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Abstract

An electron temperature instability driven by the I{unkel-Guillory sheath impedancé,
has been apphed to the scrape-off layer of tokamaks. The formalism has been generalized
to more fully account for parallel wavelength dynamics, to differentiate between electro-
magnetic and electrostatxc perturbations and to account for particle recycling effects. It
is conjectured that this conducting wall instability leads to edge fluctuations in tokamaks
that produce scrape-off widths of ma.ny ion Larmor radii 2 10. The predicted instability
characteristics correlate somewhat with DIII-D edge fluctuation data, and the scrape-off
layer width in the DIII-D experiment agrees with theoretical estimates that can be derived

from mixing length theory.



I. Introduction

Recent theoretical work [1,2] has demonstrated that a vociferous flute instability, in-
duced by electron temperature gradients, is possible for plasmas on open field lines in
contact with conducting end-plates. The original work, which is an extension of a plasma
model originally discussed by Kadomtsev [3], was oriented toward mirror contained plas-
mas. However, the basic mechanism causing instability is quite general and there is an
obvious application to scrape-off layers in toroidal systems. The purpose of this study
is to assess the implications of this instability for toroidal scrape-off layers (in particu-
lar tokamaks). We show that, for typical tokamak scrapeoff-layer (SOL) parameters, this
instability prdduces diffusion, comparable in magnitude to Bohm, that should give rise
to a temperature SOL width of order 1-2 centimeters (tens of ion gyroradii) even when
plasma-particles are lost in an ion transit time. The predicted widths, typical mode fre-
quencies, an‘d relationships between the fluctuations in potential, temperature and density
are compatible with experimental observations. We shall also show that moderate edge
beta values change the character of the mode, reducing the growth rate and the wavenum-
ber at the maximum growth rate, but have a much weaker effect on the real frequency and
the mixing-length estimate of the thermal diffusivity. Various sets of the self-consistent
" scaling parameters will be presented.

Handling of the heat load on the divertor or limiter is considered to be a major issue
for future large tokamaks such as the International Thermonuclear Experimental Reactor
(ITER) [4]. Because the cross-field transport sets the width of the scrape-off layer and
hence plays an major role in determining the heat flux density o£1 the divertor or limiter,
understanding of SOL turbulence is important for the design of such machines. It is also
possible that the conditions that determine whether vociferous SOL turbulence is present
or not, may be playing a role in the L-to-H-mode transition in tokamaks.

Scrape-off-layer turbulence has been the subject of remarkably fer papers. Ne-
dospasov [5] described a mechanism involving a temperature-gradient drive via Pfirsch-
Schliiter currents and end loss. Nedospasov [5] also considered, and Garbet et al. [6]
studied in more detail, turbulence driven by curvature and the polarization drift; the end

loss was stabilizing as in the pioneering work of Kunkel and Guillory [7]. The instability
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under consideration in this paper, that described in Ref. 2, is driven by a cross-field gra-
dient in the difference of the electrostatic potential between the plasma and the end wall
in conjunction with end loss and the polarization drift. It may be verified a posterior:
that, for parameters relevant to present and future large tokamaks, the present mechanism
produces the strongest instability.

The gradient of the potential difference arises naturally from the electron-temperature
gradient; hence the mode can be viewed (and was, in Refs. 1 and 2) as being induced
by electron .température gradients. While this is a more familiar instability drive, the
instability can also be viewed as due to plasma flow with conducting wall-sheath boundary
conditions. In the present presentation we show that there is instability even when there is
a fixed E x B flow in the plasma, while at the conducting end walls E x B = 0. Instability
is possible as there is no moving frame of reference where the electric field can be entirely
transformed away. The dispersion relation for such a case was first obtained by Kadméf)sev
(3] , although its unstable structure was not exhibited then.

~ This paper, in addition to applying the results of Ref. 2 to scrape-off layers, extends
the previous analysis. We present here a much more detailed examination of the mecha-
nism of the instability. Here, we start from the low-beta limit of two-fluid electromagnetic
equations and retain finite-parallel-wavenumber effects, taking care to describe the transi-
tion from an electrostatic to an electromagnetic mode. We also add moderate secondary
electron emission and recycling. Furthermore, we begin to account for variations of equi-
librium parameters along field lines by allowing the end-loss current to be governed by
different densities and temperatures than the mid-plane values used to characterize the
bulk of a field line. Additionally, there is a more extensive consideration of the nonlinear
state of the mode.

The organization of the paper is as follows. We begin, in Sec. II, with the physical
description of the instability. Section III is a derivation of the eigenmode equation. The
end-loss (sheath) physics is discussed in Sec. IV, and the dispersion relation is obtained
and analyzed in Sec. V. Section V also includes mixing-length diffusivity estimates and
discussion of other aspects of the nonlinear (turbulent) state of the mode. Section VI is

devoted to estimates of the self-consistent tfa,nsport which follows from the results of Sec. V,
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and Sec. VII applies the results of the breceding sections to the DIII-D [8] experiment and
to ITER. Section VIII includes a summary of results and a list of issues requiring further
attention.

We note, particularly in connection with Sec. VI, that we are using the term “scrape-
off layer” to refer to the centimeter-or-so wide region of open field lines, immediately
surrounding the closed-field-line core, which is directly energized by power flowing out
from the core. Further out, this SOL typically fades into a longer-scale-length, low-density,
low-temperature region which is better described as the halo region. While the instability .
under discussion can exist in the halo, that region is dominated by local sources and sinks
of particles and energy (and is thus largely decoupled energetically from the core).

In this discussion we shall assume that eikonal approximation in the direction perpen-
dicular to the magnetic field applies. The response parallel to the magnetic field is obtaine(.i
from a drift-wave expansion (w/we; ~ €%, ky/kL ~ vq/v ~ € vg = drift velocity; vy = ther-
mal speed) of the two-fluid Braginskii [9] equations. In the limit k% c?/wj, < 1 (typically
satisfied in tokamak scrape-off layers), the response is identical to that obtained from L:e-
duced ideal MHD equations if we neglect equilibrium parallel electric fields. In particular,
the response is flute-like when the axial scale-length L satisfies L < v4/[w(w +w})]'/? [here
va = B/(4nn;m;)*/? is the Alfvén speed, n; the ion density, Zn; = n. = n, wheren, =n is
the electron density, m; the ion mass, w the mode frequency, wf = (kxb)-V(n;T;)/miwein;
is the ion diamagnetic frequency, &k the perpendicular wave number, b the unit vector
along the field line, T; the ion temperature, we; = ZeB/m;c the ion cyclotron frequency,
e is the electron charge, and Z is the atomic number|. We note that in the opposite limit
w2, /k%c* < 1, the response is purely electrostatic. The formalism applies to multiple ion
species provided that we interpret m;, Z and w} as mean quantities, m; = > _m;n;/ > nj,

Z =3 Zjn;i/ Y nj and wf = ) win;/ ) n;, where the sum runs over all ion species j.

II. Physical Description of Instability

In an open-ended plasma where the electron temperature varies in the radial direction,
a radial electric field is characteristically present because an ambipolar potential is needed

to regulate the electron endloss to maintain quasineutrality. As the ambipolar potential,
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®, is proportional to the electron temperature Te, with typically A = e® /T, ~ 4, the radial
electric field is —V® ~ —AVT,. As we shall see and as is contained in Ref. 10, the prime
cause of the instability is associated with the plasma flow speed, vg ~ —cV® x B/B? where
we neglect the ion diamagnetic flow in this section. As V® and VT are closely coupled
together, the instability was originally interpreted as an electron temperature instability, a
designation we shall keep in this work. However, one should remember that other transport
mechanisms can cause V® to be present even with VI, = 0. For example, if there is a
spatial gradient in the mean ion mass, the spatial variation of the sonic outflow would

cause a potential gradient in the equilibrium.

For a plasma slab model one usually asserts that cross-field flow does not produce

instability. An exception is when thé plasma is bounded by conducting end plates. We
take the magnetic field in the z-direction and the flow in the y-direction. In addition
plasma is being lost to the conducting plates (in the z-y plane) due to plasma outflow
onto the walls. The usual stability statement follows by observing that if we ‘had.an
infinite plasma in the z-direction, one could transform away the electric fleld by choosing
a frame of reference moving with the plasma. However, in the present problem, where the
conducting plates are equipotentials, the electric field cannot be completely transformed
away everywhere.

