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Abstract

Nonlinear shear-Alfvén mode in low-§ (8 < m./m;) current-carrying plasma cylin-
der is studied by using two.-ﬂuid model. A new type of solitary vortex solution is given.
This type of solution consists of monopole and multipole parts, along the azimuthal
direction it forms a chain of interwoven cyclones and anticyclones, while the structure
globally propagates in the azimuthal direction of plasma with constant angular veloc-
ity. Comparing with related structures previously obtained for other nonlinear modes,
the equilibrium current of plasma affects thé vortex structure. The fact that the radial
size of the vortex is comparable to the radius of plasma cylinder may provide some

convenience for experimental observation of this coherent structure.



I. Introduction

Starting from the beginning of the last decade, the two-dimensional coherent vortex structure
in a magnetized plasma attracted considerable attention and has been widely studied theo-
retically. The vortex solutions have been constructed for different low frequency nonlinear
electrostatic and electromagnetic modes in magnetic confined plasma such as the electro-
. static convection cell,! the drift vortex,?® exchange flute vortex,* the Alfvén vortex,>® the
ballooning vortex” and the electrostatic and electromagnetic vortex in rotating plasma,® only
to mention a few. However, besides indirect observation of the drift vortex in rotating neutral
fluids® there are very few experimental observations on these structures in plasma.!® Among
other reasons which hinder experimentally observation of these vortex structures, two facts
may should be mentioned. Firstly, the previous vortex solutions were obtained from the
nonlinear equations in which some important physical effects are more or less overlooked,
for instance, the combined effects of density gradient and temperature gradient, the kinetic
effect, and the magnetic shear effect were not taken into account. Secondly, for all above
mentioned vortex solutions, their location in plasma and the size of their core parts were not
well defined.

More recently, the theoretical study of vortex in plasma shows noticeable progress in
efforts to attack the two problems just mentioned. In the first direction, for example, several
analytical and numerical works have discussed drift vortex with the effects of temperatu;e
gradient,'? drift vortex in the plasma with sheared magnetic fields'? and shear flow,'® which
elucidated the conditions of the existence of the dipole vortex and the relation between the
dipole and the monopole vortex. Also the effect of resonant particles on the plasma vortices
was discussed.! In the second direction, to consider the fact that the laboratory plasmas

are of finite size and approximately with cylindrical configuration, the study of global vortex



structure has been carried out. Among many works in this direction we may mention the
early work on the nonlinear electrostatic drift mode in finite plasma cylinder’® and recent
works of the global vortex structures of nonlinear electrostatic drift mode,® exchange mode,'”
and drift-Alfvén mode'® in rotating plasma cylinder, multipole vortices in electron beams'®
and others.

In this work, following the second direction, we study the possibility of global coherent

structure of nonlinear shear-Alfvén mode in low § plasma cylinder. By assuming there is an

equilibrium axial velocity for the electron component we consider that the plasma is current-

carrying. Using the two-fluid model a set of nonlinear equations which describes shear-Alfvén

mode is derived and the global vortex solution is obtained. In contrast to the structure
of Larichev-Reznik type vortex,?° this type of solution consists of monopole and multipole
parts, albng the azimuthal direction it forms a chain of interwoven cyclones and antic§clones,
while the structure globally propagates in the azimuthal direction of plasma with constant
angular velocity. Comparing with other' related structures previously obtained,'®16:1718 the
equilibrium current of plasma affects the vortex structure. Specifically, it is the monopolé
part of the vortex structure depends on the equilibrium current while the multipole part of
the solution remains unchanged. The fact that the radial size of the vortex is comparable to
the radius of plasma cylinder may provide some convenience for experimentalrobserva.tion.
The article is organized as follows. In Sec. 2 the set of nor}linear equations describing
the shear-Alfvén is derived. In Sec. 3 we construct the coherent localized solution of the

equation and in the last section we give a brief summary.

II. Derivation of the Nonlinear Equations

Suppose a homogeneous plasma cylinder with radius R is immersed into a strong constant
axial magnetic field B = By€,, where €, is the unit vector in axial direction. Also we

suppose there is an equilibrium motion of the electron component of the plasma relative



to the ion component, therefore the plasma is current carrying. To avoid the complexity
of the equilibrium magnetic field we further require the equilibrium velocity Vo = Vg€, is
slow enough that the magnitude of the azimuthal magnetic field By generated by it is much
smaller than By. We also assume that 8 of the plasma is in the regime 8 < m. /m;, where
m., m; are the mass of electron and ion, respectively.

