this relationship.

We introduce a simple model of a plasma based on a cold plasma
fluid theory, neglecting kinetic effects necessary to adequately describe warm
ipla,smas. (Perhaps the model is too simplistic; a discussion of this point will
follow below.) If the velocities and electromagnetic fields are small enough that

we can neglect the v x B forces, then

dv,
dt

me,

= eoE — amaVa, (1.39)

where « is a particle species label and 7, is the effective collision frequency of
species a. An equation of motion more accurate than Eq. (1.39) may lead to
an expression for (B?)y,, with more realistic mathematical properties. Be that

as 1t may, the equation of motion we have yields

2

(—iw + na)ie = 2, (1.40)
47
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where j, s the current density of species . The dielectric tensor €;;(w, k) is

given by

€ij(w, k) = 65 + 47 Y Xaij(w, k), (1.41)

£

where the susceptibility tensor x.:; is defined by the relation
Jai = _incxij(wa k)Ej(w’ k)

So, from Eq. (1.40),

w?

and
UJza
éij(w, k) = 65 — 3 W@j- (1.42)

It will be seen below that the results of these calculations have a
particularly interesting impact on the physics of dense plasmas, such as the
plasma of the early Universe radiation epoch. Just prior to cooling below 1
MeV, the universe was, apparently, an electron-positron plasma [8], and it
is this type of plasma that we will discuss in the next several paragraphs.
However, the derivations and results are valid, with minor modifications, for

more ordinary plasmas as well.

2 _and ne+ = 7Me- = 7. So

In an electron-positron plasma, wge+ = w,

Eq. (1.42) becomes

w2

.. = — P 5.
6,‘7((,0,1() 61-] L()((.d + 7:7])51] (1.43)

where w2 = w2, + w?2,~. We now obtain

o
w(w + ) - ,
Ay = LA (1.44)
- w?  w(w+m)
L k- w?
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We combine Eqs. (1.38) and (1.44) and obtain, after some algebra,

(B, 2w ,ctk? 1

= 1.4
8 ehlT — 1P 2 (W2 = c2k? — W22 + n?w — c2k? /W]’ (1.45)
or
(B, 2hw .
§r em/T _ e
27,2
° (1.46)

‘ (w2 + 7]2)641\?4 + 2w2c2k2(w3 — w? - 772) + [(w2 - wg)2 +-772w2]w2 "

The first form of (B?)y,, /87, with a.pole being clearly offset from the electro-

magnetic plasma wave pole, might be more physically understandable, whereas

the second form will make integration over dk a less difficult task. Note that

if relativistic temperature effects are included, the above formulae are altered

by the substitution w, — w,/,/7. Fig. 1.1 shows a contour plot of the natural

logarithm of Eq. (1.46) weighted with the geometrical factor k2. The density
(ne = 4.84 x 10%¥/cm?3) and temperature (T' = 101°°K=1MeV) have been cho-
" sen to represent the early Universe plasma at 1 sec. after the Big Bang. The
collision frequency 7 has been set at 0.lw,., which is about 100 times larger
than expected. This smooths out the contours of the graph and gives a better

view of the qualitative behavior of the spectrum.

We now want to find the fluctuation power spectrum as a function
of frequency, that is (B?),. We find this spectrum by integrating (B?)y,, over

wavenumber d*k and dividing the result by (27)3. We obtain:

(B?),, 2hw 21 <w,,e>3 /°° z*
- Wre I . (14
8r  efw/T — 12722 \ ¢ o (w? 40zt + ... (1.47)

pe

where © = ck/wpe and the primed quantities are normalized by w,. (e.g. 7' =
7/wpe). However, we are immediately faced with a problem. At large k, which
corresponds directly to large z, the integrand of Eq. (1.47) becomes effectively

constant, so the integral diverges.
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The divergence occurs at high wavenumbers. However, this divergence
at high k is different from the one we discussed in Sec. 2. As seen in Eq. (46),
the Planck factor (¢®/T —1)~! is already incorporated and thus no ultraviolet
divergence arises as w — oco. Rather, the divergence resides in the more subtle
interaction between matter and radiation. Up to this point, we have based our
calculations on classical equations of motion with a model collision term. In
these equations the photon fields appear as smooth electromagnetic fields. In
this sense, these equations may be regarded as multicomponent fluid equations
for electrons. At some small enough physical scale (or, equivalently, some large
enough wavenumber) the granular nature of any fluid (photons or electrons)
will become apparent and render the continuum fluid equations invalid. Where
the fluid “picture” breaks down, we need new equations. We might obtain such
equations from a kinetic theory which includes more exact collisional effects,
wave-particle interactions, etc. In the interest of tractability, however, we want
to continue with the simple model presently before us. How do we manage

this?

Our reasoning is as follows: Consider electromagnetic waves propa-
gating through a plasma. The dispersion relation for waves of long wavelength
is strongly dependent on the collective effects of the plasma. Waves of shorter
wavelength are affected less by the plasma. If a wave has a wavelength much
shorter than the collisionless skin depth ¢/w,, it moves through the plasma
almost as if it were moving through empty space. It stands to reason that,
for wavelengths much smaller than ¢/w, and frequencies much greater than wy,
the fluctuation spectrum of the magnetic field must be much the same as a
blackbody radiation spectrum. In particular, collisionality of electrons should
not matter. This being the case, a reliable high frequency, high wavenumber

limit should be obtained if we let  — 0. A more rigorous quantum mechanical
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justification is presented in Section 7. We take the n — 0 limit with the aid of

a standard definition of the Dirac é-function, and obtain

(B*) kw 2w 5,5, w(w? — 2k? — wf,) 1
8t ew/T 1""’?6 k*mé w?2 — k2 (w2 — czkz)z' (1'48)

Integrating Eq. (1.48) over d®k and dividing by (27)° gives

(B T / wf,lcz 1 h 2 213/2
== e Y - C(L
8w T o(w) w? + 2k2 kt 2med efw/T — 1(w “p) (1.49)

Remembering that the magnetic field energy will make up roughly half of the

total electromagnetic energy in high frequencies, and remembering that the

magnetic energy density is found by integrating (B?), over dw and then divid-

ing by 27, we can see that the second term in this expression closely resembles.

the black-body radiation spectrum at frequencies much greater than w,. In fact,
if w, — 0 the entire expression reduces exactly to the black-body spéctrum. ‘

This suggests a possible‘procedure: We break up the integral in
Eq. (1.47) into two intervals. One interval runs from |k| = 0 to |k| = keus.
The other interval runs from |k| = ke, to |k| = oo. (The choice of k., will be
clarified below.) In the first interval, we keep 7 finite and treat the integrand
exactly. In the second interval, we let n — 0 and drop the zero-frequency part
.of the spectrum. The result, thus approximated, is

2 ) / { 3 Teut
(B L M (m) [ o z
1 0 (

87 72 elhwpe [Thw' _ c w?4+n?)zt+ ...

h(w" -~ A '
+27r(e(hwm/7')5 D (“:—) Ow' — \/zk; +w2), (1.50)

‘where O is the Heaviside-step function. The integration can be done analyti-

4

~cally, as shown in Appendix A. The second term is the high frequency and high
wavenumber expression we obtained in Eq. (1.49). Elsewhere, we have referred

to these two types of photons as soft and hard photons [9], and have dealt with
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the matter of the plasticity of photons [10]. The cut-off in integration removes

the divergence. At w =0, we get

2 w 2T . 3
G0 POy S (51

w—0 87 T2n

At relativistic temperatures, this result is altered by a single factor of 1/+.

In reality, n should vanish smoothly as k& — co. However, as long as
our results do not critically depend on the manner in which 1 approaches zero,
the abrupt cutoff we suggest here should be acceptable as a crude model. We are
interested in the contribution to the zero-frequency peak from collective plasma
fluctuations, so we will choose x.,, = L. This corresponds to ke = wp/c, which,
as can be inferred from the first term of Eq. (1.49), is the spatial correlation

length of the zero-frequency fluctuations.

Three plots of the spectrum shown in Eq. (1.50) are shown in Figs. 1.2,1.3,

and 1.4. These plots show the fluctuation spectrum in plasmas with parameters
approximating the early universe during the plasma epoch. They represent the
early universe at about 1 second, 10® seconds, and 10'% seconds after the big
bang, respectively. Note that the rise in the zero-frequency peak is s;o sharp in
each graph that it is difficult to distinguish the peak from the vertical axis. (A
break at the top of the graph indicates the height of the peak.) Note also that
the (b) frames of Figs. 1.2-1.4 are log-log plots of Eq. (1.50) and clearly show the
w~? behavior at the low-frequency end of the spectrum. This is characteristic

of the Lorentzian tail found in Appendix A.

An alternative method exits for ensuring the convergence of the in-
tegral in Eq. (1.47). It will prove to be unsatisfactory, but we mention it here

for completeness. We go back to our original equation of motion and include
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viscosity:

dv,
dt

= e E — NaVe + faViv,. (1.52)

We can now make the substitution n — 5 + pk? in Eqs. (1.39)-(1.47). Doing

this, we find:

BB ()
8w m2elhwpe/T)" — 1\ ¢ /] wy
oo (0 + 'zt '
dz. 1.53
/0 w/?(wl2 — 72— 9;)2)2 + (7]/ + Iulm2)2(wl2 — m2)2 T ( )

We now have an integrand which varies as 1/2% as ¢ — oco. We

therefore have a convergent integral. We also have a modified value of the

magnetic fluctuation strength at w = 0:

9 2 3 3
By _ 2 <W_P> L= ey, (1.54)

8T Wpe \ €

If we take u = 0.73T/nm [L1], we find

B, 0851 T fw,\3/ T \Y* | |
(B 0851 <“”’ ) < 2) . (1.55)
Sm T N'wpe \ € mec
We see that %—j—r& still has a 1/7 dependence, but its dependence on temperature

has changed: it is now proportional to 7372,

As has been stated, however, this reliance on viscosity to produce a
convergent integral is unacceptable. What is needed is a means of modifying
the integrand of Eq. (1.47) which does not alter the blackbody spectrum at
high frequencies and wavenumbers, where the plasma should have less and less
effect on the electromagnetic spectrum. Viscosity does not do the job: includ-
ing viscosity in the above manner puts terms in (B2)y, /87 which increase in

importance as wave vector increases, thus modifying the blackbody spectrum.
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Perhaps, at low frequencies and wavenumbers, viscosity should be included for
higher accuracy. However, it does not solve any basic problems of the theory
outlined thus far, nor does it lead to a qualitatively different shape of %)i at

low frequencies, so we will dispense with it from here on.

We have, so far, concentrated our efforts on electron-positron plasmas.
We say a few words about plasmas with one major ion species. An analysis
similar to what we have done in Eqs. (1.39)-(1.43) shows that the dielectric

tensor of such a plasma may be given as
. w2, w2,
€ij(w, k) = 6;5 — B 6 — 6. (1.56)
‘ Towlwtme) T wlw )

From this we find that, when w — 0,

2 2 2, :
(B, _ T (w_+w_) - (1.57)

s T2c? \ ne ;

In an equilibrium hydrogen plasma, w;e ~ 2000 x wzi. Also,
Ne = 2.91 x 10"611,gl'n(A)T'"s/zsec"1

and

ni = 4.78 x 10780 In(A)T~3 ?sec™.[12]

The ratio between the first and second terms in Eq. (1.57) is approximately
16.4. Therefore, ion motion raises the value of the w = 0 peak by about 6 per

cent of the value it would have if the ions were frozen.

We now turn our attention to the wavenumber spectrum of magnetic
fluctuations, i.e. (B?)x/8m. This spectrum is found by integrating Eq. (1.46)
over frequency. The Planck factor (¢ — 1)~! makes the integral difficult.

However, we can find an exact result in the limit 7 — 0:

(B*)k /°° dw  2hw I (w(w2 — k% — wZ)) ( 1
w

W2 — c2k2? 2 _ c2k2)?

87 moo 2 /T — P
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o (lw 2w
_/ 5 g e F ) + 6 (w £ /c2k? + w2)] x

1
|(w? — 2k?)(3w? — k% — w?) — 2w2(w? — c2k? — w2)|’ (1.58)
After integration we obtain
(B%)x _ hck? 1 i, w2 .
St (MCRTERNET ) (W2t AR T Wt R
(1.59)

The second term of this expression has the same physical source as the first term

of the right-hand side of Eq. (1.49), namely, the zero-frequency fluctuations..

The magnetic field energy contained in these fluctuations can be found by
integrating the second term of the present expression over ¢k (in the range k <
k..:) and dividing by (27)3, or by integrating over the first term of Eq. (1.49)
over dw and dividing by 27. The result given by the two methods will be
identical regardless of the value of ky;. (Note that, once again, the limit
wp‘—> 0 gives the standard black-body radiation spectrum.) The first term
in this expression is clearly the black-body spectrum modified by the plasma.
The second term was obtained by Geary et al. [7]. They obtained this term via
the Darwin approximation, ¢.e. by neglecting radiation. Therefore, our result

satisfies both radiative and non-radiative limits.

Notice that, in the classical limit A(w? + c?k?)!/? « T, the two terms
of Eq. (1.59) add together to yield
(B%)x

ST

—T. (1.60)

Remembering that we have obtained this expression by summing over both po-

larizations of the magnetic field, we see that we have satisfied the equipartition
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law of classical statistical mechanics. This raises an interesting point. The first
term in Eq. (1.59) is the contribution to the magnetic fluctuation spectrum
from the standard, cold-plasma, electromagnetic waves. The second term, as
has been stated above, is a contribution from some kind of non-radiative fluc-
tuation in the electromagnetic field. The standard cold-plasma waves do not
satisfy the classical equipartition law. The cold-plasma equations do not allow
any other plasma wave. Therefore, it would seem that, if the equipartition
law is to be satisfied, the energy needed to make up the difference must be

contained in w = 0 fluctuations qualitatively similar to those discussed here.

We end this section with one further observation. The energy under
the w = 0 peak shows itself in the wavenumber spectrum by way of the sec-
ond term in Eq. (1.59). The total energy under this peak is on the order of
T(wp/c)®1/67%. The energy lost to the black-body spectrum because of the

plasma can be approximated by the Rayleigh-Jeans formula:

wp dw w? 1 Wy 3
5% =T(2) (1.61)

The energy under the w = 0 is approximately equal to the energy cut off
from the black-body spectrum. Figuratively, we can say the plasma, squeezes
the fluctuation energy of modes with frequencies less than w, into modes with

frequencies very close to zero.

1.4 Fluctuations with an Imposed Magnetic Field

We began our study of magnetic field fluctuations in an electron-
positron plasma by assuming a cold plasma equation of motion Eq. (1.39). In
adopting this equation we assumed that the effects of magnetic fields on plasma

motion were small. Yet, when the fluctuation spectrum of the magnetic field
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is calculated, a zero-frequency magnetic “fluctuation” is found. This “fluctua-
tion” can be quite large, depending on the parameters of the plasma. We begin
with an equation of motion which takes no account of magnetic fields, and we
end with a plasma which has a temporally fairly constant (though far from spa-
tially uniform) magnetic field which the plasma has “imposed on itself.” This
may be looked upon as an example of spontaneous breakdown of symmetry.
Should this (nearly) constant (but tangled) magnetic field have been included
in the original equation of motion? If it had been included, would the fluctua-
tion spectra turn out to be much the same, or do we have a contradiction here? .
Toward resolving this quandary, we now attempt a calculation of interest in.
its own right. Namely, we find the magnetic fluctuation spectrum of a plasma

with an imposed, temporally constant, spatially uniform magnetic field.
We take the equation of motion of our plasma to be

dvgy
Ma——

Va
dt = eO’E + ﬁa-z—, X BO — NaMaVa, ‘ (162)

where By = Byz. Ac'lmittedly, this constant magnetic field will not capture the
complexity of the spontaneous zero-frequency field that was-calculated in the
last section. So it is best to regard the following analysis as a qualitative, rather
than thoroughly quantitative, consistency check of the calculations which we

have already completed. We continue on with this proviso in mind.

The simultaneous 'presence of collisions and magnetic field in the equa-
tion of motion will complicate our algebra. For the time being, we drop the
collisional term from the equation of motion. As long as we are dealing with
plasma waves in which v; is largely perpendicular to By, this approximation
amounts to ignoring n in favor of Q, = |e,Bo/mac|. However, when we deal

with modes in which v, is purely parallel to Bg, collisionality must be re-
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introduced. We will not worry about crossing this bridge, however, until we

see it burning.

Our first step in calculating the magnetic field fluctuation spectrum

is to set k = k,y + k.2. We then find the dielectric permittivity tensor to be

27,2
i ¢k s
A-L__Z— —ZIXX 0
w
27.2 21,2
o A c“k c*k*
A= e [\J_——2cos20 —2s1n0c039 )
w w
27.2 21,2
ccke . . c*k® .
0 2 sinffcosd K| — - sin® 6
w w

(1.63)

where 6 is the angle between k and By, and:

2 2
w‘pi (—()pe

z_ ()2 2 _ ()2
w? =07 w?-2

[\’_L=J.—

2 2
A’x - _ Wy Qi Wre Qe

—+
W-Nw  w-N2w’

2 2
Ky=1— 2o Lre
“ w2 w2 ’

(Here, Q, has been taken equal to |[2,|.) The results of the damped equation

of motion can be recovered by making the substitutions [13]

As in the previous sections, we use the inverse of the dielectric per-

mittivity tensor, i.e. A™!, to calculate the fluctuation spectra of the magnetic
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field:

(B:E>kw _ _Z_ h
8t 2emw/T — 1

X (1.64)

2
c - - - -
;E{kjf\ssl + kAR — kyko(Ay + Az) —ccl,

(B 1 K I * |
Sy,ﬂ- = aehw/T ] . E{k‘g[\lll — C.C.}, (1-65)
By, 1 h c? _

{ 8‘7>r = 5T E{kzl\ul —c.c.}. (1.66)

Before we calculate the spectra, we will make several observations
which will make the calculations much simpler. First, we note that the sum of

all of the magnetic field energy can be written

2 ; -2
(B kw _ 1K P A {AZ) — A}
8w 2em/T _ | mptim il Tem mp
: 2
2 TL C —1x

= g g F b = kokn) (Apn = AZY,(L6T)

where €, is the fully antisymmetric tensor. Next, let us define the tensor A;;

by the relationship

/\.;_7' = det(A)A;'jl. (168)
Then:
(B*)ke 1 hi c? 2 - Apm Amp *
8w 2ehw/T — ] }wQ(l" pm = kipkim) det(A) det(A)
7h c?

= ehw/T _ 1 E(k%zﬂm - k’pkm))‘pm‘s(det(/\))
Th . i 6w — wi(k))
= = —(k° pin k ]Cm. A ™m . )
ehw/T | u)z( o ) Ay |2 det(A)]

(1.69)
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where {w;(k)} is the set of roots of the equation det(A(k,w)) = 0.