Now one has to take into account the physics associated with the Debye sheath be-
tween the plasma and the conducting walls that maintains a floating potential ®4(z) =
AT.4(z)/e in the plasma with respect to the conducting wall, with the subscript d denoting
plasma characteristics in the pre-sheath that is a distance less than an electron mean free
path from the wall. For sufficiently high electron collisional frequencies the end current

J[®a(rL), Tea(r 1), nea(r)], through the Debye sheath, is of the form

me)t/? e
Ty [8a(r1), Tea(rs),ra(r )] & enea |, = %’%_p (" qu )] g

where ¢ ~ (T, + T;)/mi, Tea(r _J_)’iS the electron temperature on the plasma side of the -

sheath, at distance less than a mean free path from the wall. In equilibrium the potential
®,(r ) needs to adjust so that most of the electrons are reflected back into the plasma in

order to maintain quasineutrality on a field line. Though there can in practice be current
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emerging from a given field line, to a good approximation the equilibrium J| can be taken
to vanish.

Now let us consider a flute perturbation of the equilibrium where £ = £ - e, i1s nearly
constant along a field line. The potential perturbation produces an incompressible E x B
drift motion. The displacement £ satisfies

Véxb ick X b¢
C -

&= —is)e =V =~ =

where Q(s) =w —wg(s) and wg = k- vg(s). Here ¢ is the perturbed potential at a fixed
(Eulerian) point r, and k the WKB wave number. To linear order ¢ is related to the
Lagrangian perturbed potential by ¢ = ¢ —&-V®. In the limit k% ¢? /L«.)ZZZe < 1 the plasma
response is magnetohydrodynamic, so that the flux may be viewed as moving with the
E x B motion. To a first approximation, the temperatures and density also convect with
the E x B motion. If we further assume that transport processes and sources convect with
the field line perturbation, then virtually nothing changes in the determination of local
plasma profiles for density, temperatures and pressure, along the moving flux tube. (In
particular, in this approximation there is no perturbation of the parallel heat conduction.)
Hence the Lagrangian perturbations of the density and temperatures vanish. The exception
is the plasma potential ¢;. The Lagrangian potential perturbation, @1, as given above
does not in general vanish because the charge flow unto the flux tube from polarization
current associated with the field line motion can only be balanced, in this model, by a
change of end-loss current. To change the end-loss current, the potential, <$ L, across the
sheath on a moving field line needs to change.

In the high collisionality regime the rate of charge build up by the perturbed end loss
is determined by end current as given by Eq. (1). Taking into account that field lines are

moving gives the relation,

% = —2J) = =27y (@ulrs — ) + Bulrs — €), Tulrs — &), nalrs ~ E)) (2)

where the factor of 2 comes from the contribution from two ends. Recall that we are

assuming J|(®q,Ty,na) = 0 for the equilibrium. Using that —1Q§s = —ick x b ggd/B, the
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end current is then

~ - .BJH 0Jy wB¢y
J = [¢d(rL)+€d - V&y(ry) 3%~ 5% ~

(3)

cky
[The structure of the end current, given by Eq. (3) is quite general. For example in Ref. 10
it was noted that even when the collision frequency is not large, the perturbed end-current
is given by Jy = [Ba(r) + €4 - VO4(r)]x(w) = wBEix(w)/kyc with x(w) the appropriate
frequency response that is determined from kinetic theory. In particular such a response is

justified if kAL < 1 (AS

mip mip

radius) as well as in other circumstances.
If we assume that the field line motion is nearly flute-like, the charge accumulation

due to the transverse ion polarization is in the limit ky ~ kz > VT, /T,

2,5 [3d 7 )
.aQ” = /V Jpds=-V- /cn ¢ d EL N—ckLe/ dsneEzjé ©(4)

Wei dt B weiB J_s, dt

where w.; = ¢;B/m;c, s is the distance along a field line.

The sum of Eq. (2) and Eq. (4) needs to vanish. Then using Eq. (3), we obtain,

.2
k4 ec
weiB

an ds — _0; 201, %€ neacw

0% Ted

—sg
If Q0 is sufficiently small, and wg constant, we can set w = wg on the right-hand side, use

the relationship, e0®4/0z =~ A 0T;/0z, and find

1/2 aT. 1/2
Q= Fei/4 -——wE / ~ +eiT/4 _Aky'_#wci (5)
psd kﬁ_Td i Td kﬁ_Ted »

with 1/74 = 2neq4cs/ fneds and pgd = Tegm;c?/e? B2, An unstable mode exists indepen-
dent of the sign of ky 0T.4/0z. In the subsequent sections we will study the properties of

the mode more carefully.

ITI. Eigenmode Equation

In the low-beta limit, only the parallel component of the vector potential need be
retained, so that

B=VxAb=ikxbd . ~(6)

7
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where “~” indicates a perturbed quantity. The eigenmode equation is obtained from V=
0, where we evaluate j 1 and jj from the Braginskii [9] two-fluid equations (electromagnetic)
and an expansion in terms of kj/kL ~ kip ~ (w/we;)? ~ ¢. The € expansion is used to
obtain explicit (drift) expressions for the fluid velocities perpendicular to B. Hence, as in

Hinton and Horton [11] , the current equation becomes

. 0 E .
V-JEVJ_-[E(aﬁ-(VE-i-vpi)-V)EB—}-I—V']"b:() (7)

Weiq

where v,; = (¢/njq;B)b x Vpj, vg = (¢/B)E x b, and p; is the pressure of species j, and
where the perpendicular and parallel derivatives are defined relative to the direction of the
equilibrium magnetic field. In Eq. (7) we have neglected the gyroviscous term as it does not
contribute significantly in the subsequent equations. We also neglect here the curvature
drift, as it has a small effect on the mode under consideration. From the components of
the electron and ion momentum equations parallel to the equilibrium magnetic field and
the lowest-order continuity equations (again assuming V| « V 1), we obtain

o3y

2
Shve - Vi + eV (n(uf —ud) - ’:: (Ey +ve x B-bo/c)

= —T—ne: [V|ipe + nar(B - VT.)/B] - vj . (8)

where Vv, = Vg + Vpe, u; is the parallel flow velocity of species j, and we have used a
cancellation between v - V terms and components of the stress tensor similar to those
noted in Ref. 11. Linearizing Eq. (8), using Eq. (6) and its curl, and writing E=—ik, d—
b(V”qz - iwﬁ.”/c), we obtain the perturbed parallel current,

2 .2

~ .k : . -
= (i@ wf = arwlr) + () (=i + )] T X

{ - 33(43 - aTTe/e) + (eno)"l(é‘)gﬁe + arfidsTeo)
+ Eyo(ft/no) — 47 [jjo? + V1B - VjHO]/w;z)e} (9)

where T, is the perturbed electron temperature, ar = 0.71 is the thermal-force coefficient,

ng is the equilibrium electron density, s is the distance along a field line, Q = w — wg,
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wg = ck x b-V®/B, & the equilibrium potential, w} = —k x b - V(nTe)/nwcme,
wir = ~k x b+ V(T.)/weeme, and j)o is the equilibrium current. In writing Eq. (9), we
have anticipated the result wy;/Q < 1, where wp; is the ion transit frequency, and hence
have dropped the u? terms.

Near the conducting end walls this parallel current impinges on the conductor and the
form of the current is determined from the properties of the plasma sheath adjacent to the
contacting wall, to be enumerated shortly. The sheath condition will provide a boundary
condition to the eigenmode equation to be derived below, allowing the determination of
the dispersion relation.

