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Abstract

A computational tool to be used in kinetic simulations of toroidal plasmas is being
developed. The initial goal of the project is to develop an electrostatic gyrokinetic
model for studying transport and stability problems in tokamaks. In this brief report,

preliminary results from the early stages of this effort are presented.
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I. Introduction

Gyrofluid and gyrokinetic models are emerging as two powerful tools for studying plasmas
in present and future devices in the magnetic fusion program. Many successful examples
of these approaches and their application to the study of transport in tokamaks have been
presented at this workshop.! %3 This brief article summarizes our efforts, at this point more
pedagogical than investigative, in developing a tool for kinetic simulations of toroidal devices.
The following sections present results from our evolving computational model, starting with
full dynamics electrons and ions, and ending with a drift kinetic description of electrons

using “low-noise” techniques.

II. Full Dynamics Particles — Nonmagnetized Plasma

-

As a starting point, an electrostatic model with unmagnetized particles, but with the full
geometric effects of a toroidal geometry is chosen. Motivated by a desire to work in a
system that is most appropriate to the task at hand, a mixture of coordinate systems are
used (Fig. 1). Particles are pushed in an (z,y, z) Cartesian coordinate system; gather/scatter
operations are performed in the toroidal (r, 8, () system, where r is the radial coordinate, and
6, are the poloidal and toroidal angles, respectively. A mixed (r,m,n) system, where m,n
are the poloidal and toroidal Fourier mode numbers, respectively, is used when solving for
the fields. Transformations between (z,y,z) and (r,8,() systems involve simple rotations.
Fast Fourier Transform (FFT) routines are used for transformations between (r,4,() and
(r,m,n) systems. The three-dimensional weight functions for the particles are taken to be
tensor product of one dimensional splines: S(r —r;) = S;(r —r;)Se(6 — 6;)S.(¢ — (;), where
S,, Sp, and S, are 1D splines of up to 5th order.* These higher order splines are being tested

for their low noise characteristics and their ability to reduce aliasing errors.
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-

In early tests of various parts of the code, such as gather/scatter routines, and the
Poisson solver, a rather artificial distribution of particles is used as in initial condition: Cold
electrons and ions are uniformly distributed in two concentric rings, as shown in Fig. (2a). In
cylindrical geometry with poloidal and axial symmetry, the inner ring composed of electrons
is expected to expand in radius very rapidly, pass through the outer ring composed of ions, get
reflected by the circular wall, and eventually collapse to nearly its original size. In the absence
of any symmetry breaking errors, this process is expected to repeat itself until collisional

damping between the electrons and ions slows down the rapid radial oscillations of the

electron ring. Note, however, that the system is highly unstable; any perturbation of either

ring will prevent the symmetric collapse of the electron ring to its original configuration,
causing the electrons to fly apart in essentially random directions. The highly unstable nature
of this electrostatic system makes it particularly useful as a diagnostic tool. Figursg 2(a~f)
show the two rings at various points during one cycle of this process. Also showni are the
radial profiles of the electrostatic potential at the given times. For this test run, sofne of the
relevant parameters were as follows: N (the number of particles) = 6400, T, =T; =0, and
m;/me = 100. A 32 x 16 x 16 grid was used. The order of the splines were 3 x 5 x 5 (radial,
poloidal, and toroidal directions, respectively). Figures 3(a,b) show the time histories of
the electric field and kinetic energies in the system. Three complete periods of the radial
oscillations of the electron riﬁg are shown; note that the ions are essentially stationary on this
time scale. The minima in the electric field energy occur when the electrons pass through
the ion ring, twice each period. The local minimum in the kinetic energy occurs during the
electron ring’s reflection by the wall; the absoluté minimum occurs when the ring collapses
down to its minimum radius. If there are any symmetry breaking computational errors, the
ring is lost during its first collapse; thus, survival of the system for three complete cycles

validates various components of the electrostatic, unmagnetized model.



III. Full Dynamics Particles — Magnetized Plasma

For a magnetized model, an important issue is the code’s ability to follow particle trajectories
in a toroidal.magnetic field. Since the tests performed in the previous section effectively
checked the response to collective effects, here results from a number of single particle tests
are presented. Figure 4 demonstrates the ability of the code to accurately follow the toroidal
particle trajectories, and to deal with the coordinate singularity at » = 0 and the boundary
conditions at the circular wall. Figure (4a) shows a banana orbit, the projection onto the
poloidal plane of a trapped particle orbit (with parameters deliberately chosen so as to
make it resemble an m = 1 island!). Figure (4b) shows a similar orbit that passes near the
coordinate axis, 7 = 0. For the same orbit, time history of the canonical angular momentum,
pc = m;q;ve + Qeqjtp, where ¢ = gA¢, and g = 1 + err cos @, is shown in Fig. (4c); maximum
relative change in p; is approximately 0.7% for this particularly sensitive orbit passing near
the origin. Finally, Fig. (4d) shows the behaviour of a particle that drifts into the wall and
then bounces along it. The boundary conditions applied are those of Naitou, et al.,” which
involve reflection of the components of the velocity normal to the magnetic field.