The cold plasma model dielectric tensor is independent of k: ¢; =

€i;(w). Therefore

c? c?
Aij = (1 - J) bij + —ghiks + (). (1.70)
It follows that
01\,'7' C2 C ]\, k
L= 2k + 2——2, .
ok w2A5'7 + w? k (1.71)

where &k = |k|. When we substitute this result into Eq. (1.69), we find

<B2>kw mh l‘ dk 1]
= . §( 1.72
87 ehw/T — | | = |- det(A)] det A N5 Z w = will)). (1.72)

A straightforward calculation shows: given any 3 x 3 matrix A, whose
elements depend on some set of parameters z, ¥, ..., the derivative of the deter-

minant of A with respect to any one of these parameters is:
Ou(det(A(z,y,...)) = OuAii (2, vy, ... )ai(z, v, .., (1.73)

where a;;(z,...) is the matrix whose elements are made up of the co-factors of
A;j(z,...) and repeated indices represent summation. This result holds true
for Ajj(w, k). Since A;; and A;; are symmetric matrices, we can now rewrite

Eq. (1.72) as

B? : k
G ___Th o <__) Or(det(/ 26 (w—wi(k (1.74)

87 ehw/T — 2) |&det(A

<

What we have here is a sum of the magnetic fluctuation intensities of
all modes. We wish to investigate the fluctuation intensities in given particular

modes. The magnetic fluctuations are characterized by the dispersion relation:

det(A(k,w)) = 0.
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The function det(A(k,w)) will be equal to zero on several different
surfaces in k — w space, one surface for each mode. If we infinitesimally vary
k and w so as to remain on a given k — w surface where det(A) = 0, we must

vary k and w such that
0 = Adet(A(k,w)) = Ak - O(det(A)) + Awd, (det(A)),

which implies

Ow ak((let(l\)) |w=w(k)

ow _ % _ 1.75
dk o (det(A))|wzw(i) ( )ﬂ
This implies, further, that
Ow _ . Ox(det(A))lumuii) (1.76)

Ok du(det(A))|wmuqe)
This result will be independently true for each k—w surface on which det(A(k,w))
equals zero. This means it will be true independently for each propagating
mode.

We can substitute this result into Eq. (1.74), finding that the total

magnetic fluctuation strength for a given mode is

(B?)xw
S

= §(w — Wi(k))% : (%) (&.‘gl(uk)) : (1.77)

mode i

(B*) /8 is found by integrating (B?)y,, /87 over dw and dividing by

2m. For a given mode, it is

(B*)x

8

o ﬁ>(a“""<k>>. (L78)

~ ehwi/T _ (‘2 Ok

mode i
(In deriving this expression, one must remember that, wherever w enters det(A),

it enters in an even power. This means det(A) is even in w and, for a given mode



29

2, the contribution to the sum from frequency w; is matched by the contribution

from —w;.) In the limit & — 0, this becomes:

(B®)x Tk (Qw
87 mode i - 2 wi(k) 0k ' (179)
We can write this as
<B2)k _ Tvphi(k) . V_(ji(k)
8T | odei ) ) , (1.80)

where v, (k) is the phase velocity of a wave of mode ¢ with wave vector k,

and v, (k) is the group velocity of the wave.

Because of Faraday’s law it must also be true that the fluctuation

spectrum of transverse electric fields is given for each mode by

(E1)x h (i) (a“’f> | (1.81)

S ehwi/T — | cck ok

(SR

¢

mode ¢
In the limit A — 0, this gives

(E7)x
S

Twl(k)/k awl-
S at

ok

mode i

P vahi(k) ’ Vﬂi(k). (182)

2 c?

We should note that these results are not valid without limit. Specif-
ically, if there is a zero-frequency mode in the plasma, dw/0k will be exactly
zero, while k/w will be infinite. In this case, we cannot use Eq. (1.79) to cal-
culate the magnetic fluctuation spectrum of this mode, unless we can make
use of some sort of limiting procedure to take care of the product of zero with
infinity. However, on the other hand, Eq. (1.82) tells us unequivocally that the

. transverse electric field intensity of a zero-frequency mode will be zero.

We have, in general, made the task of calculating the magnetic fluctu-

ation spectrum much simpler: if we have the functional form of the dispersion
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relation of a given mode, we can easily calculate the magnetic and transverse

electri¢c fluctuation spectra.

We proceed to calculate the magnetic fluctuation spectrum for an
electron-positron plasma. Since the masses of the particles are equal and the

charges are exactly opposite,
Qer = Qe = Q) Wpeee = Wpet = wp/\/i

"~ and

w2 w2
- . P - P -
I&J_Zl—w,z—_[-‘g'z—_z, I\”—l—'ﬁ, I\X—O.
This all means
Ko - 0 0
w
,2k2 2k2. .
A= 0 K| —-—C-2—c0320 6—25in9cosﬁ . (1.83)
w w
| 2|2 212
0 -sinfcosd Kj— —sin®f
w w

There are five distinct modes in the plasma. Two of them solve the dispersion

relation -

27,2
LA | (1.84)

w2
The other three solve

C 21,2 2.2 62.16'2

(K, — —ct—u/;'—cos2 0)( Ky — :—Az'sinzé)) ~ (—=)*sin? G cos® 9 = 0. (1.85)

w?

The first two modes have their electric fields polarized purely in the x-
direction (that is, perpendicular to both By and the direction of propagation).
This is evident from the requirement that A;;£; = 0. The magnetic fields of

these modes lie in the plane common to By and the wave vector. Note that the
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dispersion relations of these waves are dependent on the magnitude of By but
are not dependent on the direction of propagation. The dispersion relations of
these modes are plotted in Fig. 1.5(a). (B?) /8~ is plotted for each mode in
Fig. 1.5(b).

The other three modes have their electric fields polarized in the plane
common to By and the wave vector. Their magnetic fields lie in the z-direction,
that is, perpendicular to both By and the wave vector. The dispersion relations
and fluctuation spectra of these modes are plotted in Figs. 1.6(al)-1.6(d2). for

various directions of propagation relative to By.

Are there any zero-frequency modes which we may have overlooked
because of our neglect of damping in the equation of motion? Also, even if
these modes do not exist, is there a finite amount of fluctuation energy in the

magnetic field when w is very small or even equal to zero?

A glance at Fig. 1.5(b) will show that the total energy density per
k-space volume deposited in the first two modes we mentioned is 7'/2. We thus
conclude that, if there is a “hidden” zero-frequency mode, it must be among
the second set of modes we have mentioned. That is, it must be polarized so
that its magn.etic field lies perpendicular to both By and k. We look at the
remaining three modes, all thus polarized. We can see from Fig. 1.6 that, for
almost all angles, (B2)x /87 added over all three modes gives T'/2, regardless

of k. We conclude again, that, in general, there are no hidden w = 0 modes.

There is one exception to this rule: it occurs when § = /2, that is,

when the wave is propagating perpendicularly to Bg. In this case, we find
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L _ kW
0?2 w?— )2
2
A= 1 — Wy
0% — (2
Sk
oW Wl
(1.86)
(B2)x,, /87 is calculated from A3z
(BYkw 1 h Ak .
St 2emT -1 o2 {Ass —cc}=
A 2k 22 )
g i To(l — T T W )
_h k2w
Toew/T ) 2(c2k? + w?)
{6(w — /c2k? + W2) + §(w + /c2k? + w2)}.
(1.87)

(B2)x/8x is found by integrating this expression over dw and dividing by 2:

c? k?

(B2 h

1
St he2+cRZT 5(62,132 n wg)l/z. (1.88)
In the limit h— 0, this becomes
| B? T 21,2
T (1.89)

St 2 c2k2 +w§

which is less energy than required by the equipartition law. We then look for

a mode at w = 0 which can be derived when damping is considered.

If we revive damping in the equation of motion, we find that

2);2 2
Y% (1.90)

w? w(w + i)

.”\;33 =1-
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This implies

B? T 2 i 1 21,2
( x)k - wP + "’Zl 5 .- ¢ . (191)
ST 2 2h? + wg A2k _ 1 ' (ck? + wz)1/2
The h — 0 limit is now
B? T w? c2k?
< ).7:>k — ‘_( — P > + 3 2), (192)
ST 2k +w? ¢ k + w2

which satisfies the equipartition law.

Notice that the propagating mode represented in the second term is
the ordinary mode. Its electric field is polarized in the direction of Bg. This
implies that the motion of the plasma itself is, in the linear regime, purely
parallel to By. This is the exceptional case which we noted at the beginning
of this section. Using satisfaction of the equipartition law as our criterion,
we have decided that this is the one case in need of special consideration of
damping effects. Note also, as we can see from Fig. 1.6(d2), the zero-frequency
mode represented in the first term is the shear Alfvén mode. We can see this by
following the changes in the shear Alfvén wave dispersion relation and magnetic
field spectrum as the angle of propagation changes from § = 0to § — 7/2. The
frequency of the Alfvén mode goes to zero for all £ when 8 = 7/2, even though
the wave’s energy density per k-space volume remains finite. This is why it is
necessary to consider the dissipative effect in this case. Similar effects have been
found by Chu, Chu and Ohkawa [14] and recently by Agim and Prager [15].
Suppose that in a plasma in a uniform magnetic field, we turn the magnetic
field strength down. The dispersion relations of the various modes change.
Some modes merge into each other and the shear and compressional Alfvén
waves become lower and lower in frequency. We examine the compressional

Altvén wave first. The dispersion relation for this wave is contained in the
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equation
. cAk?
[\_L - 7 = 0,
which can be written
w! + w0 —w? — k%) + Q*Pk? = 0. (1.93)

To obtain the low k dispersion relation, we assume ck and w are small compared

to 2 and w,. We find
2
Wio
PRI
To obtain the high & dispersion relation, we assume ck and w, are much larger

than w and . We then find

2,212
o= LR (1.95)

wy? + 2k
The energy density per k-volume contained in the magnetic field is, from

Eq. (1.79),

(B _ T
8t 2 (1.96)
for small k, and
<Bz>k _ T w,,2
87 2w, + 2k (1.97)

for large k. Notice that (B?)x/87 is independent of Q. In the limit Q — 0,
(B?*)x/8m remains finite. Notice also that the spectrum is equal to exactly half
that of the zero-frequency mode of the previous section, where we included

both polarizations of B.

Now we examine the shear Alfvén wave. At low k, the dispersion

relation is

N2%c?k? cos? 0
g _ lenTCosTY .
W= Tt ' (1.98)

k2. (1.94)
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At high k, it is

s %k cos? 0

w T (1.99)
The magnetic energy spectrum at low k is obtained from Eq. (1.79) as
(B _T
=2 (1.100)
and, at high &, as
(B _ T w,”
== — 1.101
8w 2wy + k2 (1.101)

The shear Alfvén wave vector spectrum has exactly the same behavior as that
of the compressional Alfvén wave. In particular, the spectrum is independent
of  and, therefore, finite even if @ = 0. Further, notice that the wave vector
spectra of both Alfvén modes are equal to half that of the zero-frequency mode

at high k.

Therefore, it may be possible to interpret the zero-frequency mode
as a composite of the two Alfvén modes, which are static in the absence of
an imposed magnetic field. The zero-frequency mode is a virtual Alfvén wave
excitation that is spontaneously generated as the virtual excitation itself cre-
ates a magnetic field over a short period of lifetime. In quantum mechanical
terminology, this is usually called virtual particle creation. That is, the virtual
Alfvén wave quantum (or magnon) is created in the absence of an external
magnetic field, while in the presence of an external magnetic field, the (real)

Alfvén wave quanta are excited.
|

Now we have to answer our second question: is the fluctuation energy
of the magnetic field finite when w is small or even zero? We answer this

question by calculating (B%), /87 for the two Alfvén modes. We could do this
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by going back to (B?)y, /87 and integrating over d®*k. However, we have another
method at our disposal. Since there is no damping, (B?), /87 is made up of
functions of w and k multiplying a sum of Dirac §-functions, the arguments of
which are also functions of w and k. This means that the energy density in a
particular frequency interval dw is distributed over a few well-defined, distinct
surfaces in k-space. This implies the following: We measure the energy of a

given mode in a particular frequency band dw, centered on frequency wq. It has

some value (B?),,/87 X dw/2r. This mode will have a single surface in k-space

for which w(k) = wy. We study a differential volume surrounding this surface,

a volume contained within the two surfaces defined by w(k) = wp — dw/2 and

w(k) = wo+dw/2. The energy density contained in this differential volume must\ ‘_

be equal to the energy density contamed in the interval dw. Ma.thema,tlca,lly,

(BYomndo [ dS 1 (B
_ _dw/(?n)-‘wvm - (1.102)

where the integral is performed over the k-surface given by w(k) = wy.

In this cylindrically symmetric system we obtain, by Fig. 1.7 and the
acéompanying caption,

‘ dS k?sin 6d0
=2 , .
T T EP | (1.103)

Substituting this into Eq. (1.102) and dividing common factors out of both

sides of the equation gives

(B / K (B%)kow)
L ’ )
8w mocde i Wsind |a"w| 8w mode i (1 104)
Cbmbining this with Eq. (1.79), we see
2 3
—<Bi Je (1’() sin ()T— ————k (,9)
o mode i i w mode i
. T ‘ 5
~ / dOsind K. (w,0). (1.105)

4w
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In a similar way, the perpendicular electric field power spectrum can

be shown to be

_ Tw
" dre?

/d9 §i00 Fmodei(w, 8). (1.106)

mode i

(The integral is not necessarily performed over the full range 0 < 8 <
7. For instance, it might turn out that waves propagating at angles greater
than some angle 0y always have frequencies smaller than some frequency wp. In
this case, if we wanted the fluctuation spectrum for w = wq, we would integrate

only from ¢ =0 to 8 = 0y.)

We write down (B?), /87 for the compressional Alfvén mode by mak-
ing use of its dispersion relations, Eqs. (1.94) and (1.95), and Eq. (1.105). In
the range of frequencies corresponding to small &,

3
2 w 2 + Q2
(B _ %Lﬁ (——————V") . (1.107)

St e

In the range of frequencies corresponding to high £,

(B, T <ﬁ>3(_ﬂ_2_°82__ (1.108)

8¢  2r \c¢ — w?)3/2’

for the electron-positron case.

For w identically zero, the magnetic fluctuation energy is zero. How-
ever, there is a finite amount of energy density per frequency in low frequencies
and, if we are justified in considering Q a low frequency, then we have an infi-
nite amount of low frequency energy. Once again we have run into a divergence
problem. (B?%),/87 will diverge at w = Q. This is similar to the divergence in
Eq. (1.22), though the degree of divergence in Eq. (1.108) is stronger. We will
naively handle this problem by, again, intfoclucing a cutoff in k. To estimate

the total energy contained in shear Alfvén waves, Agim and Prager [15] used a
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cutoff of kewy = Q/va = wy;/c in an electron-ion plasma, where wy; is the ion
plasma frequency. -

We consider (B?),,/87 of the shear Alfvénimode. The directional de-
pendence of the dispersion relation makes the calculation of (B?), /87 a bit
more difficult. In particular, we cannot divide up the frequency range into low
k and high k ranges. For instance, looking at Eqs. (1.98) and (1.99), we can
see that w can become zero, no matter how large or small £ is. However, in
the case where 02 < w2, the dispersion relation Eq. (1.99) can take the place
of Eq. (1.98) at low k without too great a loss of accuracy. We find (B?), /87

by substituting k(w,0) from Eq. (1.99) into Eq. (1.105). The result is
' 1

2y 3 —u ,
(5. T (“’_7> L. - , (1.109)

87 2 \ ¢

0 (u?—w?/Q2)1/2 /0
where v is a, dummy variable which represents cos in the df integral of
Eq. (1.105). There is actually an infinite amount of energy at low frequen-

cies. (B?),/87 diverges at all frequencies less than Q.

Let us compare (B?),/87 of the two Alfvén waves and the zero-
frequency mode. First of all, they all have the same divergence problem, in
differing degrees of severity. Secondly, they all scale by the factor (w,/c)3. It
may be said that the imposed magnetic field creates Alfvén waves by taking
energy out of a small frequency range enclosing w = 0 and spreading if over a

frequency range extending from w = 0 to w = .

The effects of imposing a cut-off magnitude in wave vector ke, are
considered. We begin with the compressional Alfvén mode. From the disper-
sion relation, Eq. (1.95), we see that a cut-off in wave vector magnitude implies

a cut-off in frequency:

. 02242
W < Wl = et (1.110)

cut 2 202
wp + & 'I"cuc
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As long as w is slightly less than Q cos @ for the shear Alfvén wave, and lower
than the lower hybrid frequency for the compressional wave, this divergence
does not arise. In this sense, the choice of k., is not sensitive to the divergence.
The choice of k., may he made on various considerations which have not been
mentioned in this simple treatment. These considerations may include finite
Larmor radius effects, kinetic effects, the discreteness of plasma particles, and

quantum effects.

As for the shear Alfvén wave, its directional dependence makes cal-
culations more complicated once again, but it is still tractable. The dispersion
relation, Eq. (1.99) indicates that, given a value of w, a cut-off in k implies a
cut-off in 6:

2, 212
pr-{—ck

STETE (1.111)

cos?f > cos?fy = w

This means we need to change the lower limit of integration in Eq. (1.109) to

cos 0. We then find:

B2 w > w'2 + c2k3u ‘
(B _ T @ { ? : ! . (1.112)

St 47 Q3 -

Wp V91— w?/Q2

The maximuin value of w occurs at & = kqy and 8 = 0; it is the same as the
cut-off frequency of the compressional Alfvén wave. Therefore, once again, we

have headed off the divergence.

We now ask how much energy density is contained in the Alfvén
modes. We answer by taking the expressions for (B?)y /8 of each mode, adding
them together, integrating the sum over d®k, and dividing by (27)3. The result

18

drk (1.113)

o (27)3 w? + 2k

(B g [ Ly
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We stress that the introduction of a cutoff in k in a magnetized plasma needs

further investigation.

In this section, we have found, first of all, that the zero-frequency
mode, derived from an equation of motion for a non-magnetized plasma, is
consistent with the limit By — 0 for a plasma with an imposed uniform mag-
netic field. We have found that the zero-frequency mode is a composite of
compressional and shear Alfvén waves, along with cyclotron waves at higher
frequencies. When an external magnetic field is imposed on the plasma, how-
ever, the energy which was stored in w = 0 in the non-magnetized plasma is.
spread out in a range of frequency up to the cyclotron frequency. But in a
progressively weak enough magnetic field this spread will be correspondingly

small compared to the other relevant frequencies.

The fluctuations associated with the cyclotron waves are reminiscent
of the Bernstein wave paradox: In a plasma with an imposed magnetic field,
" the Bernstein wave is not damped. This is true no matter how small Bg may
be. But then where does Landau damping come from in the limit By, — 07
The resolution of this problem is that, as By — 0 in a thermal plasma, more
cyclotron resonances become important. The effects of these resonances are
added to the particle orbit; the net effect is a damping of the particle motion.
This - damping reduces to Landau damping when By — 0 [16,17]. Dealing
with frequencies near the cyclotron resonance, then, may require accounting

for subtle effects which we have not taken into account.

We briefly consider the magnetic energy spectra of an electron-ion
plasma. From Eq. (1.79) we can obtain numerical results for the spectra, and

make some valid qualitative comparisons to the electron-positron plasma.

The cold electron-ion plasma has five propagating electromagnetic
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modes. The dispersion relations of these modes, propagating at various angles
with respect to By, are shown in Fig. 1.8. These plots were obtained by making
contour plots of the determinant of the dielectric permittivity tensor, which we
last saw explicitly in Eq. (1.63), and removing the contours of all values of

det(A)# 0.