Note that, in writing Eq. (9), we are making a local approximation (Fourier analyzing
in both z and y). This is not unreasonable since, unlike in the core of a tokamak, there
are no special values of z (no analog of rational surfaces). On the other hand it fails for
kyLte ~ 1, and cannot describe effects of penetration into the closed-field-line regiAQn‘.‘;:A
radial differential equation can be recovered from our treatment by unfolding k&, —rza/ Oz;
this is deferred to a future paper. |

We adapt a “square-well” model in which the equilibrium quantities (nq, Ty, ®, B) are
taken to be constant over the bulk of a field line but the end losses are determined by local
values df the equilibrium quantities which are allowed to be different than the bulk vahges.
From a simple equilibrium parallel electron heat equation we might expect the electron
temperature to be nearly constant along a field line provided that the electron mean free
path Amgpe satisfies /\m.fpe /L > A(m, /m,-)l/ 2, In fact, the temperature measured in the
SOL in a tokamak varies by a factor of several over its length (see for example a series of
papers from the DIII-D group [8] ), a fact which may be attributed to the violation of the
above criterion near the divertor/sheath region as well as the combined effects of radiation,
ionization, cross-field transport, and electron-ion energy exchange. However, for classical
diffusion between regions of sources and sinks, 77/? varies linearly with distance along a
field line, implying a temperature which is nearly constant over the bulk of the field line
and falling sharply near the ends. This tendency is further accentuated by the localization
of radiation and ionization losses near the ends. Hence the “square-well” approximation

is reasonable. We shall also, for simplicity, neglect the term in Eq. (9) coming from the
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gradient of the jjo and the V - j]|}§ /B term arising from the linearization of the V - jb
term in Eq. (7). (The equilibrium current is in general non-zero. However, it is typicallyb
some modest fraction of envy;. If the radial scale of jjjo is of the order of the SOL radial
electron temperature scale length L7, we can verify a posterior: that the jjo terms would
tend to be small for typical parameters.) Finally, we shall neglect the radial gradient of
the equilibrium rotation rate.

With these approximations the V - j = 0 condition becomes:

a Tk 06 — (axTe +Be/no)/e] | Wpira ({_ @i =0
9s UQ —wi — arwy) O ‘o n

ct

where U1 = 1+ (k3 ¢? /w3, )(Q+iv.)/(Q—wi — arwir). We eliminate T, and p. using the
electron continuity and temperature equations; if we temporarily neglect parallel thermal
conductivity, then, to leading order, these equations are just —iQT, +Vig-VT. =0 and
similarly for n. The vg4e terms in the temperature equation cancel with a component of the
thermal-gradient heat flux as noted in Ref. 11. Also, we have dropped the Vju terms from
both the continuity and temperature equations, since, from the expression for k) given
below, it follows that such terms lead to corrections in the 3'" response which are O(k 1 p,)
with pg = m;c?T,/e*B%. Now k,ps must be small in order for our fluid equations to be
valid if T} ~ T,; it can be verified a posteriori that k, ps is in fact small at the most unstable
wavelengths for physically interesting parameters. It follows that pe/po = (w}/ Q)eq; /T
and T,/Ty = (w*;/Q)ed/Te. These relations can be easily obtained from guiding-center
equations or more rigorously from fluid equations including diamagnetic flow, if FLR terms
are included. Hence, the eigenmode equation in the bulk of the field line becomes
7 2
%‘I’?}z&g—f+%§iki <1—“g>$=0 . (10)

ct

In most of what follows, we shall usually consider the limit ¥ = 1.

In the ¥ = 1 limit (k§c?/w?, < 1), T./To = (w*;/Q)ed/T. is the solution of the
temperature equation even when the parallel and the gyrotropic heat conduction terms are
retained. Hence Eq. (10) remains valid. In the opposite limit % ¢? /w2, > 1, the parallel
heat conduction term is negligible compared to QT provided that k% p2(Q + v,)/v. < 1,

10



which is typically true for the most important linear modes. Hence we take Eq. (10) as
valid for both the electrostatic and electromagnetic regimes.

The symmetric solution to Eq. (10) is
B(s) = &g cos ks (11)

with kﬁ = Q(Q — w})/viP. ,

Note that multiple species can be included as a sum over w?; /wzj in Eq. (10) with
j the various ion species. Hence Eq. (10) remains valid provided one interprets the ionic
mass, atomic number, and diamagnetic drift frequency as the mean quantities defined at

the end of Sec. 1.

IV. End-Loss Physics

Equating the parallel current from the bulk with that crossing the sheath provides
the boundary condition which closes Eq. (10) and allows determination of the dispersion
relation. The forrﬁ of the current crossing the sheath depends on the electron collisionality.
For the case where electron collisions are sufficient to populate the velocity-space loss cone,

the loss currents are similar to that given in Refs. 1 and 2, t.e.,

. (L= yse)vee ed
I = ence |14 7 Ser/ exp T | . (12)
34 .

where ¢, is the sound speed at the sheath, which for simplicity we take as [(T. +T;)/m;]*/?

and vy = (2T;/m;)'/?, and v,; and 7,. are the coeflicients for secondary-electron emission
from ion and electron bombardment, respectively. (We shall restrict attention to v, < 1 to
avoid discuséioﬁ of double layer structures which would otherwise arise.) All quantities in
this relation are to be evaluated on the plasma side of the sheaths, i.e. at s = 54 = £L/2.
Note again that these parameters are allowed to differ significantly from the bulk values;
we shall give a prescription for sélf-consistently determining Te(sq)/Te(0) in Sec. V. In
equilibrium we take jj = 0, and the equilibrium ambipolar potential ®(s4) then follows
from Eq. (12). In fact we shall be interested below in the potential ®(0) in the bulk of a

field line; hence we must add to ®(s4) the potential drop across the pre-sheath. Hence we
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e® —lln m; 1—736)2 2T, L}
Te sd—z me \ 1+ Vs T+ T, 4m

where I; = In[(®(0) — ®(s4))/Tea]. The constant I; depends on the details of the pre-

obtain

A

(13)

8d

sheath model; in a simple model [13] with T; small compared to T, in the pre-sheath,
I; = 2, and is somewhat laré;er for finite T;. Unless ~,. is close to unity, A is substantially
larger than unity (A ~ 4). Note that a finite equilibrium current j; < nec, would not
change this relationship appreciably.

Linearizing Eq. (12), we find that the perturbed current is given by

5” = [.745& +jT¢Te +jT;Ti . (14)

8d

where ¢, = ¢4(1 + 74:) and jo = 95/ 0.

The electrostatic potential at the end wall regulates the end-loss energy flux to the

value
Qo =2T¢ ~°2 N 19T, 4 eBo(1 = voe) — YoeToc]
el—mexp _Te_, [ et € 0( Yse Ysedse
-+ ni(cs/I{i){Ti - 7siTse + ’Yr[f:c(Te -+ Tz) + fi(gi — Tri — Tre)]} . (15)

- where Ty, is the temperature of recycled electrons, 7, is the recycling coefficient, &; is the
ionization energy for recycled neutrals, Tr; and T, are the mean temperatures of ions and
electrons produced by ionization and charge exchange of recycled neutrals, and f, and f;
are, respectively, the fraction of recycled neutrals ionized and charge-exchanged, respec-
tively. Here we have assumed that the mean free path for recycled neutrals is longer than
the sheath thickness but less than the perpendicular wavelength. In principle this equation
provides a boundary condition for equilibrium and perturbed temperature equations. For
most of the present work, however, we shall simply treat the equilibrium temperatures at
the middle of the field line and at the sheath as prescribed constants. A discussion of a
self-consistent determination is given in Sec. VI.

Linearizing the electron and ion portions of Eq. (15) and using the zero-equilibrium-
current constraint, we find that, with the ordering wy; < €2, the perturbed end-loss energy

flux is negligible compared to the cross-field convective energy flux unless 7, is very close
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flux unless ;¢ is very close to one. Hence, we find [at the sheath, and, in accord with the

remarks following Eq. (10), everywhere along the bulk of the field line]

T, VT.
T, | —¢- | VT | . (16)
7 Vn

We can substitute Eq. (16) into Eq. (14) to express the end wall current in terms of the

where ¢ = ¢ck x b/BQ.

