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Abstract

When the ion sound effect is neglected, a wide class of electrostatic plasma tur-
bulence can be modelled by a two-dimensional equation for the generalized enstrophy
U, an inviscid constant of motion along the turbulent orbits. Under the assumption
of a Gaussian stochastic electrostatic potential, an averaged Green’s function method
Is used to rigorously derive equations for the N-particle correlation functions for a
dissipative and sheared flow. This approach is equivalent to the cumulant expansion
method [T.H. Dupree, Phys. Fluids 15, 334 (1972); 21, 783 (1978)] used to study the
Vlasov-Poisson system. For various cases of interest, appropriate equations are solved
to obtain the absolute level as well as the detailed structure of the two-point corre-
lation function C(r), and its Fourier transform, the enstrophy spectral function I(k).
Uniformly valid analytical expressions are derived for the dissipative but shearless case
resulting in a ‘fluctuation-dissipation’ theorem relating the total spectral intensity to
classical viscosity. These self-consistent results show a strong logarithmic modification
of the mixing length estimates for the turbulence levels. For the extremely important
and interesting problem of a sheared flow, the suppression of turbulence is demon-

strated by using asymptotic analytical techniques in the inviscid range, and uniformly



valid numerical methods for the dissipative system. The current asymptotic methods
reproduce the results obtained in the orbit picture [Y.Z. Zhang and S5.M. Mahajan,
Phys. Fluids B 4, 1385 (1992)], but provide much clearer physical perspective and a
better definition of crucial parameters like the decorrelation time. The unifofmly valid
numerical approach allows the determination of the change in spectral shape and in-
tensity due to the presence of shear. It is found that the suppression is more effective
for longer wavelengths leading to a spectral shift towards the shorter wavelengths. This
and other relevant issues, concerning the role of flows with shear (including its radial

variation) in the understanding of the L-H transitions in tokamaks, are discussed.



I. Introduction

The theory of turbulence with shear flow has received much attention recently because of
its possible relevance to high confinement experiments in tokamaks. A strong correlation
has been discovered between a sudden increase in poloidal rotation near the plasma edge
and the transition from the low confinement (L) to the high confinement (H) phase.!=® The
transition is characterized by a rapid improvement in the particle and energy confinement
in the region. The possibility of triggering and sustaining this highly desirable H-phase may
be an important step towards the success of the controlled thermonuclear program in the
near future.

There is an overwhelming consensus that the improved confinement is due to the suppres-

sion of turbulence resulting in reduced anomalous (turbulence induced) transport. Although

the experiments have not yet established a detailed causal connection between the appear-
ance of shear flow and the reduction of turbulence levels, it is strongly felt that such a
connection does exist.®8

A variety of theoretical investigations have been made to examine and ana,lyzé possible
mechanisms responsible for the quelling of turbulence by shear flow. A class of theoretical
models based on the linear stability analysis®~!' have had some success in showing the
existence of stability windows [for particular modes] in parameters associated with poloidal
rotations including the shear, and the radial variation of shear. Realizing, however, that
the level of observed turbulence is so high in the edge region, it is difficult to believe that
the linear theories would provide a deep understanding of this complex phenomenon. There
has also been a considerable amount of work involving turbulence models. Most turbulence

theories (independent of the details of underlying modes and instabilities)'?~1¢ share a very

simple physical picture which could lead to the shear induced suppression: For an invariant



source driving the steady-state turbulence the shear flow reduces the decorrelation time of
two turbulent fluid elements resulting in a decrease in the correlation function (which is a
measure of the turbulent intensity).

This simple picture, however, may encounter a consistency problem. The assumption
of an invariant source strength is applicable only for a time scale much shorter than the
transport time scale. It is well known that in the H-phase, the equilibrium density and
temperature gradients at the plasma edge become much steeper, implying a possible signif-
icant enhancement of the source during the later stage of the H-phase. It is also observed
that the effective suppression of shear flow becomes weaker as the equilibrium gradients
are increased.’® The maintenance of the turbulence suppression is possible in this scenario,
only if the turbulence spectrum is shifted towards shorter wavelengths by the shear flow,
and/or the suppression is more effective in longer wavelengths, so that the total source, as a
combination of the equilibrium gradients and the wavenumber spectrum would not change
significantly.!® Unfortunately, most previous studies’®~'¢ (valid only in the inviscid asymp-
totic short wave length region) cannot answer these challenging questions. In fact, it would
appear that the previous proofs of turbulence suppression may pertain to the uninteresting
part of the spectrum; no honest statements could be made for the bulk of the spectrum.

The above-mentioned inadequacies of previous studies’?~'® demand a more comprehen-
sive development of the correlation theory, a prototype of which was proposed by Dupree for
the Vlasov-Poisson system!”® (The terminology “clump” in Refs. 17 and 18 may suggest
validity only in an asymptotic form at small correlation distance). The theory was con-
structed for the temporal evolution of the correlation function of Vlasov distributions under
the influence of turbulent electric fields, as if the latter are “external fields.” This does not
necessarily imply a violation of self-consistency, if the theoretical problem is treated prop-
erly. The main simplicity of the theory arises from the fact that the Vlasov distribution is

a constant of motion along the exact orbits, implying a é-function type of Green’s function



for an initial value problem. This suggests a choice of our basic physical model, to which
the correlation theory might be usefully extended.

Before describing the physical model and the contents of this paber, it is worth mentioning
that the correlation theory of two dimensional (2D) turbulence developed in this paper has
a much greater scientific constituency than the explanation of tokamak edge physics. We
hope it will find many useful applications.

We show in Sec. II, that when the ion sound effect can be neglected in the dynamics
described by two-fluid moment equations, the generalized enstrophy (defined as a linear
combination of the logarithm of density, and the vorticity) becomes a constant of motion
(similar to the Vlasov distribution mentioned earlier) in the inviscid range. The equation
for the generalized enstrophy is not necessarily a self-closed one, very much like the Vlasov
equation, save for the special case of the Hasegawa-Mima equation.’®?® Although the.theory
would be simpler in the inviscid range, it is necessary to include viscosity (however small)
in order to insure the saturation of enstrophy, so that a steady state of turbulence can
be achieved.?! The inclusion of finite dissipation immediately destroys the ideal property
of the enstrophy as a constant of motion. The generalization of the correlation theory to
include finite dissipation is, in fact, straightforward, once we realize that the essence of
Dupree’s theory!”*® merely lies in the assumption of a Gaussian stochastic process for the
“external fields.” For future convenience, a systematic Green’s function method, which has
already been developed for some time,?? is presented, so that the paper is self-contained. This
approach is essentially equivalent to the cumulant expansion method adopted by Dupree,'”!®
and is developed in Sec. III, where we derive a uniformly valid explicit equation governing
the evolution of the 2-point correlation function C(r).

Central to this derivation is the expressions for the turbulent diffusion coefficient which
happens to be exactly the one given by Dupree.!® This result, however, is shown to be quite

rigorous on time scales much longer than the decorrelation time. Note that in Dupree’s




derivation, it would appear that some unclarified approximations are made.'® Comparative
rigor in this derivation follows from the divergenceless nature of the E x B motion; it is not
surprising (for the same reason) that the usual non-Markovian, or the drag term, appearing
in the one-dimensional Vlasov-Poisson system?? does not appear in our model 2D problem.
The details are given in Appendix A.

In Sec. IV the equation governing the correlation function is treated in the shearless vis-
cous case to obtain uniformly valid solutions for all correlation distance r = |r|. Appropriate
expressions for the spectrum function (Fourier-Bessel transforms of the correlation func-
tion) valid in a broad range of k are obtained. An exact (for the homogeneous turbulence)
‘Juctuation-dissipation’ theorem relating the turbulence level to the viscosity coefficient (u)
is derived; the appearance of the logarithmic term [¢n ] significantly modifies the well-known
mixing length scaling. Explicit expressions for the total intensity £ and the diffusion coef-
ficient D are obtained after invoking a self-consistent parametric relation between the two.
This folding-in of the spectrum into D clearly brings out the fact that both £ and D depend
logarithmically on the viscosity coefficient.

Examination of the effects of shear on the turbulence level as well as on the nature of the
turbulence spectrum is one of the major goals of this effort. In Sec. V we obtain asymptotic
solutions for the correlation function C(r) for small r, and the spectral function I(k) [an
exact integral equation for I(k) is also displayed] for large k for the inviscid system with
arbitrary shear. It is shown that with the rise of shear, the spectrum goes from a near
isotropic to a dumbbell-like shape. The behavior of the correlation function with shear is
also displayed.

In Chapter VI, we develop a global theory to find answers to the more challenging ques-
tions posed earlier. In contrast to the model independent approach in the shearless theory,
for this case we have to assume a model for the ‘external’ spectrum. It turns out the results

are quite insensitive to the details of the model as long as some general criteria are met.



This is because of the fact that the equations determining C(r) depend on the normalized
integrals of the ‘exterﬁal’ spectrum, and these integrals for appropriately normalized func-
tions (with acceptable behavior for large k) do not differ much from one another. As an
example, we have worked out the details when a Gaussian spectrum for the ‘external’ field
is assumed. A global calculation for weak to moderate shear is numerically carried out, and
displayed in a set of graphs. We find that (in this global calculation), the velocity shear
not only suppresses the overall turbulence levels, but also preferentially suppresses the long
wavelength part of the spectrum. Naturally both of these are very important results if the
shear effects are to account for the phenomonology of the L-H transition.

12-16 and

In Sec. VII we compare the present work with ‘orbit’ theory developed earlier
compare and contrast the two approaches. In fact, it is only through the _c;urrent app’roach,
that a meaningful quantitative definition of the decorrelation time (essential to thetorbit
theory) can be given.

Section VIII summarizes the main results of this paper and also points out the basic

assumptions made in this effort. Algebraic details of some parts of the paper are worked out

in Appendices A-C.