In Fig. 1.8are also plotted the wave vector fluctuation spectra of the
magnetic field, (B?)y /8, for each of the five modes of the electron-ion plasma.
The spectrum of each mode has been calculated by numerically approximat-
ing Eq. (1.79). Note that for all values of k, the total magnetic fluctuation
energy summed over all modes is equal to T'. Since both independent polariza-
tions of the magnetic field are included in this sum, this is consistent with the

equipartition law.

Note that the two branches of the dispersion relation associated with
the Alfvén waves have spectra qualitatively similar to those of the Alfvén
branches of the electron-positroﬁ plasma. In the low & limit, it is easy to
show that the spectra are independent of the magnetic field strength. The

low-k dispersion relation for the compressional Alfvén wave is

1
2 _ 27,2
W = e R, (1.114)
By
where ng is the plasma mass density. Eq. (1.79) tells us that
(B T
==, 1.11
3T 2 (1.115)

The proof is the same for the shear Alfvén mode, for which the dispersion

relation is

: l o,
w? = ———c*k? cos? 0, (1.116)
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and, once again,

(B*)k
8

(1.117)

wo| =3

We see, then, that both Alfvén waves in the electron-ion plasma carry energy,
even if the strength of the imposed magnetic field is brought down to zero.
We can see from Eqs. (1.114) and (1.116) that, if By = 0, the frequency of
these modes is zero for all k. An isotropic electron-ion plasma will have a
finite amount of magnetic field energy in a narrow frequency band surrounding

w=0.

Phenomenological wavenumber cutoffs can be given for the Alfvén -
-modes in a weakly magnetized plasma. As stated above, Agim and Prager: -

[15] used a cutoff of & = w,;/c when calculating the energy contained in shear

Alfvén waves. The compressional Alfvén waves, on the other hand, exist in the

frequency range of w = 0 to w < wpg where wry is the lower hybrid frequency

given by
1 1 1
- ,2 . + b

2 T2 .
WLH Wei + Whi Weildee

and w,; and w,. are the ion and electron cyclotron frequencies, respectively [13].
In a weakly magnetized plasma, wry = \/wawe. We choose k. to include all
of the compressional Alfvén waves. The dispersion relation of these waves is

w = vak. Therefore we choose k,,; to be

-/ WeiWee Wpe w.
VWeildee  Wpe Yo
c

kewt = =
VA c

Our cutoff value for the non-magnetized plasma seems to be a good choice for

the compressional waves of the weakly magnetized plasma.
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1.5 Kinetic Theoretic Analysis

Up to this point, we have derived all our results on fluctuations from
a simple model with equations of motion describing a cold fluid plasma with
a constant collision frequency. This model is good for studying, for example,
propagating waves whose electromagnetic fields are largely transverse. Such
waves have phase velocities usually exceeding the speed of light, therefore such
thermal effects as Landau damping have no effect on them. But, when we deal
with low frequencies, that is, when we study frequency and wave-vector regimes
where w/k is less than or close to the thermal speed of the plasma constituents,
we ignore kinetic effects at our peril. It is incumbent on us to attempt a
kinetic theory treatment of low-frequency magnetic field fluctuations. We will
find that a kinetic theory treatment of the problem returns results which agree

qualitatively with what we found in the Sec. 3.

We assume a homogeneous, isotropic, non-magnetized hydrogen plasma.
We take the electrons and ions to be in equilibrium with one another, having
Maxwellian velocity distributions with a temperature 7. In this case, the trans-

verse part of the dielectric permittivity is given by

22 m 1/2 e—mv /2T
Mok 1S (i [T
(w, k) w? + 20T —-w—l—l.,v vt

M 1/2 Wpi 6—Mu2/2T
1 1.11
+(27TT) w /L —w+/w(v’ (1.118)

where m is the electron mass and M is the hydrogen ion mass. The sub-
script “L™ attached to each integral sign is meant to specify the contour taken
in each integral; namely, cach integral is performed over the Landau contour

[16]. A problem with this treatment should be mentioned here. We are using
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straight-line particle orbits to calculate the dielectric function. However, we
will be applying our results to frequencies below typical collision frequencies of
a plasma, where the straight-line approximation no longer holds. A thoroughly
rigoréus treatment here would include some consideration of particle collisions.
This topic is deferred to future investigation.

As indicated above, we are interested in fluctuations at frequencies

and wave vectors in the regime
w
T S Ve, Vg,
where v, = /T'/m and v; = \/T/M. In this regime, we can approximate A by
217.2 2
¢k w w T W N
Alw,k) =1- ... +[ ,/ i (1.119) -
(w, k) w?  w2k? k2 vewk 2 viwk’ )

Since v} /v} = wpi?[wl, = m/M, we can write this as

e e
Aw,k)=1- — - VK2 + Z\/%avewk’ (1.120)
where a =1 4+ y/m/M.
It is still true that, in the limit 2 — 0,
B? 2T c*k?
(B e ==t Im[A™. (1.121)

8 w w?
(The factor of 2 is included to account for both B-field polarizations.) From

Eq. (1.119), Im[A™!] is readily found to be

- \/gawgewa ka/ve ’
Im[A™"] = = . (1.122)

(W2h? — 2kt — w2 w?[v)? + a 2wl w’k? vl

Theréfdré, from Eqs. (1.121) and (1.122),

T
42 : 2,/ zaw? k° [,
(B 0w _ V2 (1.123)

87 202 — o204 — 902 w2 /02)? 4 2wt Wik /v?
(W2k? — 2k —prew [v2)? + satw,wk” [v;

2
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Here we see qualitative confirmation of our earlier results: (B?)y,/87 has a
maximum at w = 0 as long as k? < 2w?,/v2. True enough, in Sec. 3, (B?)y, /87
had a maximum at w = 0 in the cold plasma, regardless of the size of k.
However, this restriction on & is a very loose restriction: the value of £ at which
(B?*)x,, /8 no longer has a zero-frequency maximum is several times larger than
the wavenumber cutofl we chose in Sec. 3. The kinetic plasma effect smears
out, but does not destroy, the zero-frequency fluctuations we found in the cold
plasma theory. There is another similarity between the spectrum we have found
here and that which we found for the cold plasma: namely, the problem that,
if we integrate (B?)k, /87 over d*k to get (B?),/8w, the integral diverges at
high k. (The situation has improved a bit. The divergence here is logarithmic,
whereas the divergence we faced with the cold plasma was linear.)

We examine the low {requency behavior of (B?),/8r. If we ignore

4

terms in the denominator of (B?)y, /87 which are of order w*, we can approx-

imate (B?)g,, /87 as

T
2 2,/ zaw?,k? v,
(B _ p 2 7 . (1.124)

T
ST 406 L dw? 20282 /02 — 202002kt 4 — 20?2 /0?2
c RS+ dwZ wick? [} - 2cRwk + S wpw /s

Normalizing frequencies by w,. and wavenumbers by wye/c, we rewrite this as

™
2 2,/ =az®/B.
(B _ T 2 (1.125)

8T wye o6 2.2 /32 _ 9 2md L * 2 12702’
pe o8 + 4w?2? /B2 — 2wtz +§ozw /B:
where z and w’ have the same meanings as in Sec. 3, and £, = v./c. Note that
(B*)x.,/87 scales as T'/w,.. To find (B?), /87, we integrate this expression over

A3k and divide by (27)*.

This integral can be carried out exactly, as shown
in Appendix B. As stated above, we must impose a wavenumber cutoff on the

integral. As in Sec. 3, the cutoff will come sooner or later through plasma
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discreteness or quantum mechanical effects, which will be discussed in more
detail in Sec. 7. We will use the same cutoff as in the previous sections, namely

wy/c. This does not cause any inconsistency as long as w/w, < vl-/>c.

(B?).,/81/(Twk,/c?) of plasmas at temperatures of 10°°K, 10%°K, and
10K are shown in Fig. 1.9. (B?),/87 scales as w?/c®, so the Fig. 1.9 results
are independent of plasma density. Also, for w > .01 X wye, (B?),/87 exhibits
an w~? behavior, whereas for very small frequencies, it diverges more slowly,
growing approximately as w=!/3,

We can obtain an expression for (B?)y /87 by integrating (B*)x, /87 |
byer dw and dividing by 27. Considering that the contribution to the integral
from high w is ignorable, we integré.te over all w. When k < wp./c, the result”

18

=T\/-a . (1.126)

The cold plasma approximation should still hold rather well for the
electromagnetic plasma wave. As we go through our standard-calculations, we
find that its magnetic field energy density per wave vector volume closely ap-
proximates what we found in Sec. 3. Specifically, (B%)x/87 of the propagating

electromagnetic plasma wave is very close to

(B%)y c?k?
st @k ot (1.127)

We obtain the total (B?)y /87 by adding this to the zero-frequency spectrum

given in Eq. (1.126). We find that {B?)yx/87 is generally greater than T

Two points should be considered here. First, at k =0, (B*)x/8, as

given by Eq. (1.126) is exactly equal to T. Second, the deviation from T' is
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very small for small &£. At small &, Eq. (1.126) is approximately

ﬂzgp<l_ il ) (1.128)

2,,2
8m Tatw?,

The spectrum we might have expected to find in place of that given by Eq. (1.126)

is (B?)1 /87 = Tw?/(c*k? + w?). At small k, this is approximately

(B _of, ¥
S (1 ) (1.129)

The leading terms in these two expansions are certainly of the same order of
magnitude. They differ by a ratio of essentially 4/7 in a hydrogen plasma,
and by a ratio of 2/7 in an electron-positron plasma. This small deviation
may arise [rom the expansion of the plasma dispersion function in Eq. (1.119).
However, it would seem that there is no problem with the fundamental physics
here. The zero-frequency peak does exist. The problem is that, in regimes
where w is larger than the thermal velocity times &, the value of the peak falls
off faster than predicted by the hot plasma approximation which we used to
obtain Eq. (1.119). When we integrated over w to obtain Eq. (1.126), the high

w contribution was not quite “ignorable enough.”

In any event, (B?)x/87 in the zero-frequency peak is on the order
of T' for small enough k. A rough approximation of the total energy density
contained in this peak is then T times the k-space volume contained within

k =w,/c, divided by (27)3, vielding, once again,

B, L (Ee)'B, (1.130)

37 6r2 \ ¢

1.6 Particle Simulation

We have looked for zero-frequency magnetic field fluctuations in ki-
netic computer simulations of plasmas. We discuss the results of these simula-

tions in this section.
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Barlier, Geary et al. [7] discussed the low-frequency magnetic field
fluctuations in numerical plasma simulations. The authors of [7] developed a
magnetoinductive code to examine low frequency behavior in magnetized plas-
mas. They took as their starting point the Darwin approximation to Maxwell’s
equations, i.e. they dropped the displacement current from the V x B equation.
They then macde use of the fluctuation-dissipation theorem to derive the mag-
netic field fluctuation spectrum (B?)y/87. The fluctuation spectrum (B?)y/8x
which they found for electromagnetic waves propagating perpendicularly to
their imposed magnetic field By are exactly the same as our low-frequency re-
sult in our Eq. (1.59). A comparison of fluctuation spectra for waves in other
directions is not useful because the present plasma is non-magnetized, while -
that in Geary et al. was magnetized, and the electron motion was treated by

the guiding center approximation. .

We have carried out particle simulations of thermal equilibriﬁm plas-
mas employing both 1D and 2D fuil_y electromagnetic, fully relativistic particle
simulation codes (see; for example, [18]). We have recorded the magnetic field
frequency spectra arising from these simulations. The particles were given ini-
tial uniform distributions in space, and Maxwellian velocity distributions. In
all cases the computational space bouhdary conditions were periodic. We ran
the simulations for several thousand time steps; at each time step we stored
the series of spatial Fourier components of the z@omponent of the magnetic
field, ¢.e. B.(k,t) (the z-direction being perpendicular to the simulation space
in each case). At the end of the simulation run, the B, Fourier components
were inpuﬁ into an autocorrelation function, whose frequency spectrum yields
the spectral intensity B?(k,w). Lastly, the B%(k,w) were summed over k to

give B}(w).
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In the 1-D simulations, the parameters used were: the number of cells
L. 256, 10 electrons and 10 positrons per cell, At = 0.1/w,., number of time
steps IV; 2048, and speed of light ¢ = 5Aw,., where A is the grid spacing.
Simulation runs were macde with three different temperatures: Yiherm = 1.05,
1.22, and 34.7 (corresponding to T' ~ 3 x 10%°K, 1.3 x 10%°K, and 2 x 10'*°K),
where Yiherm 18 the relativistic factor corresponding to the thermal velocity of
the plasma. To test the performance of these codes, we examined the dispersion
relation produced for B, for electromaguetic waves in a plasma and compared

it with the standard result

2
w
: 0
w2 — CZ 1‘72 + p
“Ytherm
9 4rne?  4mwne? ) X ) X
where w;, = . The dispersion relation comparisons were excel-
me m;

lent. We also examined B, fluctuation strengths as functions of wavevector, ¢.e.

B?(k). The fluctuation strengths compared fairly well with theory (Eq. (1.59).

The results of the B%(w) measurements are shown in Figs. 1.10 and
1.11. In each of these cases, a strong B, fluctuation peak is seen at w = 0. In

Fig. 1.10 the 2 x 10"°K result is shown, while Fig. 1.11 shows the 10%°K result.

We made an additional test on the 1-D code by running the nonrela-
tivistic (Yeherm = 1.05) simulation for twice as long, i.e. 4096 time steps. Again,
the w = 0 peak appeared in the B?(w) spectrum. Its width did not change from
the width it had in the /N, = 2048 time steps simulation. Fig. 1.12 shows t-hese
results. This indicates that the presence of the peak is not due to the restriction
on the finite window width in the correlation function imposed by the length
of the run (i.e. not the Nyquist frequency width Aw = 1/(N; A t)),‘but is
rather due to the intrinsic physics. In fact, traditionally, such a zero-frequency
peak has been observed routinely in particle simulation but has not been well

understood in its origin.
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In the 2-D simulation, pareuheters were: computational area= 32 x 32
cells, 9e™ + et per cell, At = 0.1/wye, N, = 2048, and Yiperm = 1.05. Again, a
strong B, fluctuation peak is seen at w = 0. The 2D results, together with the

results of the 1D run of the same temperature are shown in Fig. 1.13.

Our simulation results for the magnetic field wavenumber spectral
intensity S(k) follow 1/(w? + ¢?k?) (the second term in Eq. (1.59)) more
closely than our low-wavenumber expansion (Eq. (1.60)). See the frames (b) of
Figs. 1.10,1.11, and 1.12. This is explained by the conditions of the simulation.
TFirst of all, the grid nature of the simulation puts a cap on the maximum k
at 7/A. Second, as can be seen from our derivation of S(k), the first term
in Eq. (42) comes from the energy contained in the radiation. The results
shown were obtained by summing S(k,w) over frequencies 1‘anéing from 0 to
+5w, ~ 1/At, the Nyquist frequency. - When the wave frequency of a given
mode is higher than this range, the high-frequency energy of the radiation
mode will not entel: into the sum. These reduction factors of the radiation
branch, plus sharing of energy between nonradiative modes, account for the
closer agreement with the expression with only the second term in Eq. (1.59)
rather than Eq. (1.60) in our simulation. After we take these factors into
consideration, the a.grec—}meﬁt between our kinetic simulation and the theory is:

good.

1.7 Interaction between Plasma Particles and Electro-
magnetic Waves with High Momenta

We have deferred until now definitive resolution of the treatment of

high wavenumbers in the integral in Eq. (1.47). In Secs. 3, 4, and 5, we phe-

nomenologically introduced a cutoff wavenumber in k-space. Without this cut-
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off, we obtain an infinity of energy in the magnetic field power spectrum at
w = 0. Such high-%& divergences are a common problem with fluid theories
which take no account of the granularity of a fluid at some scale. In this sec-
tion, we offer quantum mechanical justification for the introduction of a cutoff

by showing qualitative handling of this problem.

The longitudinal dielectric function of a plasma, calculated from ki-
netic theory based on classical mechanics is

k-Ov fo; (v)

w—k-v+in’ (1.131)

2,
alkow) =1+ 8 [
J

where the index j indicates species of the plasma constituents and fo;(v) is the
unperturbed velocity distribution function of species j. (The end results we
obtain in this section will be applicable to the transverse dielectric function as

well.) If fo;(v) is a Maxwellian, the result is

k%
ek,w) =14+ ’?JW( d ) (1.132)
J

2 ko

where kp; is the Debye wave number of the species j and vy, is the thermal

velocity of species 5. W (z) is the plasma dispersion function.

Eq. (1.131) is , however, a classical approximation to a quantum me-
chanical expression, accurate when the momentum transfer between photons
and matter, ik, is small. When we treat the plasma quantum mechanically,
the derivative term k-0y fo(v) is replaced by a difference in fy, and the k- v
term in the denominator is replaced by a difference in energies of momentum

states:

m

ke folv) = Z{olp + 1k/2) = folp = RK/2)},  (1133)

k-v - %[c(p-l—hk/?) — (p — hk/2)]. (1.134)
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We then have

glk,w) =1+ ‘ (1.135)

 [Lo__blp+92)~ o =1y
m? fi(w + 1) — [e(p + ﬁk/Z) —¢(p — hk/2)]

If the plasma particles are free-particle Fermions, the distribution

function is
fo(p) = [P#/2m=r 1 1), (1.136)
where (0 is 1/T and pu is the chemical potential. This means

w2,
€”(k,w) =1+ Z;%’Z- X
J

m?  h(w+m) — [e(p + ik/2) — e(p — hk/2)] (1.137)

If (5k)?/2m > kpT and p, we can approximate this expression by

)
w .
gkw) =1+ ——w”; =Bk [8m
J

.(ZBP 6—-/3[p~(p+ﬁk)/'2m—u] _ 6—/_?[p-(p;ﬁk)/2m—u]

[22 . . (1.138)
m? fi(w + 1) — [e(p + hk/2) — e(p — 7k/2)]

For very large k, therefore, the imaginary part of ¢(k,w), obtained from the

Landau contour integral of the second term in the above expression, falls off as

e~ FR*K/8m Tt is this part of the dielectric which determines the strength of the

fluctuations. Therefore, fluctuations are indeed negligible at high enough .

1.8 The Bohr - van Leeuwen Theorem

Those readers familiar with the Bohr-van Leeuwen theorem might ob-

ject that, when a permanent magnetic moment exists, it is always a quantum
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mechanical effect. In 1911, Niels Bohr [19] demonstrated that a strict, rigorous
application of classical statistical mechanics ruled out the possibility of macro-
scopic magnetization in classical physical systems. This result, among others,
was independently discovered by H.-J. van Leeuwen and presented in her dis-
sertation in 1919 [20]. We consider here the apparent contradiction between the
Bohr-van Leeuwen theorem and the present theory after giving a short review
of the theorem. We give a proof of this which closely follows one given by van

Vleck [21]. His proof, in turn, is based on that given by van Leeuwen.