fluctuating potential. Equating this result to Eq. (9) (with the E)jp and Vo corrections

dropped) gives the basic boundary condition for our analysis,

.2 28(¢S/Q) 260
Uk PR = T;jted $—¢&- VLG /is) ~ & VTnLis)]
W eOLqﬁ
= T:;ted‘Q (Q+wE) (17)

where 77! = 2n(s4)és/noL with ng the density on the bulk of a field line of length L = 2s4.
Note that 7/ (‘1 + v,:) the ion confinement time. The quantity Q +wg is equal to the wave
frequency w and hence is independent of position. Also, in the MHD (¥ = 1) limit, it
is well known tha the diépalcement ¥ o ¢ /Q g cannot vary along a field line on a length
scale short comared to v4 /. Hence, for k¢ < 1, where £ is the pre-sheath length, we
can choose to evaluate q~5/ Q and Q + wg on the plasma side of the pre-sheath, so that
Q) has the same meaning in Eq. (17) as in the eigenmode equation+(10). (We assume
that wg is constant outside of the sheath/pre-sheath region.) Then, since the E x B
rotation is driven primarily by the gradient in Ted, we write wg = —win,A' where A' =
d®(0)/dTeq = A+(Tia/2Tea)(1—Lrea/LTia)/(1+Tia/Tea) with Lig = (bxk)-VinTig/kL
and L7eq = (b X k) - VInTeq/ky. Note that, while we have considered various atomic
physics processes associated with secondary emission and charge exchange, the only effect
which has a significant direct effect on the dispersion relation is secondary emission from
ion bombardment (contained in the definition of 7, through &). A similar analysis shows

that radiation is unimportant for typical parameters. The other processes enter indirectly

in that they affect the equilibrium parameters.
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The inclusion of the w}; term, considered in Refs. 1 and 2, allows for a strong tem-
perature gradient drive, particularly since A’ is frequently a relatively large number and
the temperature-gradient scale length Ly, which enters into w};- is typically very small in
the SOL, Le ~ 1 cm.

If the collisionality is insufficient to justify Eq. (12), Eqgs. (12), (13) and (15) should be
replaced by their collisionless counterparts. To leading order, the dispersion relation is un-
changed by this substitution, except indirectly through the resultant change in equilibrium

parameters.

V. Dispersion Relation

Combining Eqs. (11) and (17) gives the dispersion relation

20(Q — w})tan[ky(QL/2]  iNZ Wira ] -
k()L k% p? [1 B —%A} =0 (18)

where pg = [mTe(s4)]/%c/eB, ky(Q) is given following Eq. (11), and w}p; = wip(s = sq).

We shall consider two extreme limits analytically and perform numerical calculations
for intermediate regimes. The limits are: (1) a flute mode where k()L < 1; (2) a long
system where Im ky(2)L/2 2 1; additional modes with k) (Q)L/2 ~ n(£ 4+ 1/2), where £ is
an integer, are also derived. We shall see that, for the typical case k2 c? /wf,e & 1, the flute
limit is satisfied at low beta and not-too-long connection lengths L. If we move to lower
beta by decreasing the density, at some point the k% ¢? /w2, criterion becomes reversed and
kj ceases to increase with decreasing beta. Nevertheless, at that point, for typical tokamak
parameters, the flute-mode criterion would be well satisfied.

If we first assume a flute mode then Eq. (18) simplifies to

* 3924 WeTd A1 _
QQ —wi)+ kipﬁ'r [1 Q A] =0 (19)

Instability is readily inferred from Eq. (19). To write the results compactly we normalize
Eq. (19) to the form,
02+ Qi/k>+ k8 —i/k=0 (20)

where § = [Tio/Te(84)}(Lre/LpiA')/Z, with L,; the radial ion pressure-gradient scale

length (i.e. that which enters the definition of w), and the dimensionless frequency and
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wavenumber are given by { = (Q/QuoA)v~1/? and k= (kyip)v '3, withv = Z[TNQy0,
Quo = (ky/kL)wWirglk, po=1 = (ky/kL)cse/LTe, and ¢,e = [Te(sq)/mi]*/2. Solutions for
Im () as a function of & for various values of § are shown in Fig. 1. For 6 = 0, the max-
imum value of ¥ = Im is ¥ = Ym = 0.38, which is achieved when b=k, =18 At
this value of &, Re 2 = ReQ,n = 0.52. We also note that max(%/k%) = 0.343. For § large,
the Q? term can be neglected for the unstable mode, and we find 4, = (22/3/3)6=1/3 at
ki = 21/96=1/3, Note that k,/k, does not appear in Eq. (20); hence the maximum dimen-
sionless growth rate is independent of ky/ky. Upon translation back to physical variables,
we see that, for other parameters fixed, the growth rate scales as (ky,/k1)*/3; thus the
actual grthh rate is maximized in the limit k, — 0. Hence, in all of the expressions.
which follow, Q., v, etc., are to be evaluated with &y /by — 1.

At the maximum growth rates ImQ ~ Re{). Hence we can expect strong turbulence
with mixing-length theory being appropriate so that thermal diffusivity is x & Y/ l%fn,
where &, is the wavelength at 4 = 4. [Note, however, that max(5/k?) andjﬁ"f?,’,{/l;:ﬁz,
which are two commonly-used mixing-length diffusivity estimates, differ by nearly a factor
of three; this is an indication of the uncertainty involved in the use of a mixing-length
estimate.] In the limit of both small and large §, the scaling of the solution is completely
determined (no scaling at all in the dimensionless variables for smali §, and the 1/3-power
scalings for large §). Thus we can explicitly write the mixing-length diffusivity in physical

variables as

D Gecbap A Lesemy Y (1)
k2 Lr. 2LTecsn(3d)(1 + ’)’si)Z k;zn

if § = [Tio/Te(54)(L1e/LpiN)/Z < 1, while

T~ 1csefd A ( TigLegeno )1/3 (22)
k2 3 L. 2T.aLpicen(8q)(1 + vsi)Z
if § > 1. Here, ¢ = [Tu(sa)/mi]"/2.
In Fig. 2 we plot 4m, Re O, km and ¥ = Ym/ l;fn vs. 6. The predicted weak variations
with 6 are evident at large § Note that, for the experimentally interesting case 6 ~ 1, 4,
is barely changed from the § = 0 limit, while kn, and Re Q. decrease; hence X increases

appreciably. For negative § ~ —1 (which can occur when either the electron temperature
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profile or ion-pressure-gradient profile is inverted), ¥, decreases somewhat while Re Om
and k., increase, the mode becomes more nearly real and ¥ moderately decreases.
For later reference, we restore numerical constants and display the diffusivity in prac-

tical units,

N 2.3m? /sec

[1.5/(1 +76:) 212 AY2(2 T/ B)?(no fna) P [2T. /(Te + T2)]}/°G (23)

(Te(sa)/25 eV)3/2(A’/4)4/3(L”/40 m)/3

where G ~ 1 is the ratio of the actual x to that for 6 = ky = 0. For § ~ K7 ~ 1
(parameters typical of DIII-D; here K7 is the finite-k) parameter defined two paragraphs
below), G ~ 2. Interestingly, for K'r = 2 and § = 1, the finite-k| and finite w} effects
nearly cancel to give G &~ 1. On the other hand, for large Kt (typical for reactor-grade
parameters), the effects can be additive, as will evident from the discussion below.

It also follows from mixing-length theory that the level of potential fluctuation should
be e¢/T = 1/kyLre.

In Ref. 14, it is shown that, for the nonlinear equations appropriate in the flute limit,
it is possible to completely remove all parameters in the large and small é limits, just as
in the linear case, and that, as a consequence, mixing-length scaling is in fact rigorously
correct in these limits. A caveat in this analysis is the neglect of the energy end-loss
terms (as has been done here, also), which is justified for frequencies near the maximum
growth rate, but could be problematic if nonlinear effects result in significant wave energy
at frequencies near or below the ion transit frequency.

Next, we consider finite k| effects. Introducing the same dimensionless variables used

in the flute equation, we can rewrite the dispersion relation, Eq. (18), in the form

~ ~oa ‘Q z‘
02+ SENT + = — = =0 24
(@ 4 SHT + 3 - 2 24
where 7 = (2/kyL)tan(kL/2) and kL/2 satisfies
A s\ 1/2
kL/2=Kr (07 +6kQ) " . (25)

Here, K7 = (1 + 7si)Z(Bana/2n¢)}/?v~=2/® measures the importance of finite ky effects

and is also the only direct way that the plasma beta (84 = 87ng(Teq + Ti4)/ B?] enters
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the calculation. Note that finite &y infroduqes only one new parameter, namely 7. For
typical present-day tokamak sé:rape—oﬁ7 léye'rs, such as that of DIII-D, or ITER, K7 is in
the range 1 — 1.5. For a reactor-grade machine, K7 can be large; for example, for the
nominal ITER parameter set discussed in Sec. VII, i+ ~ 5. This distinction is quite
important, as will be seen shortly.