II. Physical Model for a 2-D Plasma Tﬁfbulence

When ion parallel dynamics can be neglected, the low frequency electrostatic motion of a
magnetized plasma is effectively limited to the 2D surface perpendicular to the magnetic field.
The basic system is then composed of the electron continuity equation and the equation for

quasineutrality. The electron continuity equation for the number density (n) is

0
&n-i—v-(nve):O, (1)

where the electron velocity v. = ve b + (¢/B)b x V® — (¢/Ben)b x VP, + (“classical”

diffusion term), ® is the total electrostatic potential, consisting of the equilibrium ¢o and
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the fluctuating ¢, b is the unit vector along the magnetic field (with magnitude B), c is the
speed of light, P, is the electron pressure, e > 0 is the elementary charge, and the “classical”
diffusion term is an artifact added for constructing the final model equation [Eq. (4)].

The equation for quasineutrality or charge conservation (V-J = 0) is conveniently written

as

Vi +Ve-jL =0, (2)
with the divergence of the perpendicular current [in the cold ion limit] given by

2 g
V. -jL = -min (%) Zvietsvie, (3)

where v is the perpendicular viscosity coefficient, m; is the ion mass, the comoving derivative
d/dt = 8/8t + (¢/B)b x V® - V. When ion parallel motion is neglected, the parallel current
ji| = —envey. With this definition, Egs. (1)-(3) can be manipulated to eliminate Jyp» and

yield the single nonlinear equation for the hybrid field ¥,

9., ¢ . 2| g = (4 _ v -
at+>B(b><V<I>)V—#V]\I'_(dt ;N)\If(r,t)_o. (4)

The field ¥ = énn — V2 ® is called the generalized enstrophy. In obtaining Eq. (4) an
appropriate “classical” diffusion term has been chosen in combination with the perpendicular
viscosity for constructing the dissipative term proportional to 4. In the rest of this paper, all
lengths are normalized to p, = ¢s/wei, and the time scale is normalized to 1 /wei, where ¢, =
\/ﬁ/_m: is the ion sound speed, T, is the electron temperature, and w,; is the ion cyclotron
frequency. The potential ® is also normalized to the electron thermal energy. Equation (4)
can also be derived from the ion continuity equations with the same assumptions.

The most remarkable feature of Eq. (4) is that it is independent of any particular form
for the parallel Ohm’s law. It can be viewed as one of the Hasegawa-Wakatani equation set?

describing the collisional drift wave (with an artificial “classical” diffusion) as well as the

Hasegawa-Mima equation,'®? describing the collisional drift wave, if an adiabatic electron
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density response is assumed. Since we have not assumed constancy of electron temperature
in the derivation, Eq. (4) may also describe the dissipative drift wave®~2° for which the ion
sound is not important. When the dissipative term in Eq. (4) is ignored, the generalized
enstrophy becomes a constant of motion along the perturbed orbit. Another important
feature of the model is that the dynamics associated with the magnetic shear does not enter
into the basic description [Eq. (4)] of turbulence. It seems that neglecting the ion sound
effect obviates the need for a detailed Ohm's law, and further makes the system independent
of magnetic shear. This results in a crucial simplification of the entire problem.

There exist other plasma phenomena whose mathematical formulation leads to equations
similar to Eq. (4). Such models, for example, have been constructed for the rippling-like
modes.?® For these modes the parallel dissipation given by X Vi¥ (where X is the pa;al—
lel heat conduction) is dominant and replaces the perpendicular dissipation term pvz\ll in
Eq. (4). The field ¥ may represent either the electron temperature, or the eﬂ"ective‘ Mimpu-
rity charge Zeg. The parallel dissipation, however, unlike the viscous dissipation (which is
important only at short distances) renders the whole spectral range to be dissipative. Natu-
rally, the methodology to deal with this type of dissipation is somewhat different from that
depicted in the present paper, and will be presented elsewhere.

Throughout this paper, it is assumed that the equilibrium density and the electrostatic
potential vary only in the radial direction. As a result, the radially sheared flow is in the

direction perpendicular both to the radial, and to the direction of the magnetic field.

III. The Averaged Green’s Function Method in a
Gaussian Stochastic Field ¢

In this section we shall derive the equation of evolution of a general equal time spatial correla-
tion function. The N ‘body’ correlation function, denoted by (¥(ry,t)¥(ry,t)... ¥(ry,t)),

where (...) is the ensemble average on realizations of turbulence, will be constructed by



letting ¥ evolve under the influence of a Gaussian stochastic field ¢, and treating ¢ as an ex-
ternal field. Notice that while the “external field” ¢ is assumed to be Gaussian, the response
(the fluctuating part of ¥) is not necessarily so.

The exact time evolution of generalized enstrophy satisfying Eq. (4) with the initial

condition U(r,t = t;) = ¥y(r), can be expressed in terms of a Green’s function:

U(r,t) = [ d'Gr, it 0)Tol) (5)
where
N _ r—r' — ft’; dsb x V®(r(s), s)]?
Gtrrtt = Ty (- 0t~ ) )

= [ dkexp (—pkz(t—to)-i-ik- [r—-r'— t:dsb xV(I)(r(s),s)D . (6)

with the full orbit given by r(t) = r(to) + /i, dsb x V&(r,t) = r. By direct substitution, the
interested reader can verify that Eqs. (5)-(6), indeed, formally solve Eq. (4). Notice that
Eq. (5) expresses ¥(r,t) in terms of the ‘external field” ®.

Let us first consider the N = 1 case, i.e., calculate the time evolution of the ensemble

average of U, (U(r,t)). Ensemble averaging over Eq. (4) yields

(_% +b x Veo(r,t) -V — ;LV2> (U(r,t)) + (b x V(1) - VE(r,1)) =0.  (T)

Since ¥(r, t) is known as a functional of ¢, it is straightforward to evaluate the second term
of Eq. (7) by invoking the Gaussian assumption for the stochastic field ¢, and using the

well-known formula,?"~28

2)F[4)) / dz' ( < ; ¢f )F[¢]> , ®)

where F[¢] is a functional of ¢, z stands for all the arguments of the function ¢, including the
indices over which it is necessary to sum. Equation (4) can be proved, for example, in the spe-

cial case when F[4] can be expanded in a functional Taylor series. This procedure represents
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a generalization of the well-known formula for the correlation of a Gé,ussian random qué,ntity
X (could be a continuous field) with a function of thls quantity f(X): (Xf(X <X2> (f'(x
[for (X) = 0].

In order to use formula (8) to calculate the last term in Eq. (7), we need the functional

derivative of ¥(¢),

§U(r;,t)

5¢(r’ ) tdsb X V,-(D(r,-(s),s)])

to

/dr"dk exp < pk?(t —to) + 1k - [ '
 (—ik) - t: dsb x V8 [r' — 1:(s)] 6(¢' — 8)Uo(r")
—0(t — )b x Vi6[x' — r;(t")] - Vi¥(ri, 1), - (9)

where V; = 8/0r;, and 0(t — t') is the Heaviside step function reflecting a causal response
of ¥ to ¢. The use of Egs. (8)-(9) converts the term (b X V¢(r,t) "V\Il(f,t)) of Eq. (7) into
a diffusive term = —V; - D;; - V; (¥(r;, 1)), where |

D;; = /t: dt' (b x V;¢(r:(t) ,t)b x Vjé(rj(tlj,tl)> , (10)

is the turbulent diffusion tensor generated by the correlations of the fluctuating fields (for
4,7 = 1...N). Here, and henceforth, we use the Latin letters to denote spatial positions,
and Greek letters to denote components of the Cartesian coordinates. Thus, Eq. (7) for

(U(r;,t)) takes the form

<§t- + b x Vigbo(r,-,t) . V{ - ,UV? - V,‘ . D,',' . V,) (\If(rg,t)) =0 ; (11)

and describes the evolution of ensemble average of the total enstrophy, in particular, under
the influence of turbulence-induced diffusion. Naturally, D;; are generally interpreted to be
the turbulence diffusion coefficients. Equation (11) can allow a steady state for a constant

radial gradient of (¥(r,c0)), if uniformity in the poloidal direction is assumed.

The time evolution for the two-point correlation function (¥(r1,t)¥(ry,t)) (IV = 2 case)

11



is derived in a similar manner. Starting with

o Y (ry, 9Y(r,,
gt' <‘D(I‘1,t)‘1’(l‘2,t)> = <—%rtl—é2 \I/(I'g,t)> + <\Il(r1,t) -—-—(ar:—tl> y (12)
and substituting Eq. (4) into (12), we find that the term
Q: = (b x Vig(ri,t) - Vi¥(ry,1)¥U(r2, 2)) (1=1,2) (13)

needs to be calculated. A straightforward application of Eqs. (6)-(9) yields
Qi = (V, . Dil . Vl -+ Vi . D,‘g . VZ) (\Il(rl,t)\ll(rg,t)) (Z = 1,2) y (14)
which leads to the .. llowing equation for (¥(r,t)¥(rs,1)),

(—% - i;;z(b X Vigo(riyt) - Vi — pV?) — i,j=21,2 V;-Djj- Vj) (U(ry,t)¥(rqy,t)) =0, (15)
where D;;’s have already been defined by Eq. (10). In Appendix A, we calculate an expression
for D;; in terms of the spectrum of the “external” field ¢ for a stationary and homogeneous
turbulent system, and show that the commonly used expression'® [Eq. (A17)] is a rigorous
result under the assumption of homogeneity.