We wish to calculate the magnetization of a macroscopic body. Sup-
pose that it is made up of molecules, perhaps possessing permanent or induced
magnetic dipole moments. I'rom a classical view point, the magnetic moment
of one of the molecules is e/2m.c times the total angular momentum of the

electrons orbiting the molecule. The z-component of the magnetic moment is

e : .
ms = oo ;(:ciyi — YiTi). (1.139)

We can write this more generally, thereby economizing notation and showing

the power of the theorem more fully:

m. = Z(Lk(]k, (1140)
k

where the ¢;'s can be a set of generalized coordinates describing the system (in
this case, the positions of a molecule’s electrons), the ¢;’s are the corresponding

generalized velocities, and the a;’s are functions of the ¢x’s but not of the g ’s.

Magnetization is found by taking an ensemble average of this magnetic
moiment
Z arre” T dgy . dpy ..

M, = N—£ , (1.141)
/ e~ IR qgy . dpy . ..
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where N is the average molecular density, T is the temperature, and H =

({q} {p}) is the Hamiltonian of the system.

We note that 4k = OH/Jpy, and obtain

r

/Z(Lka—_e‘ﬁ/kTH(lqu(lpi
M, = —NkT—= % i (1.142)

/ e H/KT H dg; H dp;

i

/Z[ake HIKT1pe= ngd%H(lpi
= —NET—2% L — (1.143)

/ e=H/MT T dg; T] dp:

i

We make the reasonable assumption that if any one of the py ap-

proaches +oo, then H({¢}, {p}) becomes infinite. This being the case, we find

lage HIETPRZH20 = ), (1.144)

Pr=—0o

The magnetization is therefore identically zero.

The result is the same for a plasma. We pick some point which is
stati011a1'y with respect to the center of mass of the plasma. We find the

magnetic moment about this point

m = Zi(xixpi) (1.145)

2em;
where the sum extends over all charges in the plasma. We find magnetization
by taking an ensemble average of this sum. The argument proceeds exactly as

above and we find that the magnetization is, again, zero.

The question we address is whether this result contradict the zero-
frequency (i.e. permanent) magnetic fields we have found in plasmas or not.
The answer is that it does not. The contradiction is only apparent. van

Leeuwen’s proof deals with the ensemble average of the magnetic moment m.
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This average is zero. However, the theorem says nothing about fluctuations
about this average. We take an ensemble of macroscopically identical plasmas.
We measure the magnetic field at some particular point in each plasma, and
average the measurements. We will, indeed, get a value of zero. However, in
each plasma, the magnetic field at the particular point we have chosen will
deviate from this zero average. What we have found is that this deviation in
each element of the ensemble has, generally speaking, a time average differ-
ent from zero. This result is surprising, but is not in contradiction with any

well-established results of electromagnetism or statistical mechanics.

1.9 Fluctuations in Degenerate Electron Plasmas
1.9.1 Completely Degenerate Stationary Electron Plasmas

Our aim in this section is to obtain expressions for the frequency
spectra of electrical current and magnetic field fluctuations in completely de-
generate electron plasmas. We take a simple model of the degenerate plasma:
a completely degenerate gas of Fermionic electrons in a uniform background
of neutralizing positive charge. When the degeneracy is nearly complete, the
Fermi distribution can be taken at its 7 = 0 form for the purpose of comput-
ing the dielectric function. This does not imply that the actual temperature
or its associated fluctuations vanish. In this model, the wave functions of the
electrons are simple plane waves, rather than the more complicated (and more
realistic) Bloch functions associated with a periodic lattice. We can at least
expect that our results hold for metallic crystals with a small number of con-

duction electrons filling the lowest portion of a single conduction band, where

the electron Hamiltonian approximates that of a free particle.

Given this model of the degenerate electron gas, the longitudinal di-



o6

electric function is [22]:

e ‘ 1 2 2) — s
éf(w,k)=1+—3-w”ei{1+.—l~[l——<q—3) et —ul 2

"8 Eh ¢ (g —2)—u| <

\‘:‘?)SQ.X
: 2 '
Ll wY] o lela+2) +ul
+—|l—=—=1q¢+ - n ,
2¢ 4<1 q) lg(g — 2) + ul
e u, 0<u<q(2-9q),
I We . 2\ 2
€fl(wv=k):RE'%q~3 l—%(q——q—) s qlg — 2| < u < q(g + 2), (1.146)
0, 0<u<q(g—2)u>q(qg+2)

where ¢; = Re{g} and ¢f = Im{e}, ¢ is k/pp, u is |w|/EF, pr is the Fermi
momentum, Fr is the Fermi energy. In this section, we set Ai=1. The k —w

regions in which ¢ is non-zero are shown in Fig. 1.14(a).
(6n?)y, is given by

k? 1 ¢
 2meewlT — 1 g%

(6n%)x (1.147)

As we remarked above, the temperature 7" appears in the Bose-Einstein distri-
bution, while it does not appear in ¢(w, k). When T — 0, the factor (e*/T—1)~1
approaches —O(—w), @(a) being the Heaviside step function. The last factor
in the expression for (§n?)y, is —Im{1/e}. It should be noted that this takes on
non-zero values when: 1) k and w lie within the regions specified by Eq. (1.146),
and 2) k and w satisfy the dispersion relation for the electrostatic plasma wave
provpa.gat‘ing through the degenerate plasma. The dispersion relation for the
electrostatic plasma wave in the completely degenerate electron gas is [3]

1.4

(.L)z — w;t + gl{i"l)?y -+ W’ (1148)

where vg is the Fermi velocity of the degenerate gas.
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The equation of charge continuity, together with Eq. (1.147), tells us

that the longitudinal current fluctuations are given by

2 1 éf/

<6.7||>kw - 2 ew/T —1 |fl{2' (]‘149)

Fig. 1.14(b) shows a contour plot of this function weighted by the geometrical
factor 4rk?. We find the frequency spectrum of longitudinal current fluctua-
tions (5j|2|)w by integrating this expression over d*k and dividing by (27)3. We
have performed this numerically. Iig. |.l5shows the result obtained when the
plasmon energy divided by the Fermi energy is 1.49. For very low frequencies,
(5j|2|)w varies as w3. There is a kink in the spectrum at hw = 1.49FEr. This
corresponds to the appearance of the electrostatic plasma wave, which exists
in the frequency range of u = 1.49 to u = 2.3. Above u = 2.3, (5j|2|)w rises

approximately as w!1%,

The transverse current fluctuation spectrum in a completely degener-

ate electron plasma is derived from the transverse part of the dielectric function

Wi dme? ., (k-p)?
Ct(w,k)= —ﬁ—mv%?ﬁ;(}) — k2 )X

| 1
- 1.150
{w—Ep_k+Ep+io w—Ep+Ep_k+io}’ (1.150)
where V is the volume of the gas and np is the Fermionic occupation number

of the state p:
np = (E_./,?(Ep-u.) + l)—l . (1.151)

Since we take the electron wave functions to be plane waves, Ep, the energy of
state p, is p°/2m.. Assuming a large number of electrons, with two electrons

per p-state, as allowed by the Pauli exclusion principle, we can approximate
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the summation here by an integration. If the boundary conditions on the gas

are periodic, we find

3wl g 3 u?
¢(w, k) =1 -3 4;;2:'&—2 [l-{- L +'—'q——'

. . 2\ 2
1 1 2
29 4 q (g —2) +u
A : 2\ 2
| u q(qg+2) —u
——|1l=={¢—= In [—————t——
2q 4 q ¢(q—2)—u
3 wpe 1 I, 1
2——a" - ————I ,0< 2—9q),
16 E% uq( 4q? ¢ 4(_1 ’ u < a)
" E .
€ = dmw, 1 [ 1 (1.152) -
i L e L -2 2
ree (o) d-d<u<dery
0, 0<u<q(qg—2),u>qlqg+2),
where ¢ = u+¢? and b = —u+¢% The transverse CLll‘llellt fluctuation spectrum
is given by
1 w2 2k 2 !
2 . . ¢
(671)kw = -7 (1 — > el (1.153)
€ — -
w

This function, weighted with 47k?, is plotted in contour form in Fig. 1.14(c).In
analogy with the longitudinal case, Im(1/(e;—c2k?/w?)) is a non-zero §-function
along the dispersion relation curve of the propagating electromagnetic wave.
The dispersion relation is given, approximately, by [3]

w? = w2 + kP + LoRk?, kP << W,

w? =k 4+ W2, (1 + %_12’) Lk >> Wl (1.154)
be

We find the frequency spectrum of the transverse current fluctuations (§5%),
by integrating over ¢k and dividing by (27)?. Our numerical result is shown

in I'ig. 1.16. The plasmon energy divided by the Fermi energy is, again, 1.49.
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(67%)., does not exhibit a power law behavior at low frequencies. There is a
kink in the spectrum at w = Eg/h. This is due to the difference in behavior of
¢; below and above the curve u = ¢(2 — ¢). Above the kink, the spectrum rises
approximately as w®*%. The contribution to the current fluctuation spectrum
given by the propagating electromagnetic wave is about 107° times that of
the spectrum contributed by the dissipated plasma waves. Therefore it is not

distinguishable in our figure.

One very curious aspect of all these spectra is that they increase in
magnitude without limit as {requency increases. This follows mathematically
from setting £ = p*/2m.. Ep of a physical degenerate electron plasma, such
as the conduction electrons in a metal, would be better described by the energy
states of, for example, fermions in a finite square well potential. This being
the case, the spectra presented here will be inaccurate above some substantial
fraction of the frequency w = wy/h, where wy is the work function of the metal

in question. wy will generally be of the same order of magnitude as Fg[23].
The magnetic field fluctuation spectrum is also studied. Maxwell’s
equations yield

By, °om k? _
S = 7{0i . (1.155)

7 c? (w_2 _ /\"2>
2 '

This function is shown in contour form, with geometrical weighting of 47k?,

in Fig. 1.14(d). We obtain the frequency spectrum of the magnetic field fluc-
tuations (B?)y, /87 by integrating over k. Our numerical result is shown in
Fig. 1.17. Here we have a quantity whose spectrum clearly diverges at low
frequencies. Note that for w < (Ep/h) x 1072, (B?),/8r falls off as w=1/3,

whereas for w > (Ep/h) x 1072, it falls off as w™.
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1.9.2 Completely Degenerate Electron Plasmas with Net Drift Ve-
locity

We now examine voltage fluctuations in a degenerate electron plasma
with a finite drift velocity. Such a plasma is a simple model for conduction
electrons carrying current in a metal. For the moment, we ignore the effects of
the ion lattice potential, and continue to treat the electrons as free particles. In
this approximation, if the gas has a drift velocity vp, the longitudinal dielectric

function changes by way of a simple Galilean transformation:
el(w, k) = 6'15((4) —Vp- k, k), (1156)

where €;5(w, k) 1s the dielectric of the stationary plasma, namely that given by
Eq. (1.146).
" The charge density fluctuation spectrum also changes by a Galilean

transformation:

w k? 1 e/
<6/) >kw - ge(w—-\luk)/T —1 |€I|2’ (1157)

where ¢ is now defined by Eq. (1.156). Voltage is related to charge density by
V(w, k) = 47p(w,k)/k% Therefore the voltage fluctuation spectrum is given
by

J.67F2 l 6” .
2y _ !
(‘/ )kw - /{72 f;(W_VD'k)/T _ J_ |€[|2- (1158)
If the plasma is completely degenerate, the voltage spectrum is
1672 —¢/ .
V)kw = —5-0(w —vp - k) | —5 1.159
( )kul /\1.2 (w VD ) <|€[|2> ? ( )

“where O(x) is the Heaviside step function. The regions in k,w-space where

the fluctuation spectrum is finite can be inferred from the previous subsection,
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where we discussed electron number density fluctuations: the boundaries given

there are altered by the Galilean transformation w — w — vp - k.

To obtain (V?),,, we integrate (V?)y, over ¢*k and divide by (27)3.
Fig. 1.22 displays (V2),, for a degenerate electron plasma with a drift velocity
of 2.82 x 107%vr and a plasmon energy to Fermi energy ratio of 1.52. (Here,
vp represents the Fermi velocity of the degenerate plasma.) These parameters
correspond to a sample of copper with a current density of 1.92 x 10'® esu cm™2

sec™!. The drift velocity has been chosen to be representative of the voltage

noise measurement experiments of Eberhard and Horn [24].

Of particular interest to us in this section is the behavior of the voltage
fluctuation spectrum (V?), at low frequencies, typically in the range of 1000
Hz and less. For a plasma with the above listed parameters, it Qas found that
(V%) exhibited a white noise spectrum in this frequency range. The magnitude
of the spectrum was 1.22 x 107pp, or, specific to copper, 1.57x10~2 Volt2-sec.
This white noise extends over several decades of frequency. The frequency range
runs as high as 1073 Er/#, where the spectrum begins to increase in magnitude,
and at least as low as 107 Ep/h (1.7x 10" Hz and 1.7 Hz respectively, specific

to copper). Similar behavior is expected for other metals.

The results of Eberhard and Horn show marked contrast to what we
have derived here. In the frequency range just mentioned, they found 1/f
voltage fluctuation spectra for copper, silver, gold, and other conductors. In
light of these results, the simple damped plasma oscillations studied here can
be ruled out as the source of 1/f noise. It should be noted that the results of
Eberhard and Horn are not strictly in contradiction with the results presented
here. They report typical noise magnitudes of 10714-1071* Volt2-sec. The white

noise mentioned here could have heen present but greatly overshadowed by the
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1/ f noise.

Calculating the magnitude of the white noise as a function of drift
velocity shows that the white noise magnitude is directly proportional to the
drift velocity. For copper, the constant of proportionality is 0.410m,, or 3.36 x
10~ (Volt-sec)?m™!. This linear dependence on the drift velocity extends over
a large range of drift velocities, running as high as 0.05v; and at least as low as
5 x 10™%vp (7.9 x 10%m/sec and 0.79 cm/sec respectively, specific to copper).
At vp ~ 0.05vp, the magnitude of the white noise begins to increase faster
than piower law behavior but slower than exponential behavior. Up to v = vp,
it can be approximated fairly well by a power law of (V?), ~ vk'. (V?), vs.

vp is shown in [Fig. 1.23 for vp < 0.1vg.

Calculations of the voltage spectrum have also been attempted with
a dielectric computed from an expansion of Eq. (1.1.46.) to first order in T/ Ep,
with T" approximately at room temperature. The resulting spectrum is quite
different. With finite current, a white noise spectrum is found at low freque‘n—
cies. At low currenté, specifically vp = .005vy, the white noise is of the same
order of magnitude as just described above. However, above this velocity, the
white noise magnitude drops rapidly.” A very limited amount of data is avail-
able in this regard because of limitations to the numerical integrator used to
obtain these results. .’.I‘he reacer is cautioned, then, that the following results

are calculated at 7" = 0, and could change appreciably at finite temperatures,

even when T'/Ep < 1.

We denote the constant of proportionality between the white noise
magnitude and the drift velocity by a. It is a function of one free parameter:
the ratio of the plasmon energy to the Fermi energy, which we shall call rg.

This can be seen from the form of the dielectric in Eq. (1.146). Fig. 1.24 shows
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a plot of a as a function of rg. At small rg (which corresponds to high electron

density), a(rg) behaves approximately linearly:

o~ (0.62m,) x rg or a = (5.08 x 1072 (Volt-sec)?m™) x rg. (1.160)

At large rp (small electron density), o falls off as rz':

a = (5.65m,) x r5"*or

a = (4.63 x 107%(Volt-sec)*m™1) x rz'®4. (1.161)

Attempts to describe a(rg) with a single analytic function have not met with
success. In the range of 1.3 > rg > 1.7, where most metals are to be found,

a(rg) can be fit to a cubic polynomial
a(rg) = 0.043 + 0.571rg — 0.281r% + 0.042r% (1.162)

with a maximum error of about 0.2%. «(r.) is given here in units of electron

mass.

The noise discussed here has strong ualitative similarities with shot
noise. Namely, it is flat over a wide range of frequencies, and its magnitude is
directly proportional to the current flowing in the system. There are differences,
however. Tirst, the flat spectrum ends in a slow rise, whereas shot noise falls off
as 1/ f* at high frequencies [25]. Second, shot noise found in semiconductors and
electronic devices where the discreteness of electron current can be important
is describable by classical physics while the noise described here would seem to
be a purely quantum mechanical effect [26]. It would seem that experimental
searches for shot noise in conductors has always turned up 1/f noise instead,

probably because of the relative sizes of the two spectra [27].

Consideration of the ion lattice in a metal will alter the above results

in at least two ways. First, the electron energy, Fy, will lose its simple parabolic
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dependence on momentum. The allowed energy levels will be broken up into
bands of states. Within each of these bands, the relative energy Fy — Ey, Ej

being the energy at the bottom of the band, will deviate from %*k?/2m,.

It is expected that only the anisotropy of the elgctron energy Fy will
possibly give qualitative change to the results obtained above for low frequen-
cies. In this subsection, we have concerned ourselves with frequencies of 107 Hz
and less. (And, in fact, our main concern has been with ﬁ‘equencies of 1000 Hz
and less, in keeping with the experiments of Eberhard and Horn [234.) This
corresponds to transitions between electron energy levels separated by about
10‘9;3\/. This is far lesé than the 0.1 to 1.0 €V involved in inter-band transitions
or transitions hetween states with raclically different effective electron masses
[28]. We may obtain more accurate results by using the effective electron mass
to calculate the plasmon energy to Fermi energy ratio rg, and the Fermi en-
ergy Er. However, this will charige nothing substantially. The anisotropy of
* the electron energy may have a more noticeable effect, particularly in metals

with especially complicated Fermi surfaces, such as aluminum [29].

The second effect an ion lattice may have will come through the mo-
tions of the ions themselves. We consider ion motion here. We take a simple
model for the ion motion: ions interacting vie electrostatic forces and simple
spring forces. At low k, the dielectric is now altered: _ -

2
wp,-

e(w, k) =1 +dmye(w, k) + (1.163)

where 1 + 4 xe(w, k) is the dielectric of the electron gas, given by Eq. (1.146),
or by Eq. (1.156) if the electrons have a net drift velocity, vs is the aver-
age sound speed of the lattice, and w,;* is the ion plasma frequency squared:

4rni(Ze)?/M;. We find the new voltage fluctuation spectrum (V?), in the
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Metal (V% /vp velocity range |frequency range
inunits of ... |in units of ... | in units of ...
m, (Volt-sec)*m|vp cm/sec|Ep/h Hz

Cu [.289 2.36 x 10211073 1.57 x 105/10~% 1.69 x 107
Ag [.328  2.68 x 107241072 1.39 x 10%10~% 1.32 x 107
Au 1328 2.68 x 107%{1073 1.39 x 105|108 1.33 x 107
Al (333 2.72 x 107211072 2.02 x 10°[10~% 2.81 x 107
Zn 317 2.59 x 107211073 1.82 x 10°{10% 2.27 x 107

Table 1.1: White noise voltage spectrum as predicted by simple model for
several metals: ratio of white noise magnitude to drift velocity, drift velocity
range in which white noise is proportional to drift velocity, and frequency range
in which spectrum is very flat.

same way as above, ouly using the new dielectric in Eq. (1.157). We find
low-frequency white noise again, with a decreased magnitude. For copper,
with vp = 2.82 x 107%r again, the magnifude is now 8.61 x 10~ 7pg, or
1.11 x 102 Volt®-sec. The white noise spectrum runs up to 1073Er/h as
before. The relationship between the drift velocity and the white noise mag-
nitude is still linear, with a constant of proportionality of 2.89 x 10~'m, or
2.36 x 107! (Volt-sec)?/m. Table 1.1 gives (V?),/vp and high frequency ranges

of the white noise spectrum for several metals.