For small K7, we can expand the tangent and replace 7 by 1 to obtain the flute
limit analyzed above. There are additional roots with kyL/2 ~ nr. At the maximum
growth rate, these roots have high real frequency and wavenumber, max ) nw/Kr,
km o nr/Kr, and vanishing growth rate, 4 o (Ky/nm)?. (For § = 0, the proportionality
constants are 1, 2, and 1/4, respectively.) These roots are nonetheless somewhat interesting
because of their connection to high-I{7 roots with kyL/2 ~ (2n+41)7 /2 as discussed below.

We can perform asymptotic analyses to determine analytically maximum growth _g_ateé
for large I{r. There are several distinct types of roots in this limit. We restrict attention
to the normally occurring case § > —1. We present here the results of the ar;a,‘iysis;.
derivations are given in the Appendix. First, and most significantly, there are roots for
which the maximum growth rate occurs when () = kyL/2 ~ £ /2, with £ an odd integer.
For these roots, the maximum growth rate occurs at k& = ke, = o(m[2)KTH1/(1+ )12,
at which point ) = E+ Qom, with

1
2+ 6] 21+ 81/

Qom =~ (—1 +i)(er/2)* 2 K7 (26)

The growth rate is an increasing function of ¢, but the formula is only valid for ¢ < K7.
There is a higher-kj mode with Imé > 1, and which is thus localized near the ends
of the field line. For the particular case § = 0, the maximum growth rate is Imflm A

(3/4)[(1?1 In K7, and occurs for ke~ Kr}/z

, Q= I\;’,}/ ?/2. Note that this maximum growth
rate is less than that obtained from Eq. (26) for £ ~ K'7. Finally, there are modes for which
Refd ~ Im@ ~ 1 and the second term in Eq. (24) is negligible. We shall refer to these as
large-wavenumber modes, since km is larger than for the other roots. There is a series of
roots corresponding to different branches of tan™!. For § = 0, the first three such modes

are, after maximizing the growth rates, Qn, 2 (1.042 + 0.6013{) K" at km = 0.6616K2,
Qm = (3.9893 + 1.0287) K 7! at kpn = 0.2353K2, and Q. = (7.1032 + 1.2275)K ;! at
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fm = 0.1371K%. The growth rate is a weakly increasing function of mode number, a
trend which continues for at least two more modes beyond the ones reported above. For
§ # 0, the first such mode maximizes when § — /2, but is nonetheless distinct from
the first of the ¢7/2 roots listed above; in particular, it has a smaller growth rate, 9, =
w2 /26 K%, and, from numerical comparisons, a higher wavenumber km. The second and
third roots are immediately distinct from the ¢n/2 roots after maximizing, and are at
O =2 (145.6+47.611) /67 K7 at kp = 0.1385K2, and Qrm = (526.4+198.14) /61 K% at
b = 0.1066 K2, respectively. Note that, for § = 0, these are the fastest-growing modes,
whereas, for § # 0, they grow much more slowly than the {7/2 modes. In either case, the
transport, as measured by the mixing-length diffusivity x = 4m/ Efn, is more important
for the /2 modes, as ¥ ~ (¢1)~/? for the £x /2 modes and ¥ ~ K7° and K376 for
6§ = 0 and § # 0, respectively. The last (6§ # 0) scaling applies only for £ > 1, but the
conclusion is applicable to £ = 1 as well, because of the aforementioned numerical evidence
concerning km and the analytic 4, expressions. The conclusion is that for large K7, the
{7 /2 modes for £ < Kt dominate the transport, and the (dimensionless) mixing-length
thermal diffusivity ¥ should then be of the order ¥ ~ Y ,(Im Qem/ l%fm) ~ 1, where the

sum runs up to £ ~ K.

We explore intermediate-I{7 values and the connection between the small- and large-
Kr solutions by solving Egs. (24)—(25) numerically. For § = 0, the flute mode (6 — 0
as v — 0) connects on to the 8, = Krwn, = 1.042 + 0.6013: mode at large Kr; the
7 /2 mode emerges from it as a distinct maximum, finitely removed in IE, at K1 around
3.3. For higher K7, a scan of Q) vs. k reveals two distinct peaks and a smooth connection
between, suggesting that the two maxima are separate maxima of the same root of the
dispersion relation rather than two distinct roots. The real and imaginary parts of O,
k., and the mixing-length diffusivity xm = Ym/ l%?.n are plotted as functions of K7 for
these two branches in Fig. 3. The higher-harmonic solutions in the K7 — 0 limit appear
as distinct roots; that is, at a given .i:, one can switch between them by supplying different
initial guesses to the numerical root finder. The 8 = 7 root for K7 — 0 matches smoothly
on to the § = 4 4 i root at large I, with the 37/2 root pealing off at K1 =~ 5.3. This

is shown in Fig. 3. For § = 1, the § ~ 0 small-I{1 root connects smoothly to the 7/2
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large-wavenumber root at large {7, and the § = 7 root at small K7 connects on.to the
§ = 4.55 + .73: root (second of the large-wavenumber roots) at large K7, as shown in
Fig. 4. As was the case for § = 0, the £r/2 roots emerge from the large-wavenumber root
with a distinct -maxima in the growth rate at moderate Kr. A curiosity is that, for the
one value of negative § explored (—0.25), the flute mode appears to directly connect on to
the (small-wavenumber) 7/2 mode rather than the high-wavenumber root.

A significant feature of the {7 /2 roots is that, unlike the flute limit at small K7 or
the harmonic large-wavenumber (Re § ~ Im § ~ 1) roots at large K7, ¥m =Im Q,n is small
compared to Re Com.

For typical present-day experimental situations where Kt ~ 1, Qm, km and  are
only moderately changed from their {7 — 0 iimits; in particular, x is moderately reduced.
Also, for K1 < 2, a single mode (the one which connects smoothly to the flute mode in
the K — 0 limit) is important, as measured by either growth rates or mixing-length
diffusivity estimates. On the other hand, for large K7, a number of distinct modes can
appreciably contribute, possibly rendering the mixing-length diffusivity estimate larger
than in the flute limit. This will be seen explicitly in the ITER example described in-
Sec. VII. This is the significant distinction between large and small values of K7 to which
we alluded earlier.

We conclude this section with a qualitativé discussion of the spectrum and the re-
lationship between the fluctuating quantities. If we retain the dominant nonlinear effect
(nonlinear E x B convection) and energy end-loss (linearized, and to leatiing order in pow-
ers of 1/A') and neglecting Vp;, we find that, in the flute limit, the current-conservation
and energy equations are identical with the dissipationless Hasegawa-Wakatani equations
[15] after rescaling of variables. (Neglecting the energy-endloss terms corresponds to the
small-C, or hydrodynamic, limit of the equations as given in Ref. [15].) Hence we can
expect an inverse cascade of energy to long wavelengths, implying broad frequency and
wavenumber-spectra extending from the most unstable frequency downward from the most
unstable frequency and wavenumber. Since in the nonlinear state the linear terms should
still be in approximate balance, we expect the relationship between fluctuating fields to

be roughly as in linear theory, i.e., fi/n, T./T., T;/T; and ed/T. should be approximately
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in the ratio 1/L, to 1/Lye to 1/L; to Q/w}py;LTe, respectively, and they should all be
approximately in phase. (Note that, for frequencies well below that at which maximum
growth occurs, the frequency is nearly real and hence the aforementioned statement about
phases has some meaning.) Since (see next section) we expect Lr; and L, small compared
to Lr. and since Q/wir; (= A§/E) is somewhat larger than unity at frequencies below
that of the maximum growth rate (by a factor approaching A’ at frequencies well below),
we expect ed/T. to be largest, then T./T,, and finally 7i/n and T;/T; in a relative order
that depends on details.