The above derivation for N = 1,2 can be readily generalized to derive appropriate equa-
tions for higher correlations; the N particle correlation obeys

8 XN N N
(52 + ;(b x Vido(ri,t) - Vi — pV?) - g:jl Vi Dy Vj) <1;[1 \If(r,',t)> =0. (16)

In the inviscid limit (u — 0), the Green’s function [Eq. (6)] is just the é-function
t
G(r, r(to);t,t0) = 6 [r—r(to) ~ [ dsb x vq>(r(s),s)] , (17)
. to

and the enstrophy becomes a constant of motion along the perturbed orbits. The N-point

correlation function is then simply the average of a product of N delta functions [the relevant

Green’s functions],

Ty = <ﬁ 5(r; — ri(t))> - <ﬂ 5(r; — rilty) — t: dsb x V;@(ri(s)s))> . (18)

1=1 i=1



By direct manipulation, it can be readily demonstrated that I'y, indeed, satisfies the p = 0

N
version of Eq. (16) obeyed by <H \I/(r,-,t)>, ie.,

1=1

(%—}-ib X Vigéo(ri,t)-vi——”g—:lvi-Dij -Vj) 'n=0. (19)

Once the Green’s functions for this system are known, it is straightforward to obtain
the averaged values of any relevant observables. One could, in principle, extract useful
information about the system even without being able to solve (16) or (19) explicitly. We
can, for example, develop the orbit theory, using our implicit I'y’s. The N orbit correlation
is defined to be

(rl(t)rg(t.) ...ry(t)) = / H dri(rirz...rN) <11 8(r; — ri(t))> , (20)

1=1

and can be manipulated further by using the é functions to do the integrals. For-the im-

portant case of V = 2, it is convenient to introduce the relative coordinate r = r; — r;.17-18
The relative orbit correlation is written as
(rt(t)r*(t)) = /drldrzr“r“ ((8(ry —r(2)) 6 (r; — ra(t)) (21)

where r#(t) = r{(t) — r5(t). The evolution equation for the relative orbit correlation is
obtained from Eq. (19) [N = 2] satisfied by Ty,

7 OO = 00 (55) + 0o (32),

+ / dridra(D™ + D) (8(r1 — r1(2))8(rs — ra(2))) (22)

where v =b x Véo, D_ = Dyy + Dy; — Dy; — Dy, and 2r, =r; + rp. On using Eq. (A17)
of Appendix A, the Cartesian components of the effective relative diffusion coefficient D_

are found to be
D* =2 / dk(b x k)*(b x k)*II(k)(1 — cos(k - 1)) . (23)

13



Notice that in the limit r — 0, Eq. (23) is considerably simplified, i.e., the factor 1 —
cosk -r ~ (k-r)?/2. The remarkable consequence is that the term proportional to D’s in
Eq. (22) reduces to a term proportional to the moment (r?(t)r(t)), and consequently the
set represented by Eq. (18) becomes a closed set for the (second order) moments.

We now go back to Eq. (15) for the two-point correlation function, and cast it fully in
terms of the relative r = r; — ry, and the center of mass ry = (r; + r2)/2 coordinates.
We also divide the total enstrophy into its equilibrium and fluctuating parts, ¥ = ¥y + ¢
with () = 0, ¥ = (¥). Transformation from ry,r; to r,ry is quite simple except for the
term containing the velocity shear. Since the velocity shear is normally limited to a small
edge layer (in the problems of current interest), one can readily affect the transformation by
placing the Cartesian axis €, and &, [r = €,z + €,y] on the local €., and &, axes which are
approximately the radial and the Vpoloidal directions of the system. Defining v = b X V¢,

and carrying out the algebra, one obtains [C(r,t) = (¥(ry,t)¥(r2,1))]

9 . 0 2 _1
5¥+(”y)‘”ay_2”’v -V-D_.-V C’(r,t)—-Lg

(D + D37) (24)
where V = 0/0r, v, = Ov,/0r, represents the local poloidal velocity shear, Ly 1 = |0W,/0z| =
|d¢nno/dz — d(d*¢o/dz?)/dz| = |dlnno/dz + d*Ey/dz?] is a measure of the local equilib-
rium gradients, Ej is the equilibrium electric field, and DJ{ is determined from the definition
Eq. (A17). The quantities vy, ¢ and Lg ? are assumed to be independent of = and y, and will
be treated as such in later considerations.

In order to make further progress, we need to evaluate the coefficients of the turbulent
diffusion operator a bit more explicitly. Before we proceed, a few explanatory remarks of a
general nature are very much in order.

As stated in the introduction, the correlation theory explored in this paper essentially

deals with the solutions of enstrophy under a given ‘external field’ ®. In the presence of shear,

the enstrophy spectrum (in the rest of this paper, unless stated otherwise, spectrum implies
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enstrophy spectrum) is manifestly anisotropic even for short wavelengths when the shear is
sufficiently strong. Since the equilibrium (¥,) is anisotropic, i.e., it has gradients only in
the z(&;, ) direction, one expects that the long wavelength (wavelengths comparable to the
gradient scale L) part of the spectrum remains anisotropic even when the shear is absent. We
do expect, however, that the short wavelength part of the spectrum will tend to be isotropic
in a shearless flow. Therefore, for the theory to span all of the aforementioned pdssibilities,
we introduce ellipticity in the spectrum of ¢. The ‘effective’ spectral function II(k) = |
(k2 + azkj), where o describes, albeit qualitatively, the elongation of the ¢ spectrum.
An appropriately deformed y coordinate is then introduced, and the pair &, = ak,,7 = y/«
define a new deformed coordinate system [F = (z,7) with the conjugate k = (k., k,)] in
which the spectrum is isotropic. This very deformed coordinate system will be used in all
later calculations, and the ellipticity parameter will be absorbed in the coefficients (vgsptes
etc.). For notational simplicity, we continue using (z,y, kz, &y, 7) for (z, 7, ks, k,,7), and do
not explicitly display a. The effects of « can be recalled at will.

With these clarifying remarks on the notation, the components of D_ (and D?Z+ DZ%) can
be conveniently defined by z = r cos, and y = rsin¢. In Appendix B various components
of the diffusion tensor are explicitly displayed. Once the components of the diffusion tensor
are known, one can rewrite Eq. (24) in polar coordinates [C = C(r, ¢, )]

(1 =S = 5 ] 2 [l 5) +27)] ) ©

Sfr o8, o, 8\, 1
— B, <-2— s1n2tpb7+cos go%)C——Zg[so(r)+52(7')005290] (25)

where the first set of terms in { } correspond to the viscous (%) and the turbulent diffusion,
the second set of terms (Es) are due to the equilibrium velocity shear, and the terms on the
right-hand side represent the gradient source. This comparatively simple form of Eq. (25) is

mainly due to the fact that V- D_ = 0 in our 2D system. Various quantities occurring in
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Eq. (25) are defined by [n = natural number]

and

Spu(r) = D7 /0°° dk TI(k)E? Jon(Rr) |
n’ =Dy

~

B,=Dv /2, r=2Dt,

Y

DE7r/°°H(lc)k3dk,
0

(26)

where J,,’s are the Bessel functions of the first kind. Equations (25) and (26) are our most

general basic set of equations, and we shall now attempt their solution in various limits.

Iv.

Shearless System: Enstrophy Spectrum, Absolute
Level and Shape

In this and later sections we analyze Eq. (25) to find its steady-state solution in order to

obtain steady-state turbulence levels and the associated transpoft. The steady states, if they

exist, result from a balance of diffusion (turbulent and classical) against the gradient source

(with or without the equilibrium shear). Since the system is considerably simpler ‘Wwithout

shear (s = 0), we begin our investigations with this case.

A. Correlation function

With B, = 0, the steady state (3/07 = 0) Eq. (25) allows the decomposition

with A(r) and B(r) obeying t

L.A(r)=

Clr,o) = A(r) + B(r) cos2¢ ,

1 d
T

dr dr

16

"1dependent second order differential equations

(0t + 1= So(r) = Sa(r)| r = Alr) =

(28a)



and

L. B(r) - % [+ 1= So(r) + Sa(r)| B(r) = -

Sa(r)
L¢ |
Notice that A(r) represents the angle averaged spectrum § C(r,)dp, while B(r) measures

(28b)

the anisotropy. In this section, we limit ourselves to solving for the isotropic part A(r).
Making use of the appropriate properties of the Bessel functions, the first integral of Eq. (28a)

is trivially obtained,

dA(r) 1 S1(r)

i RBrAl-2Si(r)r (29)
where - |

Sy(r) = /0 " R TI(k)R Jy (kr) / / " (k)k3dk (30)
and the determination of A is reduced to quadrature. The integratic  astant is to be

determined by demanding that A(r) — 0 as r — oo. The boundary  :dition is a-state-
ment of the intuitive physical notion that two-fluid elements, when in  :ely apart, are not

correlated. The acceptable solution

1o Sy(r')dr! ; |
A(r) = fg/ P S Tyl (31)

though implicit [S;(r’) is itself an integral], is quite remarkably simple.

At his stage, we remind the reader that S;(r) can be explicitly evaluai:  nly if we had
detailed knowledge of II(k). In Sec. —VI, we shall indeed assume a reasonable .:.3del for II(k)
and carry out an explicit calculation not only for A(r), but for the anisotropic part B(r)
also. In this section our attempt is to elucidate several general, model [for II(k)] independent
properties of A(r) and its Fourier transform, the spectral function I(k).

Let us first examine the function S;(r) [Eq. (30)]. For any reasonable function II(k) which
goes to zero sufficiently rapidly as & — oo, S1(r) — 0 exponentially as 7 — oo because Jy(kr)

oscillates very rapidly for large r. For small r, one can expand J;(kr), and find that

Si(r) = -;: [1 - %rz} as T —0 (32a)
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where

(k2) = /0°° dk kSH(k)/ /0°° dk TI(K)K® (32b)
is the spectral average of the square of the perpendicular wavenumber. Note that Eq. (32)
is meaningful if and only if the integral [ II(k)k® dk exists, i.e., if for large k,II(k) goes to
zero faster than k—¢. We shall assume this to be true for the problems of interest.