It is recognized that the model of ion motion used here is simplistic.
A minimum correction to the model would account for the anisotropy of vs.
It 1s expected, however, that such a refinement will not qualitatively alter the
results derived here. It should be noted that the ion addition to the dielectric
is hopelessly inaccurate at high & (i.e. near the inverse of the lattice constant,
or Brillouin zone boundary), where the dispersion relation of the sound wave
departs significantly from a linear relationship. However, the phenomenon

discussed here is a low-k, low-w feature of the fluctuation spectrum.
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6.0

Ck/QJpe

Figure 1.1: The natural logarithm of <B—;)rk* x (k*c?/2m%w2 ). This plot corre-
sponds to an electron positron plasma. ‘

Electron density is n. = 4.84 x 103/cm®. Temperature is T = 101%°K. Collision
frequency is 2.2 x 10'9sec™?. The collision frequency has been set at 100 times
the expected value. This smoothes out the contour ridges without their loca-
tions drastically, thus giving a better view of the qualitative behavior of the
spectrum. The difference in height between adjacent contours is 2.0, except for
the solitary contour on the right edge, with a value of 3.0.
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Figure 1.2: The spectral intensity of magnetic fields S(w) = (B?), /8 in
thermal equilibrium, non-magnetized plasmas corresponding to the plasma of
1 sec after big bang. T = 10'%°K; n, = 4.8 x 10%/cc.)

a) {n(S(w)/So) plotted linearly in w. Zero-frequency peak is at the top of the
graph, where Sy is the normalization.

b) ¢n(S(w)/Ss) plotted logarithmically in w. Low-frequency line has slope
around —2. Rises to peak at w = 0.
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Figure 1.3:  {n{S(w)/Sy) the plasma 10%sec after big bang. T = 10°°K:
n. = 6.5 x 10%/cc. .

a) In(S(w)/So) plotted linearly in w. Zero-frequency peak is at the top of the
graph. o o
b) ¢n(S(w)/Sy) plotted logarithmically in w. Slope of low-frequency line is
~ —2. Rises to peak at w = 0.

35 24 T Y
(a) (b)

tn S(w)/ S, —

or .

b

1

' 5 -4 0 2
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Figure 1.4: Corresponding to the plasma of 10'? sec after big bang. T = 10*° K;
ne = 6.5 x 10%/cc. )

a) £nS(w)/Sy plotted linearly in w. Zero-frequency peak is at the top of the
graph.

b)  {nS(w)/Sy plotted logarithmically in «. Slope of low-frequency line is
_around —2. ('ontinues to rise until peaking at w = 0.
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Figure 1.5: The dispersion relations and magnetic field fluctuation strengths
for the two direction-independent modes of the electron-positron plasma in a
uniform magnetic field.
a) Dispersion relations of the two direction-independent modes of the electron-
positron plasma in a uniform magnetic field. Roman numerals label modes in
increasing value of frequency. The modes shown here are labeled II and V.
Modes I, III, and IV, being dependent on propagation direction, are shown in
Fig. 4.

(B?) C
b) 5% of the two direction-independent modes. Roman numerals label cor-
responding modes in Fig. 3(a).
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Figure 1.6: Dispersion relations and magnetic field fluctuation strengths for the
three direction-dependent modes of the electron-positron plasma in a uniform
magnetic field. :
Roman numerals label modes in order of increasing frequency. 6 indicates
angle between imposed magnetic field and angle of propagation. Note that the
lowest frequency branch (the shear Alfven branch) is not plotted in d1, since its
frequency is identically zero when propagating perpendicularly to the magnetic
field. However, as shown in d2, it retains a finite amount of energy.
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Figure 1.7: Elements of integration in d°k.
a) The differential surface obtained from rotating a line element dl about the
k, axis i5 dS = 27 x dlksin 4.
b) The areas of the two rectangles are equal for infinitesimal df. Therefore,
dl/|Vyw| = kdb/|0ww|. So, the differential volume dV = dS x dw/|Vyw| =
2 X k?dw sin 6d8/|Orw|.
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Figure 1.8: Dispersion relations and magnetic field fluctuation strengths for
the modes of the electron-ion plasma in a uniform magnetic field.

Roman numerals label modes in order of increasing frequency. @ indicates
angle between imposed magnetic field and angle of propagation. Note that the
lowest frequency branch (the shear Alfven branch) is not plotted in d1, since its
frequency is identically zero when propagating perpendicularly to the magnetic
field. However, as shown in d2, it retains a finite amount of energy. Close to
w = 0, the power spectra of modes I and II should be regarded as qualitatively,
not quantitatively, correct because of limitations in our numerical analysis.
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Figure 1.9: Kinetic theory results for magnetic field fluctuation frequency power
spectra of thermal plasmas.

Shown are results for electron-ion plasmas at temperatures T =
10°K,10%K, and 107°K. :
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Figure 1.10: Spectral intensities S(w) = (B?), /87 and S(k) = (B?)y /8~ from
a 1D simulation of an electron-positron plasma. Yiperm = 34.7(T = 2 x101°K)
a) £n(S(w)/S). Note peak at w = 0, where S is the normalization ‘

-b) €n(S(k)/T,).Line is from simulation results. Dots represent theoretical

values: 6.7 — ¢n <1 +c? L k2 e “2> where 6.7 is obtained from least squares
P

fitting. & = ZZ with m being integer. The finite size effect of the code is taken
into consideration. '
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Figure 1.11: Spectral intensities S(w) and S(k) (B?), /87 from a 1D et — e~
simulation. Yiherm = 1.2(T = 1.3 x 10°° K) '

a) €nS(w)/S. Note zero-frequency peak. .

b) €nS(k)/To. Solid line is from simulation results. Dots represent theoretical
values —0.21 — ¢n(1 + ¢? J—g k? e¥*9*) where —0.21 is obtained from least squares

fitting.
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Figure 1.12: Spectral intensities S(w) and S(k)(B?), /87 from a 1D et —
e~ simulation. Yherm = 1.05(7 = 3 x 10%°K). Simulation was run for 4096
timesteps. _ :

a) €nS(w)/S. Zero-frequency peak is still present in 2D. :

b) EnS(k)/So. Line is from simulation results. Dots represent —1.7 — n(l +
c? é k? e¥ %) where —1.7 was obtained from least squares fitting.
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Figure 1.13: Spectral intensities S(w) and S(k) (B?), /87 from a 2D et — e~
simulation. Yiherm = 1.05(7 = 3 x 10%° K). '

a) €nS(w)/S. Zero-frequency peak is still present in 2D. .

b) EnS(k)/So. Line is from simulation results. Dots represent —2.6 — ¢n(1 +
c? 5?: k? e¥ @) where —2.6 was obtained from least squares fitting.
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Figure 1.14: Fluctuation power spectra of various quantities in a degenerate
plasma.

Plasmon energy divided by Fermi energy is 1.49.

a) Power spectrum of parallel current fluctuations ( Jihkw % (R/EE) x
(kh/pr)?/27%. Contours run from 0. to about 0.03. Contours are highest
at the top of the graph, and at the ”island” near (q,u)=(0.75,2.3). The outside
contour is close to zero.

b) Power spectrum of transverse current fluctuations (73)kw x (B/ER) x
(kh/pr)?/27. Contours run from 0 to 0.024. Contours are highest at the
top of the graph. The outside contour is close to zero.

c) Power spectrum of magnetic field fluctuations (—%%V X (h/2m.c)? /272,
Contour interval is 1 x 10~7. Contours diverge at the origin. The outside
contour is close to zero. ‘

d) Finite fluctuations of non-propagating electrostatic and electromagnetic
modes can occur only in regions I and II for a fully degenerate plasma.
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Figure 1.15: Frequency power spectrum of fluctuations in longitudinal current
in degenerate electron plasma.

Plasmon energy divided by Fermi energy is 1.49.
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Figure 1.16: Frequency power spectrum of fluctuations in transverse current in

degenerate electron plasma.

Plasmon energy divided by Fermi energy is 1.49.
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Figure 1.17: Frequency power spectrum of fluctuations in magnetic field in
degenerate electron plasma.

Plasmon energy divided by Fermi energy is 1.49.
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1.10 Fluctuation Spectra in Semiconductor Plasmas

Before we move on to examine some of the possible consequences of
the phenomena we have discussed, we present some preliminary work we have
done on fluctuation spectra in semiconductor plasmas. We will begin with

magnetic fluctuation spectra and close with voltage fluctuation spectra.

We present the spectra arising from two different models of particle
motion. ‘Carrier’ density in semiconductors is much lower thaﬁ in‘ metals, so
much so that in many cases we can neglect Fermion dégeneracy. We therefore
revert to.cla.ssical equations of motion and thermal distributions in this section.
We will first model the electrons as being affected by elec‘tror.nagnetic fields and
hard collisions with other electrons. We will then model the electrons as being
affected by electromagnetic fields and hard collisions with the lattice ions. The
two models should give identical results in the limit of infinite collision time

but, as will be seen, they give radically different results for finite collision time.

First: hard collisions between electrons. The semiconductor electrons
are assumed to lie in a single conduction band, all with a similar effective mass

me. The equations of motion for electrons and ions respectively are

dv. : ,
Me—r= = —eE — nm.v, (1.164)
(lV{

777,,'—(F' = GE — 'Flat | (1165)

where Fy,; is a lattice spring force. Specifically, the lattice force acting on the

ion n is given by
Flu.t = [\’J_(X'n-i-l - 2xn + xn—l)

where N[ is the effective transverse spring constant of the lattice. In the
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continuum, long-wavelength limit, the ion equation of motion is written

(12)(i

—7 = eE + K, aV?x;, (1.166)
dt

m;

where « is a typical value of the lattice constant.

We Fourier transform these equations of motion and combine them
with Maxwell’s equations, and, again, the fluctuation dissipation theorem, to
obtain the magnetic field fluctuation spectrum in k — w space. The result is

SE;—)T& =T x (1.167)
nw,,,e""czszz(k, w)

(w(A(k,w)(B(k,w) — wi,) — wiw?))? + n?(A(k,w) B(k,w) — wiw?)?’

pe pt

where

e

Alk,w) = w* + A—J'(Z cos(ak) — 2),
my,

B(k,w) = w® - k2

It should be pointed out that only one independent polarization of B is con-
tained in this result. Also, since we are dealing with low frequencies here, we

have taken the limit of & — 0.

When we integrate this expression to find the frequency spectrum,
we find that, as for the classical gaseous plasmas of the preceding sections, we
need to introduce a cutoff in k£ to keep the integral finite. We again choose ky;
to be wy/c. The frequency spectrum is shown in Fig. 1.18. The parameters
chosen were 7 = 0.lwpe, ¢ = 0.0l¢c/wye, Ny = 0.0lw,, and m;/m, = 0.001.
At frequencies above w = 5 x 107w, the spectrum falls off as w™'%. This
fall-off is slower than that found for the gaseous plasmas. Presumably, then,
the magnetic energy contained in the transverse acoustic mode causes the low

frequency peak to spread out.
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Figure 1.18: (B?),/8r in semiconductor plasma. Dominant dissipation mech-
anism assumed to be collisions between electrons.
Parameters are: 7 = 0.1wye, @ = 0.01¢c/wy,, K, = 0.01w?,, and m;/m,. = 0.001
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Now suppose the major dissipating factor in the semiconductor is

hard collision between electrons and ions. The equations of motion are now

)
me(v = —eBE — pm.(ve — v;) (1.168)
dt
Iv; .
777'1'(1\; =cE - Fi — UT—( ; — Ve). (1.169)
a 1

These equations of motion return a fluctuation spectrum of

(B*)x

S

“ =T x (1.170)

nwl. AR A(k,w) + (me/mi)w?)?
(W(A(k,w)( (/v u)) —u)z ) - ’pmﬂ)) + I]’BZ(,I\ w)(A(;\.',w) + (me/mi)wg)Z’

where A(k,w) and B(k,w) have the same meanings as above. The frequency
spectrum (B?), /87, obtained by integrating this expression over d*k, is shown
iin Fig. 1.19. Parameters are the same as given above. Above w = 0.1w,,, the
spectrum decays as w(~!9), close to the decay found above. However, as clearly
seen in Fig. 1.19b., the spectrum has an absolute maximum at w ~ 0.001wp.,
not at w = 0. This change in the spectrum’s behavior is apparently due to
more energy being deposited in the transverse acoustic mode. Clearly, the
dominant mode of dissipation can strongly affect the magnetic field spectrum.
It should be noted that, in semiconductors, the collision frequency is fairly
high, 0.1 — 1.0 X wy,e so the effects of dissipation here are likely to be higher

than in gaseous plasmas.

Lastly, we study clectrostatic voltage fluctuations. The electrons are
assumed to move under the influence of electromagnetic fields, electron pres-

sure, and hard collisions with ions. The equation of motion is, therefore

L. nme(ve — v;). (1.171)
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In the long wavelength limit, the ion equation of motion is

m —(12 L= eE+ K 2x (1 1 2)
4 = eE + K)o V*x; AT
i gz I "

where K| is the longitudinal spring constant. We again bring in Maxwell’s equa-
tions, Fourier transform, and substitute the value of the longitudinal dielectric
¢((k,w) into the fluctuation-dissipation expression for voltage fluctuations. The

_ resulting spectrum is
(V3gw=T— x : (1.173)

nw?, (C(k,w) + (777.6/7ni)D(k,w))2 S

pe

C(k,w)(D(k,w) — wp,) = whwi))? + n*w?((me/m:) D(k,w) + C(k,w))*’

where
2, X
Clk,w) = w* + — (2 cos(ak) — 2),
m;
D(k,w) = w? — k?, (1.174)

¢, being the electron sound speed. This expression is integrated over d°k to -
give the voltage frequency spectrum which is displayed in Fig. 1.20. The pa-
rameters chos-eu were: ) = 0.lwye, ¢; = v, (the electron thermal velocity),
- a = 0.01v, /wpe, K/m; = 107%w,,, and m./m; = 0.001. Once again, an inte-
gration cutoff was necessary; it was chosen as the DeBye length v./wpe. The
spectrum drops off sharply above w = 0.022w,.. This happens because of the
integration cutoff: at higher frequencies, integration does not pick up the con-
“tribution to the spectrum from the 1011git.udina.l acoustic mode. The very low
values of the spectrum at [requencies below 0.004w,, should be held suspect as

this range was problematic for the numerical integrator used to obtain these

results. At frequencies above 0.012w,,., the spectrum rises as an exponential
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function of frequency: (V?), ~ e* with a & 196/wp.. In a typical semicon-

ductor, a ~ 10~ 1sec.

PIC simulations of a semiconductor plasma show clearly the existence
of a peak in the magnetic field spectrum at w = 0. To simulate a semiconductor
plasma, the 2D PIC code described in Sec. 1.6 was altered so that ions moved
under the influence of nearest neighbor lattice forces, in addition to electro-
magnetic fields. Two types of simulations were performed: one type using the
spring-type lattices [orces mentioned above, and the other type using the ex-
ponentially decaying forces of the Toda lattice. In the spring force simulations,
the dispersion relations of electromagnetic plasma waves compared very well
with the predictions of linear theory. In the Toda force simulations, we were
able to achieve soliton motion which compared very well with that predicted
by Toda. The fluctuation spectra returned by the two types of simulations
were very similar at thermal equilibrium. Shown in Fig. 1.21 is the frequency
spectrum of the (l,d) mode (i.e. k = (27/L,,0), L, being the length of the
computational area in the a-direction) of the B, oscillations. A peak at w =10
is clearly seen. The two flanking peaks are electromagnetic plasma waves. All
other modes (k;,0) showed similar peaks at omege = 0. The relative magni-
tudes of the plasma wave peaks and w = 0 peaks were all similar that shown

in Fig. 1.21.

1.11 Cosmological Implications

We have discovered in the previous sections that electromagnetic
waves in the primordial plasma fall into two categories: one with large wave-
lengths (k < wpec) and nearly zero frequency (w < wpe) and one with small

wavelengths (k > w,./c) and frequency greater than w,.. Those modes with
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k R wy/c are not significantly modified by the presence of the plasma (‘hard
photon’), while those with & <« w,/c are significantly modified (‘soft or plastic
>photon’) (Tajima, 1985). It is those ‘plastic photons’ or their magnetic fields
that we are interested in, as they can have more ‘magnetic’ fields in nature and
can leave possible structural imprints on the primordial plasma. The strength
of magnetic fluctuations (B?), /8r, whose Vanelengtlls are longer than A, is

given by (B?), /87 = (T/2)(4n/3)A72. For A, = 2rc/w,,

(B, = 1.4 x 107%(n/10% cc)**(T/10°K)"/? Gauss . (1.175)

We might be interested in global magnetic fields whose wavelengths

at the beginning of the plasma epoch are 10 cm or longer, which correspond. .

‘to the length of the present galaxies. In this case (B?), = 4 x 107%* Gauss.

in Athe absence of dynamo actions and coalescence of magnetic strﬁ_cturés. In
Fig. 1.25 we plot the fluctuating magnetic field strength vs. the wavelength.
(Note that the magnetic fields due to thermal fluctuations according to the
present calculations are ~ ”1():"3 G, ~ 107G, and ~ 10 G for the sola;‘ pho-
tosphere plasma, interstellar clouds, and the solar center, respectively, w.hich
are all physically negligible.) Note, however, that the cosmological plasma,
comparatively speaking, has strong magnetic field fluctuations because of its

high temperature.

According to the standard big bang theory (e.g., Misner et al., 1970),
the cosmic expansion in the plasma epoch is characterized by the scale factor
a = a(t) :I(/,O(t/‘tg)lﬂ,-where ag and tg are the scale factor and the time at
present. On the other ‘lm.n-cl, after magnetic fields detach from the plasma and
photons 6B o (=" due to the flux conservation. We now express all physical

quantities in terms of the scale factor « and the wavelength A. The particle
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density of background matter n is related to a as n = ng(a/ag)™>, where ng =
10~%cm™2 at ¢t = to. The collisionless skin depth A, = 3.3 x 10%(a/ag)*? cm
and the temperature of the Universe T = Ty(a/ap)™ !, where Ty = 2.7K. From

these relationships we obtain

A
lcm

(2

B -1/2
By=\/(B?%, =94 x 107" <—> <

(%)

-3/2
) Gauss , (1.176)

and

By, = 1072 (a/ao) "4 Gauss . (1.177)

These results are shown in Fig. 1.25, where we see that the cosmic expansion
dilutes the primordial magnetic fluctuations so much that the remnant field
strength is quite small if we start with mere thermal fluctuations and do not
incorpofate any other physical processes such as the dynamo process and the
coalescence process [30]. [t is noted, however, that these fluctuations based on
the thermal equilibria are the least we can expect and can act as seed fields
for possible dynamo action. If this takes place, the plasma § would decrease
in time. The field magnitudes could be higher if some additional turbulence
or primordial fluctuations are present [31]. These are clearly important but

beyond the scope of the present paper.