VI. Self-Consistent Transport

The scale lengths Lre, Ly; and L, can be determined self-consistently by equating
the time 7, for heat or particles to diffuse transverse to the magnetic field a distance L,
(or Lt; or Ly) to the axial lifetime. For the L. calculation, for example, 7y = L%, /x and
the axial lifetime 7 is defined by the relationship 7 = (3/2) (nT) L/Qe: with Q¢ the end-
loss heat flux and ( ) denoting a field-line average. (This procedure yields a scale length
identical with that obtained from solving an equilibrium energy equation 0, x0;T = vgT
with a constant thermal diffusivity and a constant loss rate vg). In principle, the scale
lengths which appear in the definition of 7, are mid-field-line scale lengths, whereas in
the diffusivity expressions Lte refers to the scale length at the sheath. However, since
we have dropped comparable geometrical factors elsewhere in making our “square well”
approximation, there is little significance in retaining such a distinction. For electron
temperature the axial lifetime is ~ L/c,A while for density (if we neglect recycling) and
ion temperature the axial lifetime is ~ L/c,. Assuming that the scaling for the transport -
coefficients for electron and ion temperature and density are given by the mixing-length
formulas for x in the flute-mode limit [Egs. (21) and (22)], we then find, for either large

or small §,

Lre ~ Ly ™% ~ L2 03PN O30 2) 10T /(T + T /o610
y o~ <cse/p§/5L3/5> [(Te + Ti)/Te]s/lol\t_l/s(A//\n)3/522/58_2/5
kLps ® (po/ L)/P((Te + T0) [T 1PONT P AT3/5( 2/ )P /1063130 (29)
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1/5

kJ_LTe ~ (Te/Te)—l N (LAR)‘%ZZ/pSA) [Te/(Te + Ti)]1/103—1/5

Xe ™~ Pscse(Ps/L)l/s [(Te + Ti)/Te]1/10’\;2/5As/s()‘nz)*z/sgl/s

Here, \; = Te(s = 0)/Te(34), An = n(s = 0)/n(sq), and unsubscripted temperatures are
evaluated at the sheath. In these expressions, 6 ~ const. for § € 1 and  ~ § for 6 > 1,
and § ~ A=3/2Tyy /T,

These results show the self-consistency of our assumptions viz: kp; < 1,kLp. > 1.
Further the diffusion is quite high, e.g. the thermal diffusivity in Eq. (29) is reduced only by
a factor (ps/L)}/®AS/5 from Bohm; in fact, when numerical factors are taken into account
(including the usual factor of 1/16 in Bohm diffusion), the diffusivity can be comparable
to or exceed Bohm. The scale lengths in the scrape-off layer can then be many ion La;mor
radii thick even with a rapid axial loss. -

If we include recycling, the particle axial lifetime is increased by a factor of (1- ':)_/.r)"l
over the estimate given above, and we would expect L, ~ (1 — 7,.)'1/ 2L if Yr, Were
constant. If we account for the temperature dependence of v, then ~, varies on the same
scale as T, and hence we would expect to see a density variation on the same scale as the
T, variation.

Restoring numerical constants, retaining all T, terms in Eq. (15) (but neglecting Ty
and Tr., and also introducing radiative loss as a fixed multiple of F}. of the input power (and
assumed distributed in radius in proportion to the energy end loss), we find in particular
that

oy _[xa (nTe) L 1-F, 3/10
Lre(em) =Ly = 2 nT(sq) Gs(sa) A+ [2/(1 — Yse)] + vrfo /(1 + ¥si)

(30)

where x1 = Xmi(LTe = lcm) in cm?/sec.
These results are also demonstrated in the following quantitative calculations, done

for a limited plasma (L = const). We solve the following model equations in the scrape-off

layer:
g 0 0 2nvy
—) = ), — 1
" = 8256z L (31)
30 30 0 2nv ) )
55{7’1.,11] = aa—mxa—anJ - TfagJTJ s ] =€t (32)
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where vf = [(;T; + a.Te)/m;]}/? is an effective flux velocity, and ag; and «; are co-
efficients which depend on the flux model. The diffusion coefficient x is taken to be
x = ATM*(OT.[02)*/3 with A = FA"Y%(coeL/205) Peeep? /T with { = max(5/k?).
The value of § depends on §, and is 0.343 for |6] < 1, 0.52961/% for § > 1, and 0 for
6 < —1. We interpolate for § > —1 using the prescription:

. §+1
X~ 311 6/2)27% — 0.087

(33)

We plot, in Fig. 5, the stationary solutions of Egs. (31) and (32). We used the
following parameter values: T.q = Tj9 = 25 €V (here, the subscript 0 denotes the value on
the separatrix. z=0),L=20m, B=2T,A' =4, atomic mass = 2 and ag; = 2,ag. =
A +2,a; = a, = 1. We also plot in Fig. 5 the analytic stationary solution for T, for the

case n = const, T; = const, a, = 0, (the coefficient A is then independent of z,) which is
Tc = Teo(l - IE/(L‘())Z ) T S To (34:)

where zo = (9%p2y/age)?/ O (A'cae(0)L/vs)?/5.
These results show that, for the model, the density variation is in fact nearly as fast
as the electron temperature variation, while the ion temperature falls off more slowly.
_ Nevertheless, the analytic estimate for the electron temperature profile reproduces the
numerical solution fairly well.

An additional limit for which T,(z) can be obtained analytically is the case a; = 0,
which would apply if either T; < T, or if the electron-ion collisionality [neglected in
Egs. (32)] were sufficiently high to force Te =~ T;. In the latter case one would add the
electron and ion versions of Eq. (32) to eliminate the collisional equilibration term. The

solution in this case is
T, = Too(1 — /1 )0/ (35)
with z; = (9% /ase)*/1O(A'L/2)?/5.
Next, we return to the more general situation of diverted or limited plasmas and

look for a self-consistent scaling of parameters (temperatures, scale lengths, etc., but not

detailed profile shapes) as a function of a specified input power. This is akin to the
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calculations of Barr [16], but employing our physics-based thermal diffusivity expressions
(vs. Barr’s use of x. = const). |

Tokamak scrape-off layers typically have mean free paths comparable to the distance
along a field line to the nearest divertor or limiter. Consequently analytic expressions
based on either short- or long-mean-free-path approximations are marginal. However, as
long as the collisionality is large enough to justify the collisional form of the energy end
loss [Eq. (15)], then the collisionality enters only in the determination of A, the ratio of the
mid-field-line to sheath electron temperature. As Barr noted, use of the collisional parallel
heat conductivity yields the correct A; (i.e., 1) in the long-mean-free-path limit, and of
course is also accurate in the short mean-free-path limit, but is erroneous (underestimates
At)in betweén. Following Barr, we account for this by employing collisional equations with
a reduced thermal conductivity (1/2 the collisional value) for the case of interest where
the mean free path is comparable to the system length. |
| The goal of this analysis is to solve for L, Teo, T;s, and A, in terms of the input
power P and the mid-field-line density. The equations to be solved are conservation of
energy continuity of perpendicular heat flux across the separatrix, the parallel heat con-
duction equation (modified as discussed above), and an equation relating the pressure at
the sheath to the mid-field-line pressure. We also follow Barr in assuming rapid electron-
ion equilibration at least near the pre-sheath and so take T,y = T34. The analysis which
follows applies to single-null or double-null divertor configurations; for double-null, the
analysis applies separately to the inner and outer scrape-off layers; P is then the power
emerging into the SOL under consideration. |

We assume that the power entering the SOL is that crossing the'separatrix. Then-
energy conservation implies that, in steady state, the input power equals the sum of the
energy end-loss flux integrated over the width of the scrape-off layer plus the power radi-

ated, or of the field line (the collisional flux at the end of the field line must equal the heat

flux crossing the sheath) implies
PB(1 — F;)/4nRByo LT = (nTés)an (36)

where 7 is the multiplier of 7' which giveé the energy removed per escaping e-i pair [in
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the absence of secondary emission and recycling, n &~ A 4 3; more generally, see Eq. (15)],
and F, is the fraction of the input power radiated in the SOL. As before, the subscript d
denotes a value at the sheath while the subscript 0 denotes a mid-field-line value.

Continuity of the radial heat flow across the separatrix implies that
P =27 RxnoTo({Bp) /Bpo)Lpot/LTe (37)

where Ly, is poloidal length of a SOL field line. Note that eliminating P between Eqgs. (36)
and (37) and solving for Ly, yields an equation effectively equivalent to Eq. (30).
Finally, the connection between input power P, temperature, and parallel heat flow is .
made via the classical heat conduction equation, integrated along the magnetic field line.
Following Barr, we assume that the heat source on a field line can be approximated as

localized at the middle of the field line. Then the classical heat-conduction equation yields
o [T/ = TIf?) ~ (1/4)(1 = Fr/2)LyPB/4nRByoLre (38)

We supplement these equations by the assumption that the pressure at the sheath is
a fixed fraction fp of the mid-field-line pressure.