The limiting properties of the function Si(r) imply that the integrand in Eq. (31) is
exponentially small for large r, but becomes large for small r. For small r, the denominator,
n? + (k%) r?/8, tends to be very small ccause the classical dissipation process (represented
by n?) is very weak for cases of practical interest. The assumption n? < 1 is essential to our
success in obtaining uniformly valid expressions for the correlation function. It is expected,
then, that the principal contributions to A(r) will come from the region (k1)r?/8 ~ n’.
With this realization, it becomes possible to obtain an approximate, but uniformly valid (for

all r) expression for A(r),

_ 2 n _ 251(7‘)
M”_LHWZP m+m] (33)

which is derived in A' rendix C, and goes exponentially to zero A(r) — (2/r)S1(r) as r goes

to infinity. For smal. ', Egs. (32a) and (33) yield

n + (k1) r’/8
= - g e (&4

indicating that C(r — 0) diverges logarithmically for the inviscid system. We shall come

back to discuss the wealth of information contained in Egs. (33)-(34).

B. Spectral function, total spectral intensity

Although the expression for the spatial correlation function A(r) can be readily interpreted, it
is more instructive to follow the common practice of dealir~ with the spectral function. The

isotropic part of the spectrum (we need to solve for B(r) in order to obtain the anisotropic
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part) is just the Fourier-Bessel transform of A(r)

10(k) = _2}; /Owr dr Jo(kr)A(r) = % /0°°,nd,~ Jo(kr)tn [1— T(Q%%] (35)

where ¢ = —2/L2 (k%). Integrating by parts, and remembering that Si(r) goes to zero

exponentially at r = co, we obtain [new integration variable p = kr|

0 _ 2g [ pdp Ji(p) 0 [Si(p/k)
10() = —33 J, 1+n2—2<k/p)sl(p/k>%[ o/ } | (36)

Exact evaluation of the above integral for general values of & is not obvious. For small values
of k, it is straightforward to see [from Eq. (34)] that I©(k) = —g[a; — ag k* + - -] has the
local parabolic form. For arbitrary values of k& (not very small), the principal contributioﬁs
to the integral again comes from the region p/k < 1 where the denominator becomes small.

For moderate values of k, therefore, we can approximate

4g o pldph(p) 49 [ 8 8’
O k) = 2 PRl = A
T =% o wreke/ () = %\ T6D) Kl( (kZ) k) )

where K7 is the modified Bessel function of the second kind. To the best of our knowledge,
Eq. (37) represents one of very few close form analytic expressions for the spectrum in a
turbulent flow valid for a wide range of k; moderate to large. For the inviscid problem
(n? = 0), the isotropic spectral function 7((k) = (1x)? vanishes algebraically as k=2 in the
asymptotic k region. This is, of course, equivalent to the correlation function C(r) — Inr
as 7 — 0.

The inviscid limit of our theory can be readily compared with earlier theories, in partic-
ular, with that of Kraichnan.? We find that for the Hasegawa-Mima equation,®~2° where
¥ = ¢ — V24 is an inviscid constant of motion, our asymptotic scaling agrees with the pre-
diction of Kraichnan.? This agreement (in the appropriate limit) indicates that the present
- correlation theory has been successful in dealing with the spectral problem when the tur-

bulent processes dominate the classical ones. Our results, however, are quite general; the
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calculated enstrophy spectrum pertains to a wider class of theoretical models than the one
represented by Hasegawa-Mima equations.

A word of caution is in order here. For multiple field systems, where the enstrophy
could be a complicated function of the basic fields (for example, the Hasegawa-Wakatani
turbulence model?), the relationship between the field energy F(k) and the enstrophy could
be quite different from the Hasegawa-Mima model. In such cases (#i)?> ~ k=2 would not
necessarily predict Kraichnan’s result of E(k) ~ k=3.

It is also important to stress the crucial role played by viscosity in achieving a steady
state. It is well known that enstrophy in the Hasegawa-Wakatani turbulence model does
not saturate when viscosity is zero. The source of this problem can be traced to the weak
algebraic behavior k=% as k — oco. Notice that, for this behavior, the large k& contribution
makes the total spectral intensity £ diverge. The form given by Eq. (37) (n? # 0), on the
other hand, falls exponentially for large k, making the appropriate contributions to £ finite.
A computer simulation of the Hasegawa-Wakatani model can provide a strong test for the

validity of Eq. (37). The total value of the spectral intensity of enstrophy
5::/“dkkﬂmw) (38)
0

cannot be calculated using the formula (37) because it is invalid near & = 0. Can we, then,
derive a simple formula for the integrated spectral intensity £7 The answer is in the affir-
mative. In fact, for the spatially uniform systems, there exists a kind of an optical theorem

which relates the total spectral or fluctuating content to the zero distance correlation, i.e.,

(#) = [darcw) = A0) = [dkIk) =€,

which, coupled with Eq. (34) for A(r), yields

tn T (39)

£ =
n1+772

L3 (k)
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implying that viscosity will determine the absolute intensity level of the fluctuations. For
n =0, € diverges confirming the statement made in the last paragraph.

The intensity levels predicted by Eq. (39) differ from the usual mixing length estimates
by the rather large logarithm factor. The differences are even deeper: one can be easily
misled by the apparent simplicity of Eq. (39), and believe that it immediately yields the
total spectral intensity when the strength of the classical dissipation process (viscosity) is
given. This is far from the truth. In fact, the dissipation coefficient n? has been obtained by
normalizing the classical viscosity p by the ‘diffusion coefficient’ D = « f5° II(k)k® dk, which
through II(k) depends o.n (|#|?) and hence & = (¥*(0)) for self-consistency. As a result
the modification to the mixing length estimates is not just a simple multiplicative factor.
Investigation of this issue is the main subject of the next section.

Equation (39), yielding the absolute turbulence intensity, can be seen as the statement

of a ‘fluctuation dissipation’ theorem® in the current context, and is a major result of our

paper.
C. Explicit &£, and the diffusion coefficient D

A totally self-consistent derivation for £(D) is well nigh impossible because it would require
a closure scheme for 1 (we had assumed a Gaussian closure for ¢ and not ¢). The difficulty

is partially avoided by assigning a parametric dependence of D
D =D*¢&" | (40)

where D* is an appropriate ambient diffusion coefficient (per unit intensity), and v is a
parameter. In the weak turbulence limit, the diffusion coeflicient scales with £(y = 1) while
in the renormalized strong turbulence theories v tends to 0.5. We shall, however, consider
to be a floating parameter lying between 0.5 and 1.0, and is to be determined experimentally.

Between Eqs. (39) and (40), we can obtain a transcendental equation for either & or D

by eliminating the other. Since the classical dissipation process is weak, i.e., n? < 1, we
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shall simplify Eq. (39) to

9 2

2 _ ¢
i R R R IR (D)
which, in conjunction with (40), leads to either [for £]
___* -
£ = T () In oL £ (42)
or (for D)
_ * 2 pl”
D=D { 2 (ki)enD] . (43)

These equations could be readily solved graphically. However, for small u/D* (or strong
turbulence limit), simple explicit expression can be readily calculated:

e BER . w

and are determined entirely in terms of the experimentally measurable quantities u, D*, L2
and (k%). Both D and £ are determined by the logarithm of the small classical viscosity
. Simplified results given in Eqs. (44) and (45) are valid o1 in the small dissipation, and
hence in the large turbulence level limit. Results true for moderate levels of turbulence can
be easily obtained by solving Egs. (39) and (40) graphically or numerically. Equations (44)
and (45) clearly reveal that larger classical dissipation would result in lower (logarithmically)
fluctuation levels, and in reduced turbulent transport.

In this section we have, quite comprehensively, solved the problem of 2D turbulence for
a viscous shearless flow. The results for inviscid flow can be derived simply by taking the
©(n?) — O limit. Analytical expressions for the two-point correlation function A(r), the

spectral function 1 (k), the total spectral intensity £, and the effective diffusion coefficients
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D, are obtained. These functions should constitute a fairly complete description of the
turbulence problem studied in this section.
Notice that we have not displayed solutions for B(r), the anisotropic part of the spectrum.

These solutions, though tedious, are quite straightforward to derive. We shall deal with them

in Sec. VI.

V. Inviscid Shear FIOW

In the preceding section, we concentrated on obtaining uniforfnly valid solutions for the
correlation function C(r, ) in the relatively simpler, but theoretically extremely interesting,
case of turbulent flows without velocity shear. From the correlation function, we calculated
absolute turbulence levels and the associated transport coefficient. Analytical progress' was
possible because C(r, ) could be decomposed exactly into A(r)+ B(r) cos 2¢ with A(r) and
B(r). obeying independent equations. Such a decomposition is clearly not possible if the
velocity shear is nonzero, i.e., B, # 0 in Eq. (25). In this section we develop approximate
analytical techniques to solve for the correlation function C(r,¢), and the spectral function
I(k, €) for arbitrarily large but inviscid shear flows. The model independent theory, developed

here, 1s asymptotic in nature..