In Table 1.2we summarize our results. Including the physical quan-
tities we already discussed, we survey physical quantities of importance that
characterize the radiation epoch (or the plasma epoch). The scaling of density
and temperature have been noted above. The frequency of the maximum inten-
sity of the black-body racdiation is wy,. = 2.81 T'/h. It scales with temperature:
Winax ~ o~ It follows that the plasma frequency scales as wy, « nl/? x q=3/2,
The electron collision [requency changes as . o nT=3/? « a=3/2. The plasma

parameter (and the collisionality) is therefore ¢ = (nA},)™' = n./wpe x a°
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(independent of @) and thus invariant during the epoch in which the numbers
of constituent particles are conserved; e.g. during t = 1072 — 10%sec g ~ 10~3
(invariant) and it changes around ¢ = 10° sec as positrons annihilate with elec-
trons to ¢ ~ 10~7 and stays invariant till the recombination. On the other hand,
the collision frequency between electrons and photons may be given from the
Thompson cross-section or in relativistic cases from the Klein-Nishina cross-

section to be vpg ox n TY? & a”/? and vgy x n T~ o a~2, respectively. The

Reynolds number R, is Lv/u, where L,v, and p are the typical sizes of the .

length, velocity, and viscosity. By taking v to be the thermal velocity, Lv/u
scales as L a~! and if we take L as the horizon size ct, R. o t!/2 in the radiation

epoch.

The magnetic energy (B2)Zb dw contained in the black-body radiation
around Wy 18 proportional to w?__ so (32)? x T% < a=3. On the other hand,
the zero frequency magnetic fluctuation energy (B*) o x Twi/n a~*. Thus

the ratio of the energy in w = 0 to the black-body energy in w = omeganayx

is proportional to «™!. If we assume here that the energy of nearly static

magnetic field is given by (B?)° /81 = T(w,/c)® at each instant of time after )

. . nT
w integration, the plasma beta scales as f = ——5—— o n(c/w,)® ox a®2.
(B [sr
This is based on the instantaneous adjustment of the magnetic fields to the
level of thermal energy of the Universe. It should be noted that nevertheless
this result of 8 oc 32 differs from the earlier discussion of the magnetic field
scaling when the magnetic flux conservation was invoked. Most likely, 8 o a%/2
until a certain time t;, when magnetic fields detach from plasma and thereon

f < a° in the absence of dynamo action.

The significance of the presence of static (or nearly zero frequency)

magnetic fields in the cosmological plasma may be appreciated in the following.
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Two main scenarios [32] have been considered for primordial fluctuations, adi-
abatic fluctuations and isothermal fluctuations. The adiabatic (or isentropic)
fluctuations are like those accompanied by ordinary sound waves and a cartoon
illustration of this situation is displayed in Fig. 1.26(a). In such fluctuations
the density of matter (electrons, positrons, and protons [and helium ions] for
the case of the early radiation epoch) is accompanied by that of photons, as
indicated in Fig. 1.26(a). Therefore, after electrons and positrons annihilate
around ¢ = 1 sec or after electrons and ions recombine around ¢ = 10*3 sec, the
imprint of matter fluctuations would remain in photon fluctuations as a fossil
of the primordial plasma structure. Thus the background microwave spectra
would show a certain fluctuation or anisotropy/inhomogeneity on top of the
black-body spectra. This would be a contradiction to the latest observations
by COBE etc. [33,34].

On the other hand, imagine that as we have shown, there exist static
magnetic fields in the primordial plasma. Charged particles in the early ra-
diation epoch (t S lsec) or in the late radiation epoch (t S 10*3sec) readily
respond to these magnetic fields. Charged particle matter is concentrated into
regions of lower magnetic field strength and vacated from regions of higher
magnetic field strength, in such a way as to keep the total pressure, that is,
Ptherm + B*/87, spatially constant. Now on top of this, photons are present.
Photons do couple strougly with charged particles but not as strongly as
static magnetic fields do with charged particles. Furthermore, photons are
less strongly coupled with magnetic fields. This should leave a landscape of
fluctuations in such a way that the sum of the magnetic and charged particle
pressure is constant in space, while the photon pressure remains nearly constant
in space, althougl it may slightly anticorrelate with the magnetic pressure (or

slightly correlate with the charged particle pressure). Such fluctuations are
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similar to the second category of isothermal fluctuations [37], (but they can be

isentropic at the same time), as they are nearly frequencyless.

Although there may remain a certain residual photon fluctuation in-
curred by the isothermal matter fluctuations sustained by the zero frequenpy
magnetic fields according to our findings, the level of photon fluctuations re-
flected in the bulk of microwave black-body radiation spectra is practically
undetectably miniscule. The reason for this is two-fold. First, after positron
annihilation (# = 1sec) photons are overwhelmingly abundant over charged
particles by some 10% and thus even the possible photon fluctuations incurred

by the matter fluctuations is diluted by 10% in terms of the relative fluctua-

tions streﬁgth. Second, the magnetic fluctuations are in the far low end of

the frequency of the electromagnetic fluctuations (see Fig. 1.2). Thus when we
inspect the present day microwave background frequency spectra, it would be

difficult to detect the imprint of magnetic fluctuations on its main bulk.

Questions remain to be tackled to see if fluctuations (see the corre-
sponding plasma f in Table 1.2) may be sufficient to cause the needed matter
fluctuation of 1072 — 1074 [32] for galaxy formation. Of courééi,“ we have to wait
for a conclusion until a thorough treatments of dynamo action and evolution-
ary calculations on coalescence of magnetic and plasma étructures during the

radiation epoch are carried out in order to have a more definite answer.

1.12 Other Applications

The present theory indicates that the amount of low frequency ma,g-A
netic fluctuations in a plasma, Eq. (1.51), is proportional to the temperature
T and density of the plasma to the three halves power n%2. Thus the higher

the density and/or temperature, the greater these fluctuations are. More sig-
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t=10"2% t=1 [t=10t =3 x 10'sec
T eV 107 10° 04 | T, =0.0003
ncom™3 |5 x 1034 x 103 103 106

Lyor cm| 108 1010 | 10% 1028

BG 10'6 | 108 | 10-'2
B 011 | 1072 | 10-%
(BZ)

B 1 |l0—10?% 10%
R, 1017 | 10 | 10

Table 1.2: Some characteristic parameters of the early Universe, with calculated
values of zero-frequency magnetic fields.

Temperature T', electron density n, horizon size Lj,,, typical magnetic field at
zero-frequency B, ratio of zero-frequency energy to blackbody magnetic field
energy, plasma f and maximum Reynolds number R — e are tabulated. No
attempt has been made to include dynamo effects in the calculation of the
magnetic field strengths. The table is not completed since the Universe is not
an equilibrium plasma at ¢+ = 3 x 107 sec.

nificant examples may be found, therefore, in high n and/or T' plasmas. Two

examples are discussed here.

1.12.1 Electron Density Fluctuations in Gaseous Plasmas

In addition to calculating the magnetic field spectrum, we have else-
where [33] calculated the longitudinal ion density fluctuation spectrum arising
from ion acoustic waves in a fluid plasma. We find a fluctuation spectrum given

by

<6n?>kw = hw/h»f - ‘nwzi ( + @>2 2 e PRNE]
€ —1 2me? K ) w2(1 + %22) — WP+ p2w(1 + ’7?21)2
where kp is the Debye wavenumber. This spectrum is plotted as a function of
frequency at & = 0.1 X kp, for a hydrogen plasma of temperature T' = 100eV

and density n = 10%m™3 in Fig. 1.27(a). The spectrum peaks around the ion

acoustic {requency of the given wavenumber. It should be noted that in an ion



94

plasma, mass density is nearly proportional to ion density, therefore the ion

density spectrum automatically gives the mass density spectrum as well.

Zhang and DeSilva [34] have included more elaborate dissipation ef-
fects by way of the Braginskii transport equations (a set of two-fluid equations
accounting for inter- and intra- species collisions, électron and ion thermal con-
ductivity, electron and ion viscosity, and longitudinal electric fields). They
have calculated and measured the loxs)—frequency electron density fluctuation
spectrum in an Ar plasma. Fig. 1.27(b) shows the result for (én?)y, as a func-
tion of frequency at k = 415cm™!, based on their theoretical treatment. The
spectrum shown has been generated using the transport coefficients for an Ar
plasma that Zhang and DeSilva derived from their experimental studies. *In™
addition to the ion acoustic peak, there is a strong peak at w = 0. Its existence
was confirmed experiméntaﬂy by Zhang and DeSilva. Their work shows that in
a plasma where thermal conductivity and viscosity are important, fluctuations
can be sustained in particle density as well as in magnetic fleld. In addition to
Zhang and DeSilva’s work, Stenzel’s work on magnetic ﬂuctuationé [35] may

have bearing on the present theory.

It may be of interest to measure particle transport in a plasma sus-
taining such magnetic fluctuations. Trace particles may be followed in an ex-
periment. Some theoretical treatment in such a direction has been laid-out

recently [36].

1.12.2 Anomalous Spin Relaxation in Condensed Matter.

Another example of high n “plasma” is electrons or other matter in
a condensed state. When one tries to cool a metal below 10’s of m°K by

the standard nuclear adiabatic demagnetization cryostat technique, the spins
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of metallic electrons are manipulated from external magnets. The standard
Korringa theory [37] predicts that the spin equilibration time 7 is inversely
proportional to the temperature T of electrons. However, experiments [38]
usually show an anomalous decrease in the product T7. A similar phenomenon
was first observed in the spin equilibration time anomaly in liquid He® in the
superfluid phase by Avenel et al. [39]. Although this anomaly is not well under-
stood at present, it is typically explained by resorting to impurity scattering.
We suggest that it may be possible to explain the phenomenon of anomalously
rapid relaxation by spontaneous magnetic fluctuations in the condensed matter
as discussed in Sec. 9, and the interactions between these fields and particle
spins.
In addition to these three examples, the present methods may eventu- -

ally be found useful to tackle tough problems that have resisted full resolution
to date, such as the 1/ f noise [40] and the fluctuations in a (stable) nonuniform

plasma (e.g. a certain type of stellarator plasma).
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Figure 1.19: (B?), /8 in semiconductor plasma. Dominant dlss1pa.t10n mech-
anism is assumed to be collisions of electrons with ions.
Parameters are: 7 = 0.1w,e, a = 0.01c/wpe, K| = 0.0lwpe, and m;/m, = 0.001
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Figure 1.20: (V?), in semiconductor plasma.
Dominant dissipation mechanism is assumed to be collisions between electrons
and ions. Parameters are: n = 0.lwp, ¢, = Ve, a = 0.01ve/wpe, Ky/m; =
10~%w,., and m,/m; = 0.001.
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F“igure 1.21: Frequency spectrum of (1,0) mode of B, oscillations from PIC
simulation of semiconductor plasma. w = 0 peak is clearly visible.
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Figure 1.22: Voltage flucutation spectrum (V) — w for degenerate electron
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Figure 1.23: Low frequency white noise voltage spectrum magnitude vs. drift
velocity. -Plasmon to Fermi energy is 1.52.
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Figure 1.26: Cartoon illustration of zero-frequency magnetic fields and their
influence on the plasma.

a) Adiabatically induced fluctuations without magnetic fields.

b) Fluctuations induced by inhomogeneous zero-frequency magnetic fields.
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Figure 1.27: Density fluctuation power spectra in a gaseous plasmas.
a) Ion fluctuation power spectrum (én;)y, as a function of frequency at k =

dkp.
b) Electron density flucutation power spectrum after Zhang and DeSilva [23].

(6n?)k, as a function of w at k = 415cm™.



Chapter 2

Numerical Simulations of the Rayleigh-Taylor
Instability

2.1 The Rayleigh-Taylor Instability in Expanding Flu-
ids

2.1.1 Introduction

Many physical fluid systems of interest undergo overall expansion or
contraction. Examples include inertial confinement fusion targets [41,42,43],
supernovae [44,45], the plasma of the early Universe [46], Z-pinch plasmas
undergoing Felber oscillations [47], and, probably, D-T ice crystals in muon-
catalyzed fusion reactors [48]. It is to be expected that such global motion will
affect the character of many fuid processes such as the propagation of waves

and the growth of instabilities.

In this paper, we concern ourselves with the effect of homogeneous
expansion on the Rayleigh-Taylor (RT) instability. This topic has been ad-
dressed for several particular systems. A perusal of the literature will show
that expansion has a slowing effect on the instability: the instability growth,
relative to the (growing) size of the fluid system, is sub-exponential. This is to
be expected since the quantities driving the instability, namely the gradients

in pressure and in the magnetic field strength, are depleted by the expansion.

We present two new analytical studies of expanding fluid systems un-
dergoing RT unstable motion. In both of these systems, we find sub-exponential

relative growth of the instability. We also present a numerical algorithm for sim-
105
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ulating expanding (and contracting) fluid systems. Simulation results obtained
with this algorithm show a marked retardation of the growth of a Rayleigh- -

Taylor instability in an expanding fluid.

2.1.2 Analytical Studies of RT Instabilities in Expanding Fluids

2.1.3 Incompressible Flow

We look first at expansion in an R-T unstable, two-fluid, incompress-
ible system. We take gravity to be in the y direction. The fluid interface lies

in the @-z plane (y = 0). Zero-order motion in the z direction is given by

To satisfy incompressibility, vz and v, can be taken to be

alt) a(t)

0= —a etz i v =(a—1) DL
V20 a G(f) T v‘/U (Cl ) (l.(t) Y

where « is a constant.

We assume that py = pu(y). Solution of the zero-order momentum

equation shows

i) = [t (3, <o (2))
~ /: [ﬂo(y)(ﬂ — 1)y (& (%) +(a—1) (3>2> +po(y)g] dy
_ /(; poly) (&. (%) + <%)2> dz +17o(0,0,0,t) .

With this in mind, we perturb the fluid velocity field with év =

6v,T + dv, 7 and linearize the equations of motion:

dibp+ (a— 1) %y bp — a%m@x 8p + 6vy Oypo =0 (2.1)
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Po <0t51)$ —aﬁxa,_.é'vx—i- (. — 1)23/03,503, - ag&va:)
a a a

o (G 2 - [a
+(a (-) —a&t(;> 26p+ 0, 6p=0 (2.2)

a

. a . a . a
Po <0,5vy—a5md$6vy+(a-— l)(—jydycSvy—}—(a—l)g(Svy)

5 [ 2 o (G
+((a=1) (—) + (o= 1)d <5> y8p+0,6p+96p=0 (2.3)

a

Oy 6vz + 0, 60, =0 (2.4)

where Eq.( 2.1) is the mass conservation equation, Eq.( 2.2) is the z momentum
equation, Eq.( 2.3) is the y momentum equation, and Eq. ( 2.4) is the equation

of state.

To solve this system, we first eliminate év, from equation Eq.( 2.2).
This is accomplished by substituting from Ec.( 2.4), then operating on the

resulting equation with J,, then substituting Ec.( 2.4) again. The result is
. a . . LG, a
po | =0: 0y v, + =0z (2 9y bvg) | = (o = 1) =y pj bv, + a =9, bv,
a a a

+ 0, (6p h(a,x,a)) + &2 6p (2.5)

. 2 .
where h(a,x,a) = (0’2 (ﬁ) — ad, (ﬁ)> x.
a a

Now we operate on Eq.( 2.5) with 9, and on Eq.( 2.3) with §2. We

then get two results for 924, ép. Equating them gives
) P a . o @ .o a
Dy po | =00y bvy + = (2 0, bvy) — (o — 1)y = 9, bvy, + a = 0, by
a a a

—po O {05 Sv, — f:— &0y bv, + (v — 1) = y 0, v, + (a—1) % 5vy}
« a

+ 8, 0, (6p M, x,a)) — 02 [(n(oyy,a) +g) 6p] =0 (2.6)
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L2 ;
where n(a,y,a) = <(a - 1) (ﬁ) (o= 1)0 (%)) v

a

, ) : a
Thus far we have assumed: incompressible flow, v,y = — 2, vy, =
a

I G . . .

—a =g, vy = (@ — 1)—y; pressure to stabilize against gravity and to produce
a ) a :

the above zero-order flows; pg = po(y); and v, = 0. We now specify the system

further. We assume two fluids with a sharp interface at y = 0. Each fluid has

a constant density:

po+ Yy >0
p(y) =

po- ¥ <0.
Eq.( 2.6) is now greatly simplified. Away from the interface, 9, po =
0. Also, ép = 0 except near the interface. This can be seen from the mass-

conservation equation .
Op+v-Vp=0—09,6p+6v-Vps+ve-Vép=0.

In an incompressible fluid, density perturbations can arise only from advection
or from some insertion of density fluctuations as an initial condition. As long
as 0p = 0 everywhere initially, it will, in this system, remain zero everywhere

except near the interface.

So, away from the interface, Eq.(2.6) becomes

, a . NN a a
—0;0§5vy+a(—tdz(:c8§5vy)—(a—l);@;ﬁvy—(a—l)—y@i’évy—}-azaicivy

a

—, 92 buy + o :—j O (x 9, 6v,) — (a — 1) %y. 92 8, 8v,
N |
Ha—1)%0%0, =0 (27)

Inspection will show that it is solved by any év, such that

02 ¢ 2
0 6vy = =0, bv,, .
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Now we go back to Eq.( 2.7) and integrate it across the interface
. a o a . + a0 [T€
[po (—dt dy bv, + a — 0,(x 0, 6vy) + a(—IOy 5vy] = 0 Spgdy . (2.8)
a ] - —€
What we would eventually like is a solution of the form dv, = dv,o(t) f(z,y,t).

If this can be obtained, the final equation for dv,y(¢) will have no z dependent

terms. So, we eliminate them here, if possible.

This is possible if dv, = eX**“*§v,4(y, t), for then

o ol kS o o ko
-0, 0, bv, = <:1:z/\r(/.”—— axe*TY v + 54779, 9, 5vyo>

[(

and

a . o e a . . G a Goan
a—dy(xd, bv,) = a— 3, dvyg ek 4 ika® = qg etthatT Oy 6vyo .
a Yo a 7 a
So Eq.( 2.8) becomes

. ‘ . + €
etika®e [po (—@ 8y bvyo + 2 % Oy 5%0)] =0; | bpgdy.

— —€
The density perturbation §p must have the same x-dependence as the left hand

side of the equation, so

. + e
[/)U <_d( ay (Svy() + 20 :_I U_(/ 51"3/0)] = _/\72 (1:2" 5p0 g dy . (2.9)
1 -

—€
Now, remembering 02 év, = —92 v, we see
3 .oy €
dv,0 = 617._(,0(f)ei"“' v,

If v, =0 at y = +oo,

§uy0 = Svo(t)e el

So Eq.( 2.8) is now

~(pos + po- )bl (=01 + 202 ) (10" lovyo(t) = =K [ Spogdy .

—€
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Lastly, we eliminate é6p by making use of the mass conservation equa-
tion Eq.( 2.1). The z dependence of §p causes the z dependent terms in the

equation to cancel. We then integrate it over the interface:

€ d 3 - .
0 Spody + (o — l); /_ y 0y 6po dy + 8vy,(t)(pos — po-) =0 .