For the plasma in above assumed J regime, it is well known that the inertia term in the
electron momentum equation is much important than the thermal pressure term. There-
fore, in two-fluid model the equations describing shear Alfvén wave are the quasineutrality

condition and the longitudinal electron momentum equation®?!:

Vi-jo+0.5,=0, (1)

(V.. xB)-&,, (2)

a‘/;z + (% + ‘/ez)az V;:J. + Ve.L : vv;:z = _i Ez -

Me Me
where ji, jj are perpendicular and parallel components of the current, e is electron charge,
c is the speed of light.

To describe the shear-Alfvén wave in low-£3 plasma one can neglect the compressible com-
ponent of the perturbed magnetic field, using the perturbed electromagnetic scalar potential
¢(r,t) and parallel component of vector potential A,(r,t) the perturbed electromagnetic

fields are expressed as
1 . .
E=-V¢- p 0 A€, , (3)
B, =VA, x§&,. (4)

Since the equilibrium density of plasma is homogeneous, the density perturbation is not
involved. In drift approximation, i.e., §; € w, = eBy/m;c, the perpendicular components
of perturbed velocity for electron and ion are

B B
Voo = Vg + Vo—==+V,, =

Bo E' I (5)
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-ViJ.:VE'f"Vp,. (6)

where
vE=§—Oézxv¢, (7)
C
Vo= 5= (04 Ve V)8, (8)

ére E x B drift velocity and polarization drift velocity, respectively. In the right-hand side of
Eq. (5) the second term represents the contribution to perturbed electron velocity from cou-
pling of equilibrium velocity with perturbed magnetic field while the third term expresses the
nonlinear coupling between longitudinal perturbed electron motion and perturbed magnetic
field. Neglecting parallel motion of ion and displacement current, the longitudinal com‘po-
nent of Ampere’s law gives the relation between A, and pa,r;a,llel component of perturbed

velocity of electron as

Vie= —— V24, . (9

4mreng
Substituting Eqgs. (3)=(9) into Egs. (1)-(2), and assuming that V., - V > V,,0,, a set of

coupled nonlinear equations describing the shear- Alfvén wave is obtained in the dimensionless

form as

oV2d +9,V2U = [T, ViU] - [0, V2], (10)

(1 =2V2)8,T + 0,0 — \2vy0, V3 ¥ = [P, B+ N[@ — v, V2], - (11)
where

[f, 9l =& - (Vf xVyg)
and
. 8¢ _ V4 eAz _ % _ Bg ’,
o= T U= c T, , Vg = » V4 = p—— (Alfvén speed) ,




As Cs
= — psz——,/\sz

, (electron collisionless skin depth) ,
Ps Weq Wye

[T, . : 4medn
cs = Ee— (ion acoustic speed) , wpe = — (electron plasma frequency) .

Also variable r,z,t are normalized as r — 1/p;, z — z/(c/wy), t — t/(1/we), where
wpi = 1/ Equations (10) and (11) compose the set of nonlinear equations describing
the nonlinear shear-Alfvén waves in current-carrying plasma. When vy = 0 the equations

reduced to the same equations for plasma without equilibrium current.>?

ITI. Stationary Coherent Structures

In this section we seek the two-dimensional localized solution of Egs. (10)-(11) which prop-
agates with angular speed w in the azimuthal direction. Suppose the perturbed potential

functions ®, ¥ are in the form of traveling wave, i.e.,

®(r,0,t) = ®(r,n) = &(r,0 — QU + az), Y(r,0,t) =¥(r,n) = ¥(r,0 - Qt + az),

where o is the slanted angle between the wave front and the r — @ plane. Then with the
transformation that 8, = 9,, 8, =—008,, 08, = ad, in ther —n plane Egs. (10)—-(11) can

be rewritten as
(@, V20]—[¥, V2] =0,[0, U—IV2U]+uA2T, V2¥]=0,

where

EI;:@—EQTZ, \izlﬂ—larz. i
2 2

By using the property of Poisson bracket that if [f, g] =0, then f = f(g), where f(g) is

the arbitrary function of g, the nonlinear equations (12)—(13) can be integrated to give

Ve =fi(®) - bl +c (12)
1 ~— byvoA® ~
ViU =b8 - —T+c, (13)



where f;(®) is arbitrary continuous function of ®. For simplicity we choose a linear function

which leads to

VZQ = a1(I> —bllp + %72 +C{l s (14:)
2 d3 2 /
V\I!=b1<1>+d1‘ll+§—r + o, (15)
where

l—blvo)\z
hET
d2=abl—Qa1,

1 — bivgA?

dy= - |4 L0

and ay, by, ¢}, ¢, are constants to be determined.