A. Asymptotic correlation function C(r,¢) for arbitrary shear
flow

An examination of Eq. (26) clearly reveals that the functions Si,(r) appearing in Eq. (25)
have reasonably simple, model independent forms in the limit r — 0. In Sec. IV we had also
shown that (in the shearless case) the principal contributions to the spectrum I® (k) [for
moderate to large k] came from the short distance (small ) correlations. We shall, therefore,

proceed to solve the inviscid version of Eq. (25) [n? = 0] in the small r limit. Expanding the

Bessel functions Jy,(kr) in Eq. (26) for small argument, and keeping only the leading order
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terms, Eq. (25) reduces to

{1330 &

T Y _
‘;ar’“5;+3‘a?o?‘ﬂ5[§sm29”$+°°s“”%HC(’”’“”)'Q 4o

where §, = 88,/ (%) and g = —8/L2 ().
We start with the solution for small shear, 8, < 1. Taking the ¢ average of Eq. (46),

and also its sin 2¢, cos 2¢ ... moments, the following moment equations result:

r 0 —— A 3 Y~ _
(557:4-1) (s1n(2go)C)+;ET Ec—g, (47)

(l Bérsi _12) W—)—ﬂs(z (sin 4o C’)+(sin(2<p)C)+(sin(4<p)C’))=0, (48)

P|o

(; gra—a—r — 12) W—ﬁs(gar [_C_—cos(4go)0) ]—(cos(2cp)C)+(cos(4go)C)> = 0(49)

where T = §(dp/27)z is the angle averaged quantity. In the small shear limit, we can close

the system by neglecting 4 and higher moments, and find that the angle averaged part C

satisfies
B (. r0), 05,10 407
et Ctza) " aw T ra el S (50)
with the solution
C= 9,32 Anr, (51)
2 + 2
4(12 + 42/12)

which reduces to C = (g/2)¢nr in the limit 8, = 0. Equation (51) clearly shows that as 3,
increases, the relative turbulence level [measured by C] is suppressed.

Although the approximate result for small shear [Eq. (51)] is quite revealing, it is worth-
while (and possible) to solve Eq. (46) exactly for arbitrary shear. The i)rocedure consists of

assuming a solution of the form

C(r,p) = QUnr + X(p) (52)
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where X(¢p) is a function of ¢ alone, and the eigenvalue () is to be determined by imposing
periodicity constraint on X(i). Substituting Eq. (52) into (46) yields [( = 2¢,b, = f,/12]

X —-20 b0

50 bs(1 + cos C) C 12 3 (53)
which is integrated once to obtain the explicitly periodic function
—g; = ¢bssin¢ i T,.(Q) [n sin n(¢ + 7/2) — b, cos n({ + 7/2)] | (54)
where
7 (5,.0) = 720D (b) ~ 6.0 1,0,

2(63 +7?) ’

I,(b,) is the modified Bessel function of the first kind, and I, is the derivative of I, with
respect to its argument. Further integration of Eq. (54) is straightforward. It, however,
results in the explicitly non-periodic term (linear in ()

Thus, we obtain the eigenvalue ) (which is really a measure of the intensity of turbulence)

by imposing the periodicity constraint

F(bs,Q2) =0 (56)
which leads to
e L(b)IL(6:) ]
N==|143p, == u =2 5,(0s) (57)
n==—00 n2 + bz

a rather complicated function of the shear parameter. Notice that the coefficient of (g/2)énr
in the expression for the C(r, ) [Eqs. (52)-(57) or Eq. (51) for the weak shear case] can be
naturally called the suppression factor, and is a quantity of great interest to the experiments

studying the change of fluctuation levels with the strength of the shear flow. In Fig. la, we
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plot S,(bs) as a function of 9!, = v/ t., where t. = [2 (k}) D]™" is the decorrelation time [the
time it takes for two-fluid elements to become decorrelated], and the argument b, = (2/3)7;,.
The solid line represents the exact function Sy, while the dotted-dashed line is the asymptotic
value proportional to (9,)~%/3.

We must again warn the reader that the function S, does not completely and explic-
itly characterize the true suppression of turbulence, because the shear parameter o, (b,)
is a functional of the turbulence through the agency of the diffusion coefficient D [see
Sec. IV.C]. To take this into consideration, let us again assume that D scales as (|%[*)”,
i.e., D = Do {(|%[?)” / (|%]*)g, where D (Do and (|9|?), (|1]*),) respectively denote the diffu-
sion coefficient and the turbulence levels with (without) velocity shear. It is now convenient
to define the turbulence suppression by the nonlinear equation

e=s, 2% (59)

where € = (K2) (J12) /((K2) ([6))or Bho = 0! teof [(K2) / (K)ol ™, ko = (2 (k%) D)5 [note
that in Ref. 16, s is defined as (v/2 (k2) D)g'], and the subscript zero denotes the quantities
without shear flow. The numerical solutions of Eq. (58), i.e., § = £(D;,) are plotted in Fig. 1b
as the solid curves; the dashed curves in Figs. la-1b are similar results from the orbit theory
(Heisenberg picture). The results from the two approaches will be compared and contrasted
in Sec. VIL

To complete the picture, the periodic function X(¢), representing the anisotropic part

(an essential consequence of the shear flow), is given by

@)= 3 TnlbaDIn(b)

mEn=—00

e [bs 8in Q. + T €OS Ot ] (59)

where o, », = 2(n—m)p+(n+m)r/2. To visualize the angular distribution of the correlation

function C(r,¢)[= Unr + X(yp)], we draw contour plots for several values of the shear

parameter and for a fixed small value of r = ry with fnry = —1. It can be seen from
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Figs. 2a~2b that for sufficiently large shear flow the correlation length in the y(z) directions

becomes considerably longer (shorter).

B. Wavenumber spéce, integral equation, and the asymptotic
spectral function

In this paper we have and we shall concentrate primarily on solving the various aspects of the
2D turbulence problem in real (r', ) space. It is possible, however, to derive an equivalent of

Eq. (25) in the wavenumber space which determines the behavior of the Fourier transformed

spectral function I(k) related to C(r) by
(k) = / dr %7 O(r) . (60)

Taking the Fourier transform of Eq. (24), one obtains the spectrum equation [k; = kcose, ky =

k sin €]
(% — vl ky Ba—kx + 2#18) (k) — 2 / di'[b x k' - K]PTI(K')
Ik +K) = 100] = 2 2210k (6)

which is an integrodifferential equation, and is, in general, difficult to handle. In the large &
limit, however, this complicated equation can be simplified to a solvable differential equation.

By making use of the fact that for £ — oo,

Ik +) — Ik~ B, 2L 4

1 81
“ Ok, 5k

! ! i
w" B, 0k,

Eq. (59) (to the leading order) reduces to

Bs F sin 26—6— — sin? e—a—-] I(k,¢)

2 ok Oe
8 k|t el O -
+ G k I(L,e)f [k akk 8k+3862 I(k,e)=0 (62)
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which, in the inviscid range, can be solved for periodic solutions exactly in the manner
adopted in Sec. V.A. Notice that for 8, = 0, I(k,¢) ~ I9(k), and Eq. (62) allows exactly
the modified Bessel function solution I©)(k) ~ k=' Ky (\/812/ (kK3 k).

For the inviscid shear problem, the substitution I(k,€) = k=2 Q(e) leads to the manifestly

periodic solution

Q(e) = ebssin2 L I5(b,) + 2bs i I2n(bs) [bs cos 2n(e — w/4) — n sin 2n(e — 7 /4)] (63)
= nt+b

3
where I,’s are again the modified Bessel function of the first kind. The angular spectrum of
enstrophy for various values of the shear parameter is displayed as a contour plot in Fig. 3.
The amplitude is normalized to unity at e = 0. Starting from an isotropic form for ¥y = 0
[curve a], the spectrum stretches to a dumbbell shape in response to the increasing shear
[curves b, ¢, d] getting more elongated in the k;[k cos €] direction implying that the correlation

length along = becomes shorter than the correlation length along y.

VI. Global Solutions for a Model II(k)

In Sec. IV we had obtained, in the shearless case, approximate model independent uniformly
valid solutions for the correlation function C(r) from which analytical expressioris for the
absolute turbulence level and the diffusion coefficient were calculated. We noted in Sec. V
that the complications brought about by the velocity shear forced us to solve the problem
only in the asymptotic [r — 0 for C(r), and k — oo for I(k)] limits. The asymptotic
solutions did lead us to the extremely important result that the presence of velocity shear
tends to suppress the turbulent enstrophy levels. These results, though reasonable, could
be criticized on the ground that we have demonstrated the turbulent suppression only in
the asymptotic range, and not in the entire range of turbulence. The objection would have
been particularly serious if we had depen:’ 1on the result of Sec. V.B [large k limit for I(k)]

alone because most of the spectral energy, perhaps, resides in the low to moderate range of k.

28



This objection is somewhat mitigated because we rely much more on the finding of Sec. V.A,
where the short distance correlation function is solved for arbitrary shear. Although this
is also an asymptotic (r — 0) theory, it is a much better qualitative index of the overall
turbulence, because the principal contribution to the spectral function [Fourier transforms
of C(r)], for a broad range of k, indeed comes from short distance correlations; the long
distance correlations tend to be small.

In order to place our conjecture on a firmer footing, we shall have to do a global calculation
with B, # 0. Settling this point has much more than mere academic interest; it is essential
to know the effects of shear flow on the entire range of turbulent spectrum, if §ve have to
build a transport theory of experimental interest.

Working towards a global solution of the full Eq. (25) requires that we know the functional
forms for Son(r). This is possible only if we know the functional form of II(k), which in-fact
depends on the very solutions we seek. Notice that in the previous sections, we could
mechanically carry out calculations without specifying II(k), and only in the end we had
to face the problem of self-consistency which we solved by proposing ‘relations of the type
Eq. (40).