€

Since the interface is at y = 0:

/6 yd, 6pody = / Oy (y bpo)dy — " Gpody=— [ Spody .
We see
. oAl e S
[dt —(a—=1) (—(] dpo dy = —bvya(t)(pos — po-) - (2.10)

So, by way of Eqs.( 2.10) and ( 2.1.3),

al La?e
Po+ — Po-
—g|k dv, , 2.11
g o+ + po- * ( )
or ‘
. Lalrl oy, a o

[é)t —(a=1) ;} [(1.2‘* (dt -2« ;) (la I5vy0(t))] =

glk| B L0 5, o (2) (2.12)

Po+ T po-

This equation is exactly solvable for certain cases of a and a. For
instance, if we assume no z direction expansion (o = 0), and we assume y
direction expansion proportional to time along with corresponding z direction
contraction (a = tg/t) then

a : Pot+ — Po-
(8 = 1/1) (8 bv,olt)) = k] [:L—wz__&’y"“) :
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This equation is solved by

d8vyo(t) = 17 [(T) + ot K(7)

where 1 /7 = [ glk| ot — Po- t,and I; and Ky are hyperbolic Bessel and Basset
po+ + po-
functions respectively.

The function 7I;(7) represents the growing mode of the instability.
Asymptotically, I;(7) approaches e™/v/27rT so dvyo(t) approaches clmeT.
The instability growth relative to the overall expansion is o dv,e/T o< €7/4/7T.
In absolute terms, we have super-exponential growth. Relative to the expan-
sion, however, we have sub-exponential growth. The relative growths of the RT
instability for a static fluid and for the expanding fluid we have studied here,
are plotted in I'ig. 2.1. It might be said that the expansion causes a “relative
stabilization” of the fluid. A similar relative stabilization of the RT instability

has also been found for incompressible, spherically expanding fluids [49].

2.1.4 Adiabatic Flow

Similar phenomena occur in compressible fluids with overall expan-
sion. Bernstein and Book [45] derive eigenmodes and growth rates of Rayleigh-
Taylor instabilities in a spherically expanding compressible system. Their sys-
tem is RT stable. That is, all density gradients point in the same direction
as the pressure gradients. We will study a system which is unstable to RT
perturbations by generalizing the adiabatic equation of state to allow for a
spatial dependence in temperature. First, we review some of the results of
Book a.11<i Bernstein. They rvequire self-similar expansion and an equation of

state p = p(p/p)” where [, p, and v are constants. These conditions fix the
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density profile:
p(y—1
[ — /’(Z ) r2
2pyT?

b

1/(v-1)
Po = /7[ ]

and lead to an equation for the expansion rate

/ f1+y('y-1) — 7_—2’

where v is the dimensionality of the expansion and 7 is an arbitrary constant,
the choice of which will fix the zero-order expansion rate and fluid quantity

profiles. The perturbation equation of motion is found to be:

g _y { {7;;2 e —91)7--2} . 5} - VE—1x (VX&) (2.13)

<

where £ is the Lagrangian perturbation and all r’s and V'’s refer to the initial™

positions of each fluid element.

If we perturb the fluid in an incompressible, irrotational manner, then

Eq.( 2.13) 1s simplified to

= —r - v¢. (2.14)

Solution of this equation leads to & = VX(r,t), where X(r,t) solves the equa-

tions

X =30 [Xu( Ot + X_ (O] Yo

&m
and

Xy =[3/2F (04 1/2)) Xs .

Bernstein and Book then show that all possible modes (compressible and rota-

tional included) grow no faster than the rate of overall expansion when + # 1.
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When v = [, only the incompressible, irrotational modes grow faster than over-
all expansion. In this case, xy,/f and y_/f diverge as t — oo, but they diverge

extremely slowly.

Of interest here is the behavior of R-T modes in a decidedly unstable
system; 7.e. where dp/0r < 0 and acceleration points inward, slowing the
expansion. Such a system can be described by a more general equation of

state:

where p is a constant and r is the initial position of a fluid element. In other
words, g is the same for all fluid elements, whereas p can vary from element
to element but p for a given element never changes. We now have the freedom
to choose initial conditions such that we have a dense fluid surrounded by a
thinner fluid, with higher pressure in the thinner fluid, thus slowing expansion

of the system. The equation of expansion then becomes
j.'f‘].','l/('y—‘l) — _7_—2 . (2.15)

The equation of motion of the perturbations is

frE =y (rzf)—l’f’-v-e) +rx (Vxg)+r VE-? BV evinp
£0 Po

where again r and V refer to the initial positions of each fluid element and py

are the original unperturbed pressure and density of each element.

We find f(t) from Eq.( 2.15). Reduction of order of this equation
gives

2 o\ 2 .

dt dt), .,  3-3y o
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If we choose f(0) = 1 and df/dt — 0 as t — oo (“minimal escape velocity,”

speaking figuratively) then

Sy _ FeT
f'*——([ﬁé-%l) , for vy #1.
If we look at incompressible irrotational modes again, we find
Xy = (0= 1)X,/r?
X = —-2)X_/r2.

3y -1 t
7 — + 1 gives

A change of variable ¢’ = W T

X, (2.16)

v
"X, = ~
2y _ (_F — 2)
t /\_ —_ _"(;‘5—
3y —1
2y )7
n solves the equations

nin—1)= -1 or n(n—1)= —t-2 .

a? a?

‘Note that, for £ — 1/a? > 0, X, has one growing mode (¢",n > 0) and one

decaying mode (#*,n < 0). So, we have unstable modes, but they grow as
power laws of #'. The instability growth rate is sub-exponential, both relative
to the overall expansion and in absolute terms.

Should (¢ —1)/a? < 0 or, as is always the case, (—¢ —2)/a? < 0, the
solutions to the equations take the form #*+% and t*~*. It can be shown that

¢ = 1 so the real solutions that can be constructed from these solutions are:

tcos(bIn(t)) , tsin(bln(t)) .

We have analytically studied two different fluid systems undergoing

overall expansion (with necessary contraction in the incompressible case). In

(-1, .

X_ @an)

Eqs. (2.16) and (2.17) are solved by X = ¢ where
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each case, the growth of the R-T instability is sub-exponential relative to the
overall expansion. This qualitative conclusion is an initial test which we have
applied to our algorithm for simulating expanding fluid and MHD systems. We

review the algorithm and the simulation results in the next section.

2.1.5 Computational Results

2.1.5.1 Algorithm Our simulation model is a non-resistive, adiabatic, two-
dimensional MHD-plasma. We simulate the plasma with a Lax-Wendroff-type
algorithm used by Nakagawa, Steiuolfson, and Wu [50], and first developed by

Rubin and Burstein [51].

To facilitate studying the R-T instability in an expanding plasma,
the algorithm is altered so that each grid point becomes a co-moving point,
tracking a predetermined zero-order expansion of the plasma. The advantage
of this approach is that, if we deal with an expanding system, it will prevent an
expanding system from growing beyond the computational boundaries. Con-
versely, it will prevent a contracting system from shrinking to a size smaller

than the grid spacing can handle.

To see how this alteration is made, we first look at how the MHD

equations can be rewritten in terms of variables co-moving with a homogeneous

expansion.

Our static coordinates are ry,r,,r;, and ¢t. They can be expressed in

terms of the co-moving coordinates x,y, z,t":
re = ax(t)x

ry = ay(t)y
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The «;(t) are functions of time chosen beforehand, and are not unlike the
elements of a time-dependent metric in generél relativity. Since what we are
doing here amounts to a simple change of variable, the a;(t) can be, in principle,
anything we like. However, the most useful ¢;(¢) will be functions thé,t lead to
spatial coordinates which track, or nearly track, the overall expansion of the
system. So we determine the «;(#) beforehand by first solving the zero-order

fluid or MHD equations of motion. If these equations lead to a homogeneous

expansion of the fluid, i.e. a fluid element at (rg,7y,72) at ¢ = 0 moves to

(Fa(t)ra, f, (1)7yy fo(t)r2) at ¢, then a;(t) = fi(t). If the fluid equations return
an expansion which is not quite homogeneous, then we can still make some use
of the algorithm by choosing the a;(t) to be large enough for the computational

boundaries to always contain the entire system.
The velocities u,v, and w can be expressed in terms of velocities

relative to the local motion of expansion:

U(rg, Ty, T2y t) = vr(l Y, 2,1 )+ az(t )z

V(1 Ty 720 t) = vy (2,7, 2,1 )+ a, (t)y

W7y, 1y, 72y 1) = V(2 Y, 2,1 N+ a.(t)z

So, for example, if (vy,v,,v.) is equal to (0,0,0) at some point (z,y, z), then,

at that point, the fluid is moving exactly with the expandihg coordinates.

The derivatives are rewritten
. 1 9
drr = "
T ag(t) dz
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1 0
O = ay(t) C)_y
- 1 9
O. = @ (1) Dz

ax Jd a, 0 az 0

Y .
ap v 0z a, ” Oy “ oz

The MHD equations then become

d[) (.LJ' _
5 T V(e )+;ajp—0 (2.18)

I pv; L.
Ilpvi) + V., - (pvvi) + —ip + Tl‘ (V. xB) x B]; +
a; 4’

ot
> L pu; + %pvi + pa;x; =0 (2.19)
P b
d§+[v x (v x B)] +BZ”J: | (2.20)
J#

P 2 2
9 p _|_£_U__+B_ +V, v _727___}_& +—1—B><(v><B)
v —1 2 4T

P, Y a;

: 2
+;v](zj.y,p+;ajl{,p+<7_l+ 2);%

B+ B? g B? + B% ¢ B? 4+ B? ¢
Y A = £ .z = Y =0 2.21
* dr g + dr  a, + i a, (221)
1 o 1 o 1 9o ..
where V, = L — — |, and all summations are explicit, i.e
az Oz’ a, dy  a: 0z

repeated indices do not imply summation. Our simulation is two-dimensional,
but z direction terms have been retained here for completeness.
Now we must alter the computational algorithm to account for the

“source terms” and the time-dependent coefficients appearing in the new equa-
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tions. We now represent the MHD equations by

s J‘ o 1 o 1 u

U y

We first find mid-point values for U™*1: Here, we closely follow the standard
Lax-Wendroff algorithm, but we introduce two changes.” First, the spatial
derivatives are modified by the expansion factors ¢, and a,. For instance,

d l n n

& T wae (P = F3) -

Second, we account for the expansion source terms:

[F™ g™ 1
n+1 n+1 ¢ -1
Uliias = Ui 4+ At = AL Zp — (81

7 mn
i+1,7 + S ) *
Midpoint values are then calculated for £+, G*+1, and S™+1:
n+1 _ rn+1
L =F (Li+1/2,.i) - ete

Lastly, grid point values are calculated for U™*!:

Un+1_(n At a_F '/L+1+ (-)—F n ___é_?: aG n+1+ (9_G n Y -
b 2 |\ oz i . 2 /s 0y ) i

(S" +35

!
2

oottt 1 n+l g+l 41
where 5,5 = g (‘Sz+1/21 + gJ+1/2= D12, T SHi- 1/2)

2.1.5.2 Simulation Results We model a non—resisti?e, adiabatic MHD
plasma. The adiabatic constant is v = 5/3. The plasma is contained in a
box with reflective boundary conditions. Physically, it is twice as long in the
y direction as in-the a direction. One hundred twenty two grids are evenly

spaced along the y direction; thirty are spaced along the z direction. A dense
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plasma occupies the lower third of the box, a thin plasma the upper two thirds.
The interface between them is a transition region with a width of about 10 grid
spaces. A magnetic field B(y)Z is imposed; it is relatively weak in the thick
plasma and strong in the thin plasma.

In detail, the pressure, density, and magnetic field strength profiles

are:

¥Y—Yo
p = py — p1 tanh ( 7 )

Y~ Yo
p = po — py tanh ( ; )

, , — e\ 12
B = <Bg + B2 tanh (y ; "’”)) .

Yo 1s the center of the transition region. ¢ is on the order of half the width of

the transition region. pg and p; are chosen so that the thick region pressure
(pex) is seven times that of the thin region pressure (pi,). The variation in p
is exactly proportional to the variation in p. The total pressure (p + B?%/87),
however, increases as we cross the transition region from the thick plasma into
the thin plasma:

2

) -
15y

Din +
n 87‘(‘

= 1.2[)”; .
The plasma g in the thin region is 0.11. The overall (= 8r pyu./2B2) is 0.77.

The imbalance in the total pressure creates a force across the transi-
tion region directed toward the thick plasma. This system is R-T unstable.

To test the code, we first studied the growth of initial R-T perturba-

tions in a plasma without expansion. Velocity perturbations took the form

() (&)
U = Py Ssin { —— —
0 A

(‘27r:1:> ( y ) in the thick plasma  (2.22)
v=—vgcos | — | [ —
A Cog
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y—"Lly\ . [2mx
= (1-2 25 i (5)
B <27r§:3 in the transition region  (2.23)

v = —vo cos { ——

o y=lut @r)) . (27
U=y l———é—— sm(/\

(} ” -}-mét,.)) (‘27rrc) in the thin plasma  (2.24)
v=—ug |1l — T — cos 3

' tn

(2.25)

where (;; is the size of the thick plasma, £, is the size of the transition region,
and {,, is the size of the pla.snla,: A, the perturbation wavelength, was set to
twice the length of the a direction wall of the simulation box; vy is about 0.1
of t.he‘somllcl speed in the thick plasma . The transition region was also given a,‘
sinusoidal bend of the same wavelength having an amplitude of about one grid

space.

The R-T instability grows qualitatively as standard theory and ex-
perimental results have indicated. Namely, the sinusoidal perturbation of the
interface grows and then becomes cycloid-like, sending “spikes” of dense plasma

into the thin plasma [52].

We have also compared the early growth rate of the instability to a
“ball park” obtained from the standard expression for the growth rate of an.
incompressible, two-fluid R-T instability in gravity, namely:

P2 — M

n=,/gk ,
g pP+2+pm;

where £ is the perturbation wavenumber, g is the gravitational acceleration,
and py and py are the fluid densities above and below the interface, respectively.

For g, we substitute a number approximately equal to the average acceleration
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in the transition region:

(2BZ/8m + Ap) /Ly,
g =
p(yir)

where Ap < 0. Given that

we find

Nelass = 5.17 — )

where ¢, is the dense plasma sound speed and ¢, is the y direction box length.

This is, indeed, within the “ball park” of the simulation results:

or

n = 0.587 455

The main result of interest from these simulations is the somewhat
stabilizing effect of the expansion on the instability. Let the amplitude of the
“bend” in the interface be denoted by /(). Then the amplitude relative to

expansion is

s(t) = I(t)/ay(t) .
If a,(t) is a constant, then our present problem reduces to the static case with

some exponential growth rate
[(t) ox ™ o s(t) .

However, if «,(f) is a function of time, such as ot + 1, the simulations shows

that s(t) is some sub-exponential {unction of time. The time evolutions of
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the density contours of static and expanding plasmas is shown in Fig. 2.2.
Note that, after equal times, the interface of the expanding plasma remains
much more planar-than that of the static plasma. The s(t) for two different
expansions, a(t) = t+1 and a(t) = 4¢+1 (¢ being normalized to the time needed
for a wave traveling at the thick plasma sound speed to traverse the y extent of
the computational grid) along with the results of the static plasma are shown
in Fig. 2.3. The plasma instability growth is slowed relative to the overall
expa,-nsion of the plasma. In particular, the early-time growth of the instability
is slowed by 7% when «(t) =t + 1 and by 14% when «(t) = 4t + 1. Also, the

instability appears to saturate and enter a non-linear regime earlier with faster

expansion. When «(t) - 1, fall-off from linear growth begins at about 0.17 of

the classical growth time. This occurs at about 0.15 of the classical growth
time when a(t) = ¢ + 1 and at about 0.1 of the classical growth time when
a(t) =4t + 1.

We take a moment here to review the relationships between the two
systems we studied in Sec. 2 and the system we have simulated. In each of the
Sec. 2 systems, the instability growth rate, relative to the ovéféﬂ expansion, is
sub-exponential. However there are significant differences in the makeup of the
two systems: The incompressible instability u‘ncler consideration is driven by
a constant gravitational force while the expansion (and accompanying contrac-
tion) of the fluid is chosen to be constant. On the other hand, the compressible
instability is driven by the same preséure gradient that cause the expansion to
slow down; it is precisely this deceleration that destabilizes the system. The
incompressible system has a slab geometry; the compressible system has a

spherical geometry.

The system we have simulated stands “half-way between” the other
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two in certain respects. It is a compressible fluid in a slab geometry. Its
overall expansion rate in the y direction is chosen to be constant but, since
the fluid is compressible, there is no need for any contraction. The instability
driving force is created by a pressure imbalance at the interface of the heavy
and light plasmas. This imbalance is not responsible for any change in the
overall expansion rate but, as in the compressible case, it is depleted by the
expansion. Despite the differences in these systems, fluid expansion slows RT
growth in them all. This can be taken as a successfully passed, qualitative test

of the simulation algorithm.

2.1.6 Conclusions

A large number of specific expanding fluid systems give rise to slowed,
or even sub-exponential relative growth of Rayleigh-Taylor instabilities. We
have presented analytical results for two new systems which exhibit this phe-
nomenon: an incompressible two-fluid system and an adiabatic fluid system.
The adiabatic system is a generalization of Book and Bernstein [45]. They
studied an expanding adiabatic fluid with a pressure completely dependent on
fluid density. This led to a spherical system with both density and pressure
falling off with radius. The density and pressure gradiénts were necessarily
in the same direction and the system was RT stable. We have introduced a
spatial variation of temperature into the equation of state, making possible a
rise in pressure together with a fall-off in density. This makes the system RT

unstable.
Results from a new MHD fluid code written specifically for simulating
fluids undergoing overall expansion (or contraction) confirm this result for a

simple slab geometry system undergoing a simple linear expansion.



124

It should be noted that fluid expansion will not always lead to sta-
bilization of instabilities. Modes developing along magnetic field lines, called
Parker modes or ballooning instabilities, behave in a marked way in an expand-
ing gas in their nonlinear stages [53]. Expansion could contribute to nonlinear

destabilization through mass motion along the field lines.

The computational algorithm presented here may find application in
the study of astrophysical phenomena, such as certain stages of supernova
behavior. For instance, it might be used to study the effects of the interstellar
medium or magnetic field swept up in the leading edge of the explosion. It -
might also be usefully applied to problems in inertial confinement fusion. For
example, fluid expansion and contraction might significantly affect the results

of such research as Emery et. al. [41] and Kull [42].

2.2 Particle Simulation Algorithms for Introducing Short-
Range Forces into MHD and Fluid Flow

2.2.1 Adiabatic Fluid Algorithm

We have constructed a PIC code for the purpose of studying the effects
of short-range, intermolecular forces on fluid and MHD flow. Here we present
the algorithm we have used. We also present two other algorithms which will,

hopefully, be helpful in overcoming time-scale problems.

The algorithm is based on an adiabatic MHD PIC code developed
by Brunel et. al. [54]. In this algorithm, computational particles carry mass
and momentum. Fluid quantities such as pressure, density, and fluid velocity
are interpolatecl_ from the particles to a CO[ﬂ]’)llté.tiOIl&l grid. In return, these

quantities are used to construct fluid forces which are interpolated back to the

particles and used to alter the particle velocities.



125

The algorithm works as follows:
(1) Fluid density is computed: p™(x) = Y, Spu(X" — X3) where S,
is the interpolation function and the sum is over all particle positions within

some predetermined distance from the cell at x.