The general solutions of the linear partial differential e‘quations (15)-(16) are

o 20103 — a0y
2(r,7) = 8 [Jn(pur) + I (par)) cos(mn) + 5 + === (16)
- 2

! 1 a1 d.
U(r,n) = g;{‘llﬁﬁ’)[(al + P1)m(p1r) + (a1 + p3)Jm (par)] cos(m) + 5 (dz +— 3) r?

2

1 ) .
+ ?[(2a1a3 + CY2C¥4)CZ]_ - 2&2&3] + Ci} 5 . (17)
2

where

1
P1=§(—al+\/a%—4az> )

1
p2=§<—a1—\/a%—4a2) ,
a1:a1+d1,

Qg = b% +a1d1 y
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az = didy + bids ,
Q4 = C’ldl + C;bl - 2d2 ;

Jm(z) is the m-th order Bessel function (m = 1,2, - -, positive integers). In solutions (18)-

(19) we already assumed that
<0, o>da,. (18)

From the requirement that at the boundary of plasma cylinder there should no plasma

radial motion, the boundary conditions for ® and ¥ at r = R can be set as'®

0,9(r,n)] =0, (19)

r=R

= ‘I’(’"’U)

r=R

®(r,7) .

=0. | (20)

It is obvious that boundary condition Eq. (20) is satisfied as long as p; R and p, R are zeros

of J(z). For simplicity we suppose that
PR =pR =Y (21)

where 4y, . is the n-th zero of J,(z). This leads to

Ph=DpD2 = %En . (22)

Considering the relation between p; 5, @12 and aq, b; given above, the parameters a; and b,

are determined as

A

M= T Tx (A'~’+ R2>_ R? (23)
1 1 Yan

‘—1ivo('ﬁ+ R?)' (24)



c;, ¢y are determined by Eq. (20), which gives

d]dz + 61d3 _ d2R2

, —
C1—2 b%-{—-aldl 2 ) (25)
’ 2d2 (CL]_ + 2d1)(d1d2 + b1d3)} dgdg2
_2da ), _ , 26
2= & (0% + ardy) 2 (26)

Substitute (24)-(27) into Eqs. (18)—(19), finally we find the solution of nonlinear Eqs. (10)-

(11) are
0(r, ) = 89 (2227 cos(mn) + (" — R?) 1)
U(rym) = W (1220 ) cos(mn) + W — B2) (28)
Wher¢
3O - alR;; ;ri,n 8,,(0) (29)
g = bl(aldzl-z-bgligil-ic—ljaldldg | (31)

From the expression of the solutions one can see that this kind of structure consists of two
parts, the azimuthal angle dependent 2m-pole vortex part and monopole part which is only
r dependent. Since parameters d; and ds depend on the equilibrium electron velocity vo, the
expressions (28)-(32) indicate that this velocity only affect the structure of the monopole,
while the global structure of the solution depends on azimuthal mode number m and the

choice of zeros of J,,(z). Fig. 1 gives the illustration of the solution (28).

IV. Summary

In this work we studied the nonlinear shear Alfvén wave in low B, current carrying plasma

cylinder and the global harmonic multipole vortex solution is obtained. This type of so-
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lution consists of monopole a,r.ld multipole parts, along the azimuthal direction it forms a
chain interwoven with cyclone and anticyclone, while the structure globally propagates in
the azimuthal direction of plasma with constant angular velocity. Compared with similar
structures previously obtained for other nonlinear modes, the equilibrium current of plasma
affects both the vortex structure. The fact that the radial size of the vortex is comparable
to the radius of plasma cylinder may provide some convenience for experimental observation

of this coherent structure.
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Figure Captions
1. a) Scheme of @,,/®© where m =1, n = 1,2,3,4, %) R?/3( = 0.1.
b) Scheme of ®,,/®9 where m =2, n=1,2,3, &} R?/0(0 = 0.1.

c) Scheme of @,,/®) where m =, n = 1,2,3, ®(1) Rz/éﬁ,?) =0.1.
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* Figure 1. 3D plot of ¢
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[Fig.1a]: <I>(15/<I>£2) =0.0l,m=2,n=1,2,3.
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1. 3D plot of ¢,,/®
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e Figure 2. 3D plot of ¢,,/99 for different ~,,.,.
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