What form(s) do we choose for II(k)? Naturally, II(k) must go to zero reasonably fast
as k — oo. Our experience in the shearless case, as well as the asymptotic sheared flow
case, suggests that II(k) must fall faster than k#° as k — oo because only then integrals of
the type [5° II(k)k®dk can exist. It turns out that the system [Eq. 25] is quite robust, and
reasonable choices of TI(k) lead to consistent qualitatively as well as quéntitatively similar
results. Numerical solutions of Eq. (25) for several models for I1(k) [Gaussian, exponential,
Lorentzian], with appropriate normalizations, lead to results which are barely distinguishable
in their essential characteristics. As a result, we present here the simplest model for which

S2n(r) become elementary functions. The model is a Gaussian
(k) = Iy e~ (64)
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with two parameters A and II, measuring respectively the width and the height of the spec-
trum. Clearly A needs to be identified with 2/ (k%), while II; is related to the decorrelation
time t. defined earlier [A\3/2xt.]. Using (64) to evaluate Sz,(r), Eq. (25) takes the explicit
form (p? = r?/4)),

Ld oty o190 L a iy o) &€
pdpp{1+n e ]ap+p2[1+n e~ (1 2”)]&02

P . 0 2 0 _ —p2 2.2
— B [5 s1n2<p8—l£+COS 305;]0—93 ? [1*‘2/’ sin 80] . (65)

For p < 1, i.e., when the inverse correlation length is greater than the averaged wavenumbers,
Eq. (65) could be solved by the methodology of Sec. IV. In this particular case, however, the

solution for A(p) can be obtained exactly,

and is precisely the same as the approximate solution Eq. (33) [(2/7)S1(r) = e*" for II(k) =
IIo e=*?]. Thus for the model II(k) given by Eq. (64), Eq. (33) would be an exact uniformly
valid solution. This clearly strengthens our belief in the validity of the approximations made
in Sec. IV. Remember that in deriving Eq. (33), we had used the fact that small distance
(p < 1, in the present context) contribution to the integral [Eq. (31)] was dominant. The
complete equality of this approximation with the exact model dependent solution provide a
strong justification for the soundness of the turbulent suppression results derived in Sec. V.A.

The finite shear problem, represented by Eq. (65), is still a complicated partial differential
equation, in which the various (2¢) harmonics are coupled together by the shear term. When
the strength of the shear term is not very large, typical v}, < 1or B, < 8, the system could

be truncated, i.e., we could approximate the solution by

C(p,) = A(p) + Be(p) cos 2 + sgn (Bs)Bs(p)sin2¢ + - - (67)

where terms proportional to sin2n@(cos2n¢p) for n > 2 have been neglected, and where
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sgn(f;) guarantees the symmetry of the system under the simultaneous transformation ¢ —
—p, B, — —PB,. From now on, without any loss of generality, §, is taken to be positive.

With our truncation scheme, substitution of Eq. (67) into (65) leads to closed set of
coupled equations for A(p), B.(p), and B,(p)

;CZ) (147" — exp(—p %) di —m( i %) = gexp(—p?)(1 = p?), (68)
ijﬁ, (1447 = exp(=p")) - Be = 23 [1+77 = exp(=s?)(1 26| B. ~ 6. B

= g p’ exp(—p) , ) | (69)
L2 14 - exp(=?) 5 B [1 17 = exp(=47)(1 — 27°) B,

=P (§ % - ) =0. . (70)

The set of Eqs. (68)-(70) is solved numerically with decaying boundary conditions for
p — o0, and also imposing B.(p = 0) = 0 = B,(p = 0), (d4/dp)|,=0 = 0 at p = 0. The
latter constitute a consistent set, and are obtained by solving the system near p = 0. ‘The
functions A, B.(p) and B,(p) are plotted as functions of p for several values of the shear
parameter 7, = 0, 0.2 and 0.5 [8, = 0,1.6,4.0] in Fig. 4a~4c. For all these cases, g = —1,
and n? = 0.01. The magnitudes of both A(p) and B.(p) [the components present in the
absence of shear] are suppressed in the entire range of p, the overall suppression increasing
with increasing shear. As expected, the shear generated part B, [the coeflicient of sin 2¢
term] scales with the shear parameter .

It can be observed from Figs. 4a—4c, that the angle averaged part A(p) dominates other
components indicating that our truncation scheme is quite good up to %, = 0.5. A much
greater value of the ¥, will make B,(p) comparable to A(p) in some regions implying that
the neglected coupling to higher harmonic terms may become important. In such a case, the

solutions based on Egs. (68)-(70) may no longer be quantitatively reliable. Therefore, the
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current approach is good only for weak shear.
The spectrum I(k) follows from the solutions of correlation function through the Fourier-

Bessel transform. The three component Ansatz, Eq. (67), implies a three-component spec-

trum:
I(k,€) = IO(k) — I(k) cos 2¢ — I,(k)sin2¢ , (71)
with
IO(k) = - [ drr A Jo(hr) (72)
L(k) = 321; /0°° drr Bo(r)Jy(kr) (73)
L(k) = 51; [ drr B Ik (74)

where Jy, Jo are the zeroth and second order Bessel function of the first kind. Computed
numerical expressions for I©0(k), I.(k) and I,(k) are shown in Figs. 5a-5c. In Fig. 5a the
azimuthally averaged spectra I(®) are represented by solid curves a, b, and ¢ corresponding to
different values of shear. The behavior of I clearly indicates that the shear flow suppression
(on the zeroth harmonic component) is more significant for long wavelengths than for short
wavelengths. The obvious implication is that the velocity shear tends to shift the turbulent
spectrum towards shorter wavelengths.

To compare these global results with those from the asymptotic theory of preceding
sections, we may turn to the isotropic spectrum contained in Eq. (50). Notice that the simple
logarithmic function, fnr in Eq. (50), should be replaced by the global behavior given by
Eq. (33) [Eq. (66)] to guarantee its positiveness on the whole range, i.e., the asymptotic
spectrum J{0)(k) can be calculated from the correlation function Eq. (33) [Eq. (66)] with



S T

asymptotic suppression factor,

e
Aasy(p) = 2 2 ~dn [l - } , (75)
e B
24+ B2/6
by taking the Fourier-Bessel transform. Without the replacement of €nr by the globally
valid expression, the integral defining ) would become ill-behaved.

asy

For several values of shear [9, = 0.2 and 0.5], the numerically computed values of Ig’)),
are shown in Fig. 5a by the dotted-dashed curves &' and ¢’ respectively. This comparison
with the global values (solid curves a,b and ¢) reveals an additional suppression occurring
at longer wavelengths in the global theory.

This additional feature has interesting consequences for ascertaining the effects of ve-
Jocity shear on plasma confinement (say in the edge region of a tokamak). Not only is the
confinement improved due to a reduction in the fluctuation level (less anomalous transport),
but the fluctuation spectrum, itself, is shifted towards the less dangerous shorter wavelength
domain (the longer wavelengths destroy the confinement more effectively). |

The spectral shift could be easily incorporated into the general scenario by numerically
calculating the effective k2 = [£° dk k? IO(k)/ [$° dk I®)(k) for finite shear. In Fig. 6 we
plot k2 as a function of shear for the parameters of Figs. 5a~5c. The ratio of k2 with or

without shear can then be substituted into Eqs. (53)-(44) to account for the shear-induced

spectral shift.

VII. Comparison with the Orbit Picture

The bulk of thi.s paper is devoted to the development of the correlation theory and our
attempts to analytically as well as numerically solve for the two-point correlation function
C(r) A detailed knowledge of C(r), in some sense, represents a complete knowledge of
the physically interesting aspects of turbulence. .We had also remarked in Sec. II, that an

alternative simpler program, i.e., of developing an orbit theory could also be carried out.
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This, in fact, was done (for the nondissipative case) amongst others in Ref. 16. We are now
ready to compare and contrast the two approaches.

The relative simplicity of the orbit picture is gained at the expense of limiting its range of
validity. The ‘closed’ set of equations for the relative orbit correlation [Eqs. (1) of Ref. 16] are
obtained by using the asymptotic (short distance) limits of the turbulent diffusion coefficients
D#, When the product k - r is of order unity, higher moments of the orbit correlations will
couple to the system, rendering the closure scheme invalid. Thus the orbit picture does not
reflect the correct solution over the entire wavenumber range.

There is, in fact, a further problem with the orbit theory. The primary ‘solution’ in the
orbit picture is just an equation for the decorrelation time defined to be the e-folding time
for the relative separation of the two-fluid elements. Surely, this information says nothing
about the turbulence levels. Thus one has to go back to the equation for the correlation
function and infer from it a definition (on purely dimensional grounds) of the correlation

time in terms of the fluctuation levels, i.e.,
2D
-1 2\ _
t(el) = 7z (76)

where it was speculated that the shear effects could be qualitatively modified by dissipation
processes. Since Eq. (76) is purely schematic, i.e., the entire operator on the correlation
function [for example, see Eq. (24)] is replaced by a symbol t71, it is only qualitatively
meaningful. In order to obtain quantitatively meaningful results, one must indeed solve
Eq. (24).

It turns out that there must indeed be a numerically factor of four on the right-hand side
of Eq. (76) in order to make the preceding expression of ¢. coincide with the definition given
earlier in this paper. The numerical factor, however, does not affect the results of Ref. 16
concerning the relative change of turbulence amplitude under the shear flow. However, the

interpolated formula [Eq. (9)] of Ref. 16 should be corrected to [suppressing the logarithmic

34



multiplier]

4
2y 720 (WINT (2 2y
(1) 23+ (%) () 23)
where D* is defined by D = D* (J:|2)".

(Jp[?) =

After having placed the orbit picture in its proper perspective, we compare the results

of the orbit theory with the asymptotic theory of Sec. V.A. In Fig. la, along with the

suppression factor [Eq. (57)]

2 () L)L)

2

S,(b) = |1+3p, m2me Tl (78)
AR =\ e e
_Z_: n? + b?

plotted as the solid curve, we also have the dashed curve representing the solution of (positive

[Sé%(bs)_l} [E,&O_}@Jr%r:%bg - (79)

obtained in the orbit theory [the superscript (O) denotes the orbit theory]. It is entirely

root) the cubic

remarkable that the two asymptotic solutions S, and Sz(,o) agree so well [see Fig. la, 1b].
This agreement is quite bafHling because S,(b;) was derived in a steady-state theory while
S';(,O)(bs) is the result from a time evolution equation [see Ref. 16]; we are not awaré of any
transformation which might connect the Schrédinger picture [correlation function approach]

with the Heisenberg picture (orbit theory).