(2) Pressure accelerations are calculated, as well as magnetic acceler-

ations, if we are studying MHD flow:
F, =-Vp*/p" where p = po(p/po)”

% = ((VxB")xB)" /4rp"

(3) Fluid accelerations are interpolated to particle positions: F7 =
>y Spu (X" — %7 )(F7 + F3) where the sum is over all grid cells within a prede-

termined distance of the particle p.
(4) Short-range accelerations are calculated for each particle:
FQP = Z Fs(x;} - x"/")
4
These accelerations are then interpolated to the grid cells and then back to
the particles. (In our particular code, the accelerations were calculated by a
PPPM method [55].)

(5) Particle velocities are advanced by a half time-step:

At
ll—l/2+__)__(Fll)L+F’;Lp)

no__
Vo = Y%

(6) New fluid velocities are computed by interpolation: v} = ¥, Spu(x—
Xp)Vy-
(7) The magnetic field is advanced a half time-step using a Lax

method:

b1z, M
B2 = (B") + —~(V x (v}xB"))
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where (B*);; = (BF,,; + B, ; + B, + B, ) /4.

8) Particle velocities are advanced another half time-step:
P
At
+1/2 [

where v is an arbitrary constant ranging from 0 to 1. v ='1 prevents multi-
streaming.
(9) Particle positions are pushed a half time-step:

= x" + V11.+1/2_‘A_t
92

<

X”+1 /2

(10) New fluid velocities are calculated by interpolation:

n+1/2 ' +1/2 nt1/2
ngux xp ) (V2 xH/2)

(11) The magnetic field is pushed a full time-step, completing the Lax

scheme:

Bﬁ+1 = B" i Ai(V % ( n+1/2xBn+1/2))

(12) The algorithm cycle 1s completed with the final advance of the

particle positions:
) At -
9

K

xn+ _Xn+1/2+vn+1/2

Initially, an attempt was made to add the short range accelerations directly
to the particles in step (4). This approach had to be abandoned because of
problems with spatial aliasing ol short wavelength fluctuations in the fluid
quantities. The interpolation scheme acts as a spatial low-pass filter on the

short-range force effects.

In an effort to get past the limitation on timestep imposed by the
sound speed of the adiabatic fluid, we attempted to implement an incompress-

ible fluid algorithm. It proceeds thusly:
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(1) Fluid density, velocity, short-range forces, and magnetic field are
calculated at each grid point. This is done in the same way as in the previous
algorithm.

(2) Acceleration from the magnetic field and short-range forces are

calculated on the grid points:

A% = ((VxB")xB)" /drp".

(3) Preliminary values of the updated fluid velocities are calculated:
U, = Up? + AL9At

. n . T n
where A} = A% + A7

(4) The velocity field is now made incompressible. This is accom-

plished by first solving a Poisson-type equation for the velocity potential ¢:

(V")

n
v

V- (VR + ¢r)=V.-0r

where the subscript ¢ indicates a quantity defined at the centers of the grid
cells, as opposed to quantities defined at the grid points, which are labeled by
v. The velocity potential ¢ is of physical significance in that it is proportional

to the pressure divided by the density:

n4-8
¢ =L oA,
Pe
U} is now calculated by
CTn L N von
U: = U-u - ((va)c + (——/)pn—)g/)v)'

(5) The magnetic field is advanced to its preliminary values:

At .
B" = (B") + =-(V x (U xB")),



128 |

where (B");; = (BFy, ; + Bi,; + B}, + BY,_,)/4.

(6) The fluid velocities are advanced to the next timestep:

Upt=? = (U] ~ (1 - 0)Us~’]/0.

(7) Updated particle velocities are interpolated from the grid cells:
n+1—-8 n—0 n+41-8 n—_0
U=l = Un=f + Y (Ut - U8,
where Sy, is the function of interpolation from grid point v to particle p.

(8) The magnetic field is advanced to the next time step:

B! = B" 4+ At(V x (UM< B")).

(9) The cycle is completed by pushing the particle positions a full
timestep:
xpth = x4 Y Unte,

In our particular code, § was set equal to 1/2. The Poisson equation in step

(4) was solved by an SOR method [56].

An alternative algorithm for introducing short-range force effects has
been considered, but not, as yet, used in a simulation code. Short-range forces
would not be explicitly calculated. Rather, a surface tension fluid force would
be calculated wherever the fluid density gra‘dient exceeded some predeterxﬁinéd
value €. In the physical equations of motion of fluid or MHD flow, the surface

~ tension force at a sharp interface is given by
Fr = orfié(x — x,), (2.26)

where o is the surface tension coefficient, and « is the local radius of curvature
of the interface, defined along with the unit vector fi so that the force always

points into the fAuid from which the interface appears concave.
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To adapt this force to a fluid code mesh, we would make the change

on-Viif |Vp| > e

orNé(X — x,) = {‘ 0 AP (2.27)

where i = Vp/|Vp| and ¢ is chosen beforehand. This method of handling

surface tension was developed by Brackbill, Kothe, and Zemach [57].

The algorithm proceeds in a fashion similar to the incompressible al-
gorithm outlined above, with two exceptions. First, as has been stated, short-
range forces are not directly calculated. Second, surface tension is included in
the calculation of the preliminary velocities U™, This is accomplished by an im-
plicit inner iteration scheme in whicl the continuity and momentum equations

are coupled:

o+ . r\ n+8 nc.
r‘“m—f—l = —-VI1 m m+1UOT + R"

RrH = Qe (VU™ - REES )06t + R™
oRH
[){p)

Crxnd n+0 n+0 n+6
U m+1 — w(U Um+1) + U

m m=—11

U:)Ll+l = {ABU - v Rﬁj_fl}%f -+ Un

where

R = V),

R= 0

A\l
Q=RR -1, (2.28)

and [p] is the difference in density across the interface and (p) is the average of

the density across the interface. Upon convergence, U™ Um+1
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2.2.2 Simulation of a Rayleigh-Taylor Instability

We implemented the first algorithm in a simulation of a two-fluid
Rayleigh-Taylor unstable system. The simulation code is two—dimensionai. All
distances were normalized to the grid spacing A. All velocities were normalized
to the sound speed ¢, = vypy/p where f is the average mass density and pp is
ém arbitrary physical pressure. Time was normalized to At = A/c,. All mass
was normalized to the particle mass. The computational grid size was 64 x 64.

The timestep was At = 0.05.

The initial density profile was

[ 4 g — [ Y — Yiy
oly) = Pi Ti‘ﬂz n P2 . P1 tanh <J Yy nt) ’
2 2 Ysize

4 4

where p; was the density at the bottom of the computational area, p; was the
density at the top of the a.i‘e.a, Yine Was the location of the center of the interface
region, and ¥s.. was the approximate thickness of the interface region. In our
particular simulation, ¥;,: =32, placing the interface half-way between the top
and bottom of the computational area, and y.. = 4. p; was three particles
per cell and p, was 12.3 particles per cell. Particle positions were initialized
by first placing the particles in a series of horizontal rows. The :c-di.rection
spacing between particles was kept constant. The y-direction spacing between
rows was set inversely proportional to the lqca.l density. Then, in each row
of particles, alternate particles were moved one half of the distance up to the
next row of particles. This was done to keep the particles in the thin region
outside of one another’s range of interaction. The entire system was made
subject to a gravitational acceleration of g = —0.05j, and was stabilized by
an inhomogeneous ma.,gnetic field in the z direction (7.e. perpendicular to the
computational area).” The timestep was At = 0.05. Boundary conditions were

chosen to be periodic at the & boundaries and reflective at the y boundaries.
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Outside of the interface region, the fluid velocities were perturbed
according to

cosh(ky
f_*.__(_._‘_z_, Y < Yint — ?/size/2
sinh(kyint)
Vfg = Sill(k.’lf) X I)(?/), Yint — 3/51':8/2 <Y < Yint + ysize/z (229)

COSII(/C(?/nmx — '!/))

J. X " y 1 > Y + Uer 2.
Slllh(,l\?(ynmx — yint) Y Yint Jszze/
and
sinh(ky)
'_'——(—a Y < Yint — Yss 2
Sll'lll(,l\?ymt) Y Yint J.ﬂze/
Viy = (‘.05(1\7:17) X (1(3/)7 Yint — ?/si:e/2 <Y < Yint + ysize/2 ,(2.30)

Sinh(/\"(ynmx - U))

' v Y > Yine + Ysize/ 2.
sINh (A (Yinax — Yint)) Y > Yint + Yaine/

where p(y) and ¢(y) are second and third order polynomials respectively. These
polynomials were chosen so that 1) the fluid flow would be initially incompress-
ible in the interface region, as it was in the rest of the computational area, 2)
v, and d,v, would be continuous at ¥ = Yins — Vsize/2 and at ¥ = Yint + Ysize/2,
and 3) v, would be continuous at ¥ = Yint — Ysize/2 and at ¥ = Yint + Ysize/2-
The above velocities were assigned as fluid velocities to the computational grid

points. Particle velocities were then initialized by interpolation from the grid.

For an initial test of the code, the short-range force on a particle 1
from a particle 2 was chosen to be particularly simple, namely

(xr — x2)
%1 — X,
0 |1 — Xa| > 2reg

sin(7r[x1 — X2|/T‘eq) le - X2| < 27‘3‘1

Fsr(xl - Xg) = . (231)

The value of r., was chosen as \/p;. With this choice of a short range force,
particle oscillation periods would be on the order of 1.9 x A/¢,, so they would

not be too short for the time step to handle.

The short-range forces could be expected to effect the system in a

manner reminiscent of surface tension, namely, reducing the growth-rate of
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the instability [58]. However, a 110 timestep simulation gave only ambiguous
confirmation of this expectation. A simulation was first run with the short-
range force “turnee off.” The growth rate of the instability was calculated
from the square root of the kinetic energy, which is plotted as a function of
time in Fig. 2.4. The kinetic energy followed a cosh(vt) type of curve at early
times. At the time that its growth became clearly exponential, it had reached
a value of about 21.75. The growth rate was 0.033 in simulation units. This
is in' the ballpark with the classical value of 0.054. (It should be noted that
attempts to measure the growth by the “bend” in the interface did not reveal

a clear regime of exponential growth.)

A simulation with the short range force described above was alse. -
performed for 110 timesteps. When the kinetic energy began to grow in a
cIearly exponential manner, its value was about 16.44, about 24% less than
the value of the kinetic energy without short-range forces. (See Fig. 2.5.)
However, when exponential growth actually did begin, the growth rate was
0.074, over twice as high as the growth rate without short-range forces. By the

end of the runs, the values of the two kinetic energies were comparable.

It might be thought that the added kinetic energy growth in the
short-range force simulation came from particles moviné toward more stable
local equilibria with one another. It is true that the initial particle arrangement
was not a true equilibrium. In a true equilibrium, the dense region particles
would be arranged in a hexagonal configuration with nearest-neighbor particles
separated approximately by the equilibrium distance of the short-range force
[59]. In contrast, the initial arrangement of dense region particles was square
packed, with nearest neighbors separated by 1/v/2 of the equilibrium distance.

Of course, the particles pushing against one another would create a type of
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equilibrium, at least temporarily. The truly problematic particles would be the
ones near the interface. In order to keep the interface density gradient small
enough for the computational grid to handle, the interface particles had to
separated by distances greater than the equilibriﬁm distance but less than the
cut-off distance of the short-range force. This means that the particles near

the interface were strongly attracted to one another.

However, it would appear that this non-equilibrium arrangement is
not the source of the added growth of kinetic energy. The square root of the
kinetic energy plus the change in the short-range potential energy is plotted
as a function of time in IMig. 2.6. If the added kinetic energy growth came
from particles moving toward local equilibria, the short-range potential energy
would become more negative. Therefore, the kinetic energy added to the po-
tential energy would grow more slowly than the kinetic energy in and of itself.
However, this is not what happened. The kinetic energy plus the change in the
potential energy grew much faster than the kinetic energy alone. In fact, this
quantity had its own range of exponential growth; its growth rate was 0.65. In
late times, this quantity drops off markedly, beginning at ¢ = 2.2. However,

this does not explain the enhanced growth at early times.

The algorithm described here amounts to a ‘;marriage” of a fluid
algorithm and a molecular dynamics algorithm. It has been managed to some
degree, but is not without its expected problems. First and foremost is that,
in a fluid code, short-range forces can be expected to act similarly to surface
tensions. However, surface tensions have their most dramatic effects at short
wavelengths [58]. It is precisely in such situations that the fluid algorithm fails.
This problem can be overcome to some degree by increasing grid resolution (and

particle number) at the expense ol computing time. Finding a more elegant
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solution to the problem must be deferred to further research. The code does
seem to perform‘\‘vell at long wavelengths, however. A second problem is related
to timescale. It may be desirable to introduce short-range forces with oscillation
periods much shorter than the timescale of the overall fluid motion. To avoid
ovéfly long computer runs, this problem will have to be dealt with by altering
the algorithm, probably by introducing some type of implicit time stepping

scheme.

O.f the algorithms presented in Section 1, we have had success in im-
plementing only the one described here. Writing a code based on the third
(continuous surface tension) algorithm has not been attempted. The second
(incompressible) algorithm failed in modeling a Rayleigh-Taylor instability. A
code based on the incompressible algorithm lost a substantial part of its ki-
netic energy in a 500 timestep run. This problem arose even with short-range
forces “switched off.” Several minor variations on the pushing of fluid and
particle quantities were made to the code, none of which returned signiﬁcant
improvement. Another incompressible algorithm has been developed, based on
the Eulerian algorithm of Aydemir and Barnes [60]. It has exhibited similar
difficulties. The element common to both codes was the SOR routine used
to isolate the compressible part of the fluid velocity. Perhaps this routine is

introducing artificial viscosity into the fluid flow and needs to be replaced.
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Figure 2.1: Growth of the two-fluid RT instability for a static fluid (dashed
curve) and expanding fluid.

s(t) is the growth of the instability relative to the instantaneous size of the
fluid system. 7 is time in terms of the instability growth time in the static

fluid: (gk(p4 ~ p-)/(p4 + p-)V/2.
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Figure 2.2: Time evolution of density contours of unstable fluids.

a) Density contours of the expanding MHD plasma undergoing RT unstable
motion. Time is in terms of the classically calculated static RT growth time
[Vpior/ p(Yer ) k(pek — pin)/(ptk + pin) evaluated at t = 0. Expansion is in the
y-direction only. The expansion factor is a,(t) = 4.t/t., + 1, where t., is the
t length of the box in the y direction (at ¢ = 0) divided by the thick region
soundspeed (at t = 0). Initial thin region density (at the top of the box)
was 1/7 that of the thick region. Proportions remain the same through the
simulation, but absolute density is cut in each frame by a factor of 1/a,(t).
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(b)

b) Density contours of the static MHD plasma undergoing RT unstable motion.
Note much larger relative perturbation growth for static plasma.
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Figure 2.3: Relative growth of RT instabilities from simulations of static plasma
(solid curve), expanding plasma with a,(t) = ¢/t., + 1 (long dashes), and
expanding plasma with a,(t) = 4t/t., + 1 (short dashes).

Time is in terms of classically calculated RT growth time for satatic plasma.
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Figure 2.4: Growth of square root of kinetic energy in simulation of Rayleigh-
Taylor instability. No short-range force effects included.
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Figure 2.5: Growth of square root of kinetic energy in simulation of Rayleigh-
Taylor instability. Short-range forces have been added to equations of particle
motion.
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Figure 2.6: Square root of kinetic energy plus short-range force potential energy.



Appendix A

Evaluating the Integral of Eq.(1.46)

The integral we need to evaluate is

273('&) 2 9 ket (lk k‘i .
T erp Ak + BaR+ O (A1)

where

A=W+
B = 'Zw?(wf, —w? =7k,
O _ ((w’z _ws)'z + ,]]2w2)w2.

Normalizing all frequencies by w,. gives

27- ! CUI27I e 3_ "Tcut s 4
oA 2 (‘i’—) [ i . (A2
elivpe/TIW! _ 1 272 \ ¢ 0 Azt + B'z?2 4+ C' :

where all primed quantities have been made dimensionless by division by the
appropriate power of wye (e.g. 7' = 1/wpe), and & = ck/wpe.
The first step to handling this integral is to rewrite it like

1 /I l 1 /z / Bz*/A+ C/A
— [ de——= [ dz .
Ao AJo at 4+ Ba?/A+ C/A

The first integral gives
T Te

A Wi n'?
To evaluate the remaining integral, we find the (often complex) roots

of the integrand’s denominator:

., —B+ VB —1AC
v 24

=T+.
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For the case ry # r_,

1w Ba?/A+CIA 1 / " Bz? +C
0

- 1: =
AJo (T;134+B$2/A+C7/A A? (22 —ry)(z? —r)

1 pee Bz?+C Bxz?+C
= ——— la . .
o), {m @) T r-)} (A9)

The full integral becomes

T 1 1 1 T
L (C + Br . tan—?! ¢
A A? (( + 7+) vV T+ (7’+ —_ T'_) an —T4
1 1 1 z
e K ._ * t —1 C . -
yE (C+ Br_) el Ea— an — (A.4)

It also shows the Lorentzian behavior of (B?),/87 near w = 0. Notice that
when w becomes small, B and C both vanish. Remembering that A = w’? +7'%,

and multiplying by the leading factor we left behind in Eq. (A.2), we find

<BZ>w _ 27?(«0/ ] LU;JZ wpe 3 ,,7/ (A 5)
St elhane/T | 372 \¢ ) wBggre .

Notice that if 7 — 0, this expression does not vanish. Rather, it becomes a
Dirac é-function.
For the exceptional case, ry = r_ = r, we write the integral as

T 1 /F . Bz*+C
0

A A2 T(a,z —r)?

The integrals left to do are

C e C T, C VT —
-— lz = . .
A? /0 BT ER A * 4A2,..\/;1n (\/;+ mc) , (A.6)

B e B Lo B Jr—«
Y L . . 2. :
A? /u W=k a— Tas" <\/F + a:) (A1)



When ry = r_, it is true that B? = 4AC and r

is, then,

T

+(

A

B

Te 3B |

VT —

4A?

.2
> @2

—r  8AX/r

In <

VTt .

)
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—B/2A. The full integral

(A.8)



Appendix B

Evaluating the Integral of Eq. (1.124)

Here we need to do an integral of the form

T, 5
/ dr - 1 5 )
Jo RELE DN A

We first make a change of variable:
u=a%de = du/(2u'’?),

which leads to

2

/ ue (ly U (B.2)

o 2 WP+ pul+qu+r

We can find the (usually complex) roots «, b, and ¢ of the integrand’s denomi-
nator. Since the only negative term in the denominator is vanishingly small in
our region of interest, the roots will all be distinct. So we rewrite the integral
as

2

ey u
5 . B.3
/0 2 (u—a)(u—"0)(u—-rc) (B.3)

The integrand can be rewritten

a? b?

(¢ —b){a —c)(u—a) + (b—c)(b—a)(u—10)

+ nonumber . (B.4)

C‘Z

(c—a)(c—b)(u—2c)

(B.5)
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Each of these terms integrates to give a natural logarithm. The integral is given

by

1 a’ P
§{mlnlu—a|o t(aoboc—a)+

(¢ = b—c—a)}. (B.6)
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