We solve Egs. (36) and (37) for Teo and L. in terms of A, using the form for x given
by Eq. (23). We obtain the scalings

Lre(cm) ~ 0.5(AN' 1/ [(1 = F.)B/Byon]*/** ((Bp) GLyot/ Bpohe)/*(Ly /2)!/*2

(P/nisR)® [Bfp(1+70)) /7 (39)

Teo(eV) % T8AY° [B/(1 + 12:)fp]'/* (1 = Fr)B/Bpon]"* Xi”

(Bpo/ (Bp) Lyt G)/*(Z/ L) A'721° (P [r1g R)*/° (40)
where A is the atomic mass. Here all lengths are in meters except for Ly, and B is in
Tesla. Since, in obtaining these results, we have approximated the two-dimensional SOL
equilibrium by a essentially a point model, the numerical values should be interpreted as

radially averaged values.

The equation for \; is then obtained by substituting Eq. (40) into Eq. (38),

7/12 49/36
FeAI2(1 = 277/%) 21.05 x 1074 1ogxl—f—22ﬁz-7/36 <GLpo,gl) <1Tnf—>
p0 r

<(1 + 7si)fp)7/6 (A/)7/9 <L||n19R>43/36 A—19/45 (El’ﬂ) /e (4]_)
B P B
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where fx is the factor by which parallel heat conductivity is to be reduced to account
for finite mean-free-path effects (1/2 for our applications), and Z.g is the effective atomic
number )7 n;Z7/ 3 n;Z; (which is distinct from Z, which is to be interpreted as the
average ionic atomic number as discussed at the end of Sec. III). We solve Eq. (41) by a
numerical root search procedure. A simple scaling can be obtained by dropping the A; 7/
term, but this is usually not justified for typical SOL parameters (as the mean free path
is comparable to Lj).

We conclude this section with a note of caution on the use of Egs. (39)—(41). Because
our expressions for x are still primitive, missing, among other things, details of the field-
line geometry, we have not attempted to include in the derivation of the scaling equations
the detailed geometrical factors retained by Barr [16]. Hence, while we would argue that
the scaling dependencies are significant, the numerical values must be regarded as rough
approximations.' Another problem is that the parameter GG is not a constant, but rather

depends on the temperature and L., and so should be self-consistently determined as the

scaling laws are evaluated.

VII. Application to DIII-D and ITER

We evaluate the expressions derived in this paper for nominal DIII-D and ITER
parameters. For DIII-D with a nofninal set of paremeters typical of experimental operation,
Te(sq) = 17 €V, Lre = 1.2 cm, Zesr = 3, Z = 1.5, (1 + v5i) = 1.5 and § = 1, we find
that K7 ~ 1.7 and hence, from Fig. 4 [or equivalently, from the solution of Eqs. (24) and
(25)] that G = 1.3. (For Z = 1 we would have K7 2 1 and G ~ 2). Therefore Eq. (23)
predicts xm: ~1 m?/sec. Note that finite k effects are significant, lowering the mixing-
length diffusivity by a factor of almost two. If we consider a broader range of parameters
Te(sq) ~ 10 - 25 eV, Ly, ~1 - 2 cm, we find xm1 = 0.3 — 3 m?/sec. For our nominal set,
we also find that at the maximum growth rate, Re /27 ~ 40 kHz, and, according to the
remarks made following Eq. (26), we expect a broad spectrum extending largely downward
from there, roughly in agreement with experimental observations[17]. If we evaluate Eq.
(30) for DIII with our nominal parameters (except L7.) and f, = (nTe) /nTe(sq) = 2,

F,. =0.35, vs¢ = fz = 0, we obtain we obtain L7, & 1.1 cm, again in approximate accord
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with experiment. Finally, if we estimate T, Lt., and A; in terms of input power from
Egs. (40)-(41), we obtain To ~ 84 ¢V and Lt = 0.8 cm, and A; ~ 6.3 for P = 2 MW. The
other parameters involved are R = 1.6 m, L ~ 40 m, Ly, ~ 8 m, B/B, ~ 6, nyy = 2, and

(Bp) /Bpo = 0.5, and B =2 T.

In applying the results to ITER, there is uncertainty in the choice of G. For ITER
parameters, 7 is large enough that several k| harmonics have appreciable growth rates,
and, for each, Im Q0 /Re€d, is small (~ 0.1 — 0.2). In the absence of a detailed nonlinear
theory, it is unclear how to best estimate the transport. One can construct arguments for
estimates ranging from summing v/k? over parallel harmonics to taking the largest single
v/k?* and reducing that by (y/ReQ)'/2. If we adapt the first (higher-x) estimate and
apply the scalings Eqs. (40)—(41) to parameters representative of the ITER Conceptual
Design Activity (CDA) [4], we obtain Ly, =~ 1.9cm, T, ~ 145eV, and A\; = 1.05 for
P =17MW, R=6m, B=48T, L ~130,m, Lyoi = 14.5m, B/B, = 2.9, F, = 047,
nig = 3, Zex = 2, Z = 1.2, and (Bp) /B, = 0.32. These parameters are consistent with
K7 =~ 5.4 and hence, from solutions to Eq. (24), with G = 4, which is used to obtain
the above results. For this K7, three kj harmonics (the § = 7/2, 37/2 and 77r/2 modes)
contribute at an appreciable (> 10%) level or greater; we keep these three in the sum
to calculate G. Alternatively, the lower-y estimate described above gives G = 0.8 and
hence Ly, = 1.2cm., T =~ 160eV, and \; = 1.04. The ITER CDA has a double-null
divertor design. These calculations assume that essentially all of the power goes into the
outboard SOL, and the calculation is for the width of that SOL. If we assume a more
even split and assign 110 MW to the outer SOL, the scaling equations with G = 4 yield
L = 1.7cm, Ty =~ 102€V, and A; = 1.25. This illustrates that the SOL width is predicted
to increase with increasing power, in contrast to the constant-y model considered by Barr
[16]. Note that Ly, for ITER is one to almost two times that for DIII-D. This conclusion
is significantly more optimistic (less heat flux density on the divertor plates) than those
obtained (e.g., in Ref. 16) assuming a constant y.. Finally, we comment that, if we were
to model a single-null ITER by doubling L and Lo but keeping all other parameters the

same, K would increase to about 8, increasing the relative role of higher-kj harmonics.
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VIII. Summary and Discussion .

We have extended the theory of Berk,— Ryutov and Tsidulko [1,2] and demonstrated
that the instability they describe should be important in tokamak scrape-off layers. The
extensions include an eigenmode equation derived from two-fluid theory which allows more
careful calculation of finite k) effects and explicitly displays the transition between the
low-f electromagnetic and electrostatic regimes (at k3 c? /(.ul,%;2 ~ 1), addition of secondary
electron emission and recycling, and an extended discussion of nonlinear effects.

The open-field-line region of a tokamak typically consists of two different regions: a
thin scrape-off layer (SOL), energized by the heat escaping from the core plasma, and
a more extended halo, fueled and powered by local sources. The electron-temperature-
gradient-driven turbulence described in this paper can operate in both regions, although
the drive is considerably higher in the thin SOL. The transport analysis described in
Sec. V applies only to the SOL. In equilibrium, the electron energy end-loss rate exceeds
that for ions (for Teq X Tiz) because of the effect of the sheath potential, while both
exceed the particle end-loss rate, because of the effect of recycling. Hence, apart from
differences between the electron and ion thermal diffusivities and the particle diffusion
coefficient (which cannot be resolved at the level of the present theory), we would expect
L7e < L7i < Ly, though not by large factors; roughly, Lre/Lri & A~/%, and L7;/Ln ~
(1.—~,)!/? if the recycling coefficient is treated as constant. If temperature dependence of
the recycling coefficient is included, the density scale length is likely to be dominated by
the scale length of the recycling coefficient, in which case we might expect L, = Lre.. We
furthermore see that the predicted L7, values based on our transport analysis and using
our derived diffusivities are comparable with those observed in experiments (around 1 cm
for DIII-D [18]. The halo region is dominated by local sources; hence profile scale lengths
cannot be determined without a more detailed description of these sources.