VIII. Summary and Discussion

The problems of plasma turbulence (a determination of its absolute level and spectrum) are,
in general, quite difficult and complicated. Satisfactory theoretical calculations of turbulent
transport relevant to experiments (for example, tokamaks), therefore, are few in number. In

this paper, we have made attempts to develop and solve a reasonably comprehensive model
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for plasma turbulence. The success of this program is essentially a result of the following
basic assumptions:

(a) We have introduced a relatively simple 2D theoretical model for electrostatic tur-
bulence, based on the continuity equation and the equation for quasineutrality. The system
is simplified by neglecting the ion sound effect, the toroidal effects (including trapped ions,
and parallel viscosity). The mechanism leading to the saturation of turbulence from the ion
perpendicular viscosity and the classical diffusion. Notice that this theoretical model is still
quite general; it pertains to a variety of parallel Ohm’s laws describing electron dynamics.

(b) The relative simplicity of this physical model allows the development of an equal
time correlation theory; the Green functions of the theory can be rigorously calculated.
Naturally, the equal time theory is much more accessible because it avoids the problems
associated with the frequency domain. By the same token, this theory sheds no light on the
frequency spectrum of the turbulence.

(c) The principal conceptual assumption is in invoking the Gaussian process for the
stochastic ‘external’ field ¢; while the reactive field (generalized enstrophy ) is not nec-
essarily Gaussian. Naturally, there is no reason to believe that the electrostatic potential
would be more Gaussian than the generalized enstrophy. In fact, for a physical model like
the Hasegawa-Mima equation, the enstrophy ¢ = ¢ — V24 is fully determined by ¢. This
obvious contradiction, however, may not be as serious as it appears at first sight. The
asymptotic limit of our spectrum for the Hasegawa-Mima equation [Sec. IV, |tx|* ~ k™7
is found to be identical with the result obtained by Kraichnan’s method?® which does not
invoke Gaussian processes. One may still object that a Gaussian process may not pertain
for the longer wavelengths, a coherent structure with large coherence length may provide
an example where this assumption will not be valid. We naturally, do not consider such
processes; our framework is based on spatial homogeneity and rules out coherent structures.

From an experimental point of view, it seems that our assumptions may be reasonably
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good. The measured non-Gaussian part of plasma turbulence on the TEXT edge plasma
(for example) is found to be less than fifteen percent of the total turbulence.™

In terms of the renormalized perturbation theories,>?~3® the non-Gaussian processes are
related to the three wave interactions. These processes do not appear explicitly to be a
part of our theory. The three wave process is found to be important for the frequency
broadening at a given wavenumber as well as the well-known spectral cascadings. The
correlation theory, developed here, deals with frequency integrated correlation functions.
As stated earlier, details about the frequency domain are not accessible to this theory.
The spectral cascadings are generally supposed to be responsible for achieving the spectral
saturation, which we have been seeking for in this paper. Therefore, one muét be cautious
to the terminology of ‘Gaussian approximation’, which should not be confused with the
term used in such theories with a time scale comparable to the wave frequencies;-as; the
renormalized perturbation theories,32-38

(d) The next basic assumption is related to the problem of self-consistency of the corre-
lation theory. This theory is constructed as an extension of the Langevin approach for the
Brownian motion to the continuous media, the reactive field is seen as a Brownian parti-
cle, whereas the active field (here the electrostatic potential) behaves like the surrounding
molecules acting on the Browning particle. The self-consistency will pertain if the Brownian
particles were treated as ‘test particles’. In lieu of invoking the other equation for density and
potential to close the system, the self-consistency adopted in the correlation theory for the
reactive field is ‘imposed’ by some physically reasonable conditions. In this paper, a simple
closure scheme, consisting of a physically interesting functional form relating the electro-
static potential (D is a functional of ¢) and the generalized enstrophy [Eq. (40)] is used.
This simple closure scheme implies that the characteristic absolute turbulence level and the

transport coefficient can now be approximated by the enstrophy transport through a power

law. Noticeably, the basic results of the paper are independent of the linear growth rate
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of the waves, even of the nature of the linear destabilizing mechanisms. The details of the
electron dynamics, which would be crucial to the destabilization mechanism, are somewhere
buried in this assumed form. Naturally, the above approach does not provide a complete so-
lution; it leaves many unanswered questions such as the frequency spectrum, determination
of 7, and the individual density and potential spectrum. However, this approach seems to be
reliable and satisfactory in that « is believed to vary only in a narrow range (0.5 > v > 1.0);
and the results, e.g., these explicitly given in Sec. IV depend rather weakly on 7.

The correlation theory also assumes a separation between two length scales: the equilib-
rium scale is much greater than the correlation length. Unfortunately, this is generally not
true at the shear layer of tokamaks, i.e., the shear flow layer width is found typically to be
comparable with the radial correlation length. As a result, the shear suppression within a
scale smaller than the correlation length can not be properly described by the present theory.

The technical approximation in evaluating the global shear effect [Eq. (64)] may be
sufficiently satisfactory. This two-parameter ansatz can be improved further by introducing
more parameters for the ‘external spectrum’ in both the amplitude and the shape, but this
is done only at the expense of simplicity and elegance. One may verify the appropriateness
of the approximations a posteriori from the obtained results. In this paper the spectrum
of the inviscid generalized enstrophy ~ 1/k? at short wavelengths. For the Hasegawa-Mima
case!® 2 | |? = k*|4|? as k — oo, would imply, along with the definition of II(k) [see
Appendix A] that II(k) ~ k78, which indeed will yield |¢x|® ~ 1/k% It should be noticed
that the spectral shape of II(k) is unimportant in the small shear limit, as long as the
dissipation is very small (n < [fnn|). We expect that this holds also for the moderate
shear, because it is only the integrals of the spectrum that are relevant to the theory, and
the integrals are quite insensitive to the detailed shapes. Therefore, the back-reaction of the
deformed spectrum due to the shear flow on the presumably fixed ‘external field’ spectrum

can be neglected as a higher order effect.
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Having given a lengthy critique of our physical model and theoretical framework, we now
summarize the principal results of this paper: (1) We obtained analytical solutions for the
correlation function, the spectral function, and the total turbulent intensity pertaining to a
shearless viscous flow, and demonstrated that the total turbulent intensity is simply related
to the classical dissipation (viscosity) implying a kind of fluctuation-dissipation theorem,
(2) for the sheared flow, we obtained approximate analytical and numerical solutions in a
variety of ways including a numerical model dependent global theory for weak shear, and
an inviscid asymptotic, model independent theory for arbitrary shear. The results of these
approaches were in general quantitative agreement in overlapping domains. All approaches
led to the suppression of turbulence by the velocity shear; the global theory, in addition,
predicts a shear-induced spectral shift to less dangerous short wavelengths. Thus the shear
effects improve plasma confinement in two different ways, by reducing the fluctuation:levels,
and by taking energy away from the longer wavelength part of the spectrum.

However, the predicted spectrum shift may not be sufficiently large (as indicated in Fig. 6)
to compensate the possible enhancement of turbulence due to the increased density gradient
at plasma edge during the H-phase. In fact, our physical model reveals that the source
term, depicted by Ly, is determined not only by the density gradient, but also by the radial
derivative of the shear, the so-called E” effect. A positive E” may reduce the unfavorable
effect of the sharp (negative) density variation. This tendency, which does not exhibit a
power law, is qualitatively in agreement with linear analyses using E”".°

Our results also indicate that a larger classical dissipation would reduces the turbulence
transport as well as the turbulence intensity. This may provide an explanation for the
so-called Z-mode, for which the abundant impurity content (enhancing classical transport

coefficients) tends to suppress the turbulence intensity and the associated transports.
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Appendix A — The Calculation of the Diffusion Tensor

We need to evaluate the Cartesian components

D= [ dt (b x V(e (b x V) 9(x;(), )

of the diffusion tensor D;; derived in Sec. III. For convenience we first consider the calculation

of an auxiliary quantity

Py = ; dt' (VE(ri(2), V5 x(),¢)) - (A1)

Making use of the Fourier representation

é(r;(t),t) = /clwlcl ky exp[—twit + 1 kg - r;(2)]d(wr, k) (A2)
one obtains

Py = /0 ~ drduw, dw, dladley B K H (o, o wn, Koty £ = 7)
exp[—iwi t —twq(t —7) +iky -r; + ks - 1], (A3)
where
H(ws, kywn ko t,t — 7) = <¢(w1,k1)¢(w2,k2)exp [—ikg- t; dsb x vjcp(rj(s),s)D .