Based on the linear analysis, we expect that #/n, T./T., T;/T; and ed/ T, should be
approximately in the ratio 1/L, to 1/Lye to 1/Lr; to Q/wip,Lre, respectively, and they
should all be roughly in phase. In the core-energized scrape-off layer, we would expect to
see /T, > T./T. 2 #/n > Ti/T;, where we have assumed temperature dependence to

the recycling coefficient as in the preceding paragraph. In the halo, the inequalities could
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shift because of the effect of local sources. Since, for example, in DIII-D, Ly, appears to
be smaller than L, in the SOL but larger than L, in the halo [18], we would expect 7i/n
and T, /T. to be oppositely ordered in the two regions.

An important implication of the theory is that it predicts larger scrape-off-layer widths
than models based on extrapolation of present experimental data using a constant thermal
diffusivity. This is primarily the result of the fact that our diffusivity has a significant
scaling with the electron temperature at the sheath (o T:' d/ ? in the flute limit). This
parameter is considerably greater in a reactor than in current experiments, both because
the average temperature in the SOL is higher and because the collisionality is lower (so
that Teo/Teq is closer to 1). Finite-3, finite-ky effects may also contribute to an increase
in the diffusivity.

Based on the nonlinear consideration of an inverse cascade of wave energy, we expect
a spectrum extending downward in wavenumber and frequency from the most unstable
values, and a break in the shape of the spectrum around the most unstable frequency. For
nominal DIII-D parameters this is at about 40 kHz, in rough accord with observations [17].

The theory as presented is incomplete in a number of respects. Because, at the most
unstable wavelengths, k| L7, is a significant fraction of unity for typical SOL parameters,
the radially local approximation is marginal. An analysis of the radial differential equation
would yield information about both the effect of equilibrium variations comparable to
radial wavelengths within the SOL, and coupling to the closed-field-line region. Effects
of parallel gradients in equilibrium quantities in the bulk of the field line are ignored, as
are equilibrium current flows. While magnetic shear should not be as important in the
open-field-line region as on closed field lines, one still has field-line fanning effects which
introduce axial dependence to &k, which can quantitatively affect the mode. Nonlinear
effects are dealt with only at the most primitive level. Finally, the analytic work should
be complemented by fluid and particle simulations. These will be addressed in future

publications.
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Appendix

We derive here the maximum growth rates which follow from Eq. (24) for large K.
We consider first the ¢7/2 modes. We observe that, for large K7 and nearly real 8({2),
where 6(Q) = kyL/2 is the argument of the tangent function, T becomes small except
when 6 becomes close to ¢7/2 where £ is an odd integer. Hence there are roots of Eq. (24)
with O ~ k, and the growth rate will be maximized for k such that k| ~ ¢n/2. Hence
we write O = Qo + Q with Qo = k, and expand the tangent about § = £r/2, writing
tan @ ~ [—05Q)~1, where 85 = 96/ 9. With these approximations we can solve Eq. (24)
and maximize the growth rate over k to obtain

1

& 3/2 1-—5/2
Qem = (=14 2)(€r/2)"" K [2 4 6]1/2(1 + 6)1/4

(A1)

and kem = 0(m/2) K7 [1/(1 + &)Y/

Note, however, that higher ¢ are more unstable (although the mixing-length diffusivity
decreases with £ as £~1/2). In fact, for any K7, when £ ~ K7, then the perturbation
expansion, which was based on treating Imf# < 1, fails. For { ~ Kp, we note that
Im Qo ~ K,;l. We can look for shorter-parallel-wavelength solutions by making the
opposite approximation, s.e. that Imé > 1. In that limit we can approximate tanf ~

i[1 — exp(216)]. Then we can split Eq. (25) into its real and imaginary components,

6,2 +2 6,2 sin(26,) exp(—26;) — 8—- =0 (A2)
K2 TR k2
0, Qi
- T = = ) ‘ A
K2 + i 0 (A3)

respectively, where 6, and 6; are the real and imaginary parts of 6, and similarly for Q. If )
we now restrict attention to the case § = 0, then 6 = KTQ, and we can explicitly solve
Eq. (A3) to obtain Q, = Krk/(K; + k?). We note from Eq. (A2) that Q; increases with
Q,, and, from the expression we have just obtained, {1, is maximized as a function of k
when k = IxT/ , in which case Q, & K ’1/ ? /2. This is large for large K. Hence, in the
vicinity of the maximum (of both real and imaginary parts of Q), and when the sine in

Eq. (A2) is positive and not near zero, we can write
Kl ~ (1/2) (1n(KTQ,) i In(Kr$,) + 1n[sin(2KTQ,)]) . (A4)
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The maximum growth rate is thus Im Qm ~ (3/4)K7! In Kr. Note that this maximum
growth rate is in fact a decreasing function K7, while the corresponding wavenumber is
becoming large; hence the mixing-length diffusivity is decreasing as In K7 /K%

Finally, we consider the “high-wavenumber” modes for which Re§ ~ Im@ ~ 1. For
these modes, k ~ K2, and Q ~ Kz for § = 0 and Q ~ §1KZ® for 6§ # 0. Hence the
second term in Eq. (24) is smaller than the first or third by O(K5?) and 6§ K5° for § =0
and 6 # 0, respectively. Once the second term is dropped, J{7 can be scaled out of Eq. (24)

by introducing £ = K 2f;. Hence we obtain
¢*tanf —i/k=0 . (A5)

There is a series of roots corresponding to different branches of tan™!. For § = 0, we
have § = K7€ thus maximizing the growth rate is equivalent to maximizing Im . the

~J

first three such modes are, after maximizing the growth rates with respect to &, 0, =
(1.042 + 0.6013%) at kK, = 0.6616, 6, =2 (3.9893 + 1.02874) at kK = 0.2353, and 6,, =
(7.1032 + 1.2271) at &m = 0.1371. The growth rate appears to be a weakly increasing
function of mode number, a trend continued for at least the next two modes beyond those
just given.

~ For § #£0, 6(Q) is given by the right-hand side of Eq. (25); for large K7 (formally,
6[(;/ 2> 1), we find that ) ~ g2 /6K3k. Hence, in this limit, Im§ is maximized by
maximizing Re(§)Im (§)/x. We find that the growth rate is maximized for k — 0, in
which limit § — (7/2)(1 + ix). Note that we are not free to take the limit x — 0 for
finite K as this invalidates the neglect of the second term in Eq. (24). Hence we cannot
infer, from this analysis, km and Re{Qm. The limiting expression for 4 is well-defined,
and is A = 72 /26K%. We immediately deduce that this root is distinct from the first
of the £7/2 modes, as it has a different growth rate. We have identified both /2 modes
from numerical solutions of Eq. (24), and observe that the “high-wavenumber” mode in
fact has higher wavenumber k. (See, for example, Fig. 4.) The next two modes have
maxima which distinguishes them from the £7/2 modes; maximum growth occurs for
6 = 4.549 + 0.72474, x = 0.1385, and § = 7.563 + 1.044¢, « = 0.1066, respectively. The

corresponding frequencies and wavenumbers Oy and b, are O = (145.6+47.612) /61 I ,;3
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at k= 0.1385IV2, and O = (5264 +198.11)/6 1 K3° at fom, = 0.106617%, respectively.
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Figure Captions

FIG. 1. Normalized growth rate ¥ and real frequency Re ) vs. normalized wavenumber &

for various values of §.

FIG. 2. Variation with é of normalized frequency Qm, wavenumber l;m, and mixing-length

diffusivity Qm/ l:f" at the maximum growth rate.

FIG. 3. Finite-k effects for 6 = 0: (a) and (b) are fundamental k| root; (c) and (d) are
for first harmonic. (a) and (c) show Qp, vs. Kr; (b) and (d) show &y, and Ym k2 vs. Kp.

FIG. 4. Finite-ky effects for § = 1: (a) and (b) are fundamental k) root; (c) and (d) are

for first harmonic. (a) and (c) show Q., vs. K7; (b) and (d) show km and 4m/k2, vs. K.

FIG. 5. Solutions of model transport equations (31) and (32). (a) is T;/Ty0; (b) is n/no;
(¢) is Te/Teo; (d) is analytic solution Te/Teo from Eq. (34). -
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