Using the recipe given by Eq. (8) to evaluate the ensemble averages, we have

H(wy, kyjwe, kot t —7) = /clw’dk’ (¢(wr, ki) o(w', k"))

t

<——5—¢(w2,k2) exp [—i ky- [ dsbx Vj@(rj(s)aS)D

5¢(w’, k/) i—T1

= (Blen, kn)glon o)) (ex0 [~k [ dsbx Vid(r(s)s)]) (A9

41



+ [ dofdid (g(en, k)l K)
t
: <¢(w2,k2)exp [—i o [ dsbx vj|<1>(rj(s),s)]
t
(=tiky) - /t_T ds'b x V; exp [—iw's' + ik’ - rj(s')]> .
For a stationary homogeneous turbulence
(¢(wr, ki), d(wz, ka)) = <|¢(w1,k1)l2> 8(wr + wa)é(ky + ko) , (A5)
which converts (A4) into

H(wr, kyjwg, Koty t —7) = <e><p [—z’k2 : /ti dsb x vjcb(rj(s),s)b
-((I¢(wl,k1)l2> 8wy + wa)8(ky + k)

+ /t:r d$1 <¢(w1, kl)(—z k2 b x de)(rj(sl),sl» (A6)

-T

-/tt dsy (¢(wa, ke)(—2ks - b X vj¢(rj(52)’32)>) :

The quantity J; = (¢(w;, ki) (=t ks - b x V;¢(r;(s;), s;)) contained in Eq. (A6) can be written

in the Fourier representation,
Ji= / d'dK'b - (K x ky) exp(—i's; + ik’ - ;)
(Bl ki)l K)exp [~iK - [ ds'b x V,0(r,(s), )] )
- / dw'dK'b - (K x ky) exp(—iw's; + ik - r;)H(ws, ki; o', K38, 8) (AT)
and when substituted into Eq. (A6), yields an equation for A

t
H(wn, yyw, kot t — 7) = <exp [—ikz- dsb x vjcb(rj(s),s)D

t—7

42



: ( <|¢(w1, k1)|2> §(wi +wa)é(ks + ko)

t
+ /t_T dsy dw'dk'b - (k' x ky) exp(—iw's; + ik’ - r;) H(wy, ky;w', k's 2, 81)

t

t—T

dsdw”"dk"b - (k" x ko) exp(—iw"sy + 1 k" - r;) H(wy, ko ", k" ¢, .92)) . (A8)
It is obvious that
T
H(wy, kijwo, kot — 1) = <exp [—ik; / dsb x VjCI)(rj(s),s)]>
t—T1
{J(wr, k) ) 8(wr + w)8(k + k) (A9)

is an exact solution of Eq. (A8), because the second factor of the second term on the r.h.s of
Eq. (A8) vanishes as a consequence of the E x B nonlinearity. Substituting Eq. (A9) into
Eq. (A3), we obtain

P == [ drdudickk” exp [—iwr +ik- (1 = 1)

- <exp [z’k . /ti dsb x vjq@(rj(s),s)b (I$(w, K)F) . (A10)
To evaluate Pf;”, we consider
| U;(m, k) = <exp [ik- ti dsb x qu)(rj(s),s)]> , (A11)

which obeys the equation
d : T ,
E’Uj(?‘, k)= <exp [—zk -/0 dsb x qu)(rj(s),s)] (—1k) - b x Vj<I>(r,~(7.'),7')>

=ik b x Vo Ui(r, K) + k- [ de'dt (b x Vib(r;(r), 1) (x', )

. <W—§/’T,)exp [zk/o dsb x vjé(rj(s),S)D

43



=ik-b x VoUy(r,k) k- ["dt (b x V,4(x(r), 1)b x V6(x;(¢), ) - KUj(7, )
=1k b x V¢0 Uj(T,k)—k~Djj'kUj(T,k) . (A12)

For large 7, D;; becomes a constant. Equation (A12) is then solved to obtain U;(r, k) at

large 7

Uj(t,k) =exp(tk - b x Vg U; 7 —k-Dj; - k7). (A13)

Substituting Eq. (A13) into Eq. (A10), we obtain

P = [ dwdk kb exp [ik - (ri = x,)] (|6, K)) Gilw, ) (A14)

where

Gj(w, k) = —/Ooo dr exp(—twT +1ik-b X Véor — k- D;; - kr)

?
_w—k'bXV¢0-—ik'DJ‘j‘k, (A15)

which is known as the averaged one-particle Green’s function. Defining

(k) = Re / dwGj(w,k) {Je(w, K)IP) | (A16)

and remembering that D% is obtained from P%” by replacing k* k” by (b x k)*(b x k), we
37 J

derive the final expression,
D = [ dk(b x K)*(b x k)“TI(k) explik - (r; = ;)] - (A17)

Notice that both D!’ and P}” are real, and II(—k) = II(k). For a broadband frequency
spectrum II(k) simply reduces to the ¢ spectrum, which becomes independent of the diffusion

coeflicient D;;. From Eq. (A17), we readily see that the diffusion tensor is divergentless, i.e.,

V:;-D;=V; -D;=0. (A18)
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Appendix B — Diffusion Tensor for ‘Isotropic’ II(%):

When II(k) [defined by Eq. (A16)] is taken to be ‘isotropic’ in the sense discussed in Sec. III
[after Eq. (24)], the Cartesian components of the diffusion tensor [Eq. (A17)] become (after

angle integration)

D™ = 2D [1 = So(r) — Sy (r) cos 2] (B1)
D¥ = 9D [1 — So(r) + Sa(r) cos 2] (B2)
D™ = —2DSy(r) sin 20 ‘ (B3)
and N
D3 + DI = 20D [So(r) + Sa(r) cos 2¢] . (BY)

where z = rcos,y = rsin, Jo(J;) is the zeroth (second) order Bessel function, and
D=r / ~ KRTI(k)dk (B5)
0 .

is a scalar measure of the turbulent diffusion. Out of these we need to compute the operator

- § =V -D_ -V appear in Eq. (24). Since V-D = 0,

w® LB 00
Y Rl =

o 0

= 27D |[(1 — So(r)] (a it s 2)+cos2<,952( )(g;_.a%z)

, J 0
— 2sin 2¢ Sy(r) 5 B?J : (B6)

Making use of the identities

L5 109 10
dz? = Oy? T ror or T2 p? ’
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and some Bessel function identities, we obtain

10 5} 1 6

Substituting (B4) and (B8) into Eq. (24) and dividing by 2D, one obtains Eq. (25) of Sec. IIL

In order to write down the explicit values of S for the model

(k) = Mo e | (B9)
we need to calculate
L, /0  dkke W = 2—%
I, /0 " Ak BT (kr)e™ = % [1 - g} e (B10)
I, /O Ak BTy (kr)e™ = Il (2%3 eI

yielding [p? = r2/4) , p =r/2)1/?|

2

So(p) = (1= p*)e™"",

2

Sa(p) = p*e™"

(B11)

which are used to obtain Eq. (65).
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Appendix C

In this appendix, we delineate how to approximate the integral in Eq. (31) to obtain Eq. (33).

The demonstration is constructive. Let n? + 1 — (2/r') S1(r') = D(r'), then

1 T 51(7",)

A(r) — Z Jo D) dr' . | (C1)

Let us also consider the integral

A ! /T (9/or') D(r') dr' = _L In D(r')

>

I3 Jw  D(r) L§ I N
Now we wish to determine the factor § such that
A=A-SA< 64
so that we could approximate A ~ §A. Now
_ 1o 1Si(r) = 6(8/0r")D(r')]
A=-3 /oo dr ) . (C3)

Since D(r') tends to be small for small values of ', we know that A must get its principal
contributions from the region 7> ~ n? <« 1. It is precisely in this region that we can make

the numerator very small by choosing appropriately. Since

Si(r) — 6(8/9r)D(r) =, g [1 - ﬁ’fglﬂ + 0(7«4)} ) [—ﬁir +-- } . (C4)

the choice § = 2/ (k%) will eliminate the leading order (proportional to r) term in the

numerator, and make A ~ n%. However

T 2 (2/r)51(r)

R [1 o (C5)
goes as [énn?| > n?(n? < 1) in the regions of interest. Therefore A < 84, allows us to
approximate 7

~ 2 (2/r)5:(r)
A T 7] In [1 T+ 12 . (C6)

Notice that we could have rewritten
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2

A=~

[zn [1 4P - %Sl(r)] —tn(1 +n2)] (C7)

where the second term is of O(n?). The form (C6) is however kept because it makes A go to
zero at infinity. Neglecting the second term in (CT7) would make A approach a small constant

value as r — oco. This, however, is not physically warranted.
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Figure Captions

1. The suppression factor S,(27/,/3) versus ¥, in the asymptotic theory. The solid curve is
the result of Eq. (57). The dashed curve is the result from the orbit theory [Eq. (79)].

The dotted-dashed curve is the asymptote of (/,)~%/3.

(b) The self-consistent turbulence suppression versus 9, in the asymptotic theory. The
solid curve is the result of Eq. (58). The dashed curve i the self-consistent result of

Eq. (79). The curves a, b, and ¢ stand for y = 0., 0.5, a1 .. respectively.

2. (a) The angular distribution of the correlation function in the asymptotic theory based

on Egs. (52), (57), and (59). The curves a, b, c, and d stand for ¥, = 1.0, 2.5, 2.8, and

3.3 respectively at In 7o = —1.0.

(b) The angular distribution of the correlation function in the asymptotic theory based
on Egs. (52), (57), and (59). The curves a, b, ¢, and d stand for In ry = —1.0,—1.5, 2.0,

and —2.5 respectively at 9, = 3.3.

3. The angular spectrum in the asymptotic theory based on Eq. (63). The amplitude is

normalized to 1. at ¢ = 0. The curves a,b, ¢, and d stand for 9, = 0.,—0.5, 1., and

—5.0 respectively.
4. The zeroth harmonic component of the correlation function A(p) at ¢ = —1.0, n* =
0.01. The curves a,b, and c stand for 4, = 0., 0.2, and 0.5 respectively.

(b) The cos(2¢) component of the correlation function B.(p) at ¢ = —1.0, »* = 0.01.

The curves a, b, and ¢ stand for ¥, = 0., 0.2, and 0.5 respectively.

(c) The sin(2¢) component of the correlation function B,(p) at g = —1.0, n? = 0.01.

The curves a, b, and ¢ stand for 7, = 0., 0.2, and 0.5 respectively.
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5. The zeroth harmonic componentlof the spectrum I (k) at g = —1.0, ? = 0.01. The
solid curves a, b, and ¢ stand for v, = 0., 0.2, and 0.5 respectively. The dotted-dashed
curves are the results inferred from the asymptotic theory, where &' and ¢’ stand for

v, = 0.2, and 0.5 respectively.

(b) The cos 2¢ component of the spectrum I.(k) at g = —1.0, n? = 0.01. The curves

a, b, and ¢ stand for 9, = 0., 0.2, and 0.5 respectively.

(c) The sin 2¢ component of the spectrum I;(k) at ¢ = —1.0, n°> = 0.01. The curves g,

b, and ¢ stand for ¥, = 0., 0.2, and 0.5 respectively.

6. Shift of the mean square of wave number Fi by shear flow.
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