More out of curiosity than for its diagnostic value, the “ring dynamics” of the previous
section is reexamined in the presence of toroidal and poloidal magnetic fields. Not sur-
prisingly, it is found that the fields do confine particles, as the radial oscillations of the
unmagnetized electron ring are not observed here. Unfortunately, although the electron ring
survives for quite a bit longer than in the unmagnetized case, it is still eventually destroyed,
this time by an apparent instability driven by the E x B rotation of the ring.® Figure 5
shows the rings and the radial profile of the electrostatic potential at various times during
the development of this instability. The calculation was performed in a torus with e = 1/3;
a 32 x 16 x 16 mesh, and 3 x 5 x 5—order splines were used. Some of the other parameters

were: N = 25600, m;/m. =100, T; = T, = 0, and w,, = 2, = 1.



IV. Drift-Kinetic Eléct_rons

The next logical step in the development of a practical computational tool for studying
stability and transport in toroidal devices seems to be the removal of time and spatial scales
associated with the electron gyromotion by using a guiding-center description of the electrons,

where the particle orbits are determined by the following equations, suitably normalized:

dx ~
Pl LEACRE .
w2 BxV¢ 1 m[uB ,] BxVEB
Vp = S_zpe —BZ + ﬁ: ? [F 'U”:| ——BS 5 and (2)
dv
m Tt” =wl,q B —muVB . (3)

The resulting system is solved with a commonly-used modified Euler scheme.” Figure 6
compares a test-particle guiding center banana orbit (solid line) with that of a full-dynamics
electron. The agreement is quite good; the small discrepancy near the turning points can
be attributed to the fact that full-dynamics electron samples a finite volume of space with
a varying magnetic field, which becomes significant when v ~ 0 (an FLR effect). Further

comparisons are made in the next section.

V. Implementation of the éf Algorithm

The full-dynamics and the drift-kinetic models of the previous sections have also been formu-
lated in terms of the low-noise “6 f” algorithm.® ® For this purpose, the drift kinefic equation

is written in the form

G0 Gy ypy O B OF

Ox dt av” =0. ) (4)

Then letting f = fo + 6f, where fy is chosen to be a local Maxwellian, the nonlinear



equation for §f can be put in the form
d (6] 5f)] [wze g u
—|=1=]1 — =~vjEy+ — vg-VB}| , 5
dt(ﬁ)) [+<f0 e A (5)
where vg = (w2,/€0)B x V¢/B?. Equation 5 is solved along the characteristics defined by

Eqgs. (1)-(3). Note that at this stage, both density and temperature gradients are ignored.

Similarly, the following nonlinear equation is obtained for the full-dynamics ions

d (of\ of wge q
E(E)'[”('ﬁiﬂ i, m B ©)

which is solved along the usual characteristics given by dx/dt = v, and dv/dt = ¢/m (w2, E+

Q.v x B).

The resulting equations for both electrons and ions are again time-advanced with a
predictor-corrector scheme.”

The time evolution of the electric field and kinetic energies from three different models
are presented in Fig. 7. The calculations are done in a torus with e = 1/3; again a 32x16 x 16
grid with 3 x 3 x 3— order splines are used. The number of particles per cell is approximately
one (N = 9968), and wype = Q. = 1, m;/m, = 100, and At = 0.4. The initial distribution
function is a Maxwellian with uniform density and temperature. The results in Fig. 7a are
from a model with full-dynamics electrons and ions, where the particles are advanced with a
leap-frog scheme. The same calculation is repeated in Fig. 7b with the § f algorithm. As it
is commonly observed with this low-noise technique, the fluctuation energy is many orders
of magnitude lower than in the conventional approach. Finally, in Fig. 7c, the 6 f algorithm
is applied to drift-kinetic electrons. The full-dynamics calculations (Fig. 7a,b) exhibit a
slow, linear increase in the kinetic energy over time (usually labelled “self-heating”). The
filtering techniques that prevent this process!® have not been implemented yet. An opposite
problem occurs in the guiding-center calculations that use the modified-Euler scheme; the
slow “cooling” observed here (0.2% over 5000 time-steps) is probably due to the slightly

dissipative nature of the two-step predictor-corrector algorithm.
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VI. Summary

Preliminary results from an evolving series of kinetic models of toroidal particle simulations
are described. Starting point is a full-dynamics, electrostatic model that follows the gyro-
motion of both ions and electrons in toroidal geometry, with a zero-f§ toroidal equilibrium
field. The progress to date includes a guiding-center electron model that treats both species
with the low-noise §f algorithm. Work is underway to include density and temperature
gradients in the equilibrium, and to implement a gyrokinetic description of the ions. The
immediate géal of the project is the development of an efficient electrostatic gyrokinetic

model that can be used to study transport and stability in tokamaks.
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Figure Captions

1. The Cartesian and toroidal coordinate systems used in the calculations.

2. The evolution of the unmagnetized electron and ion rings in cylindrical geometry. The
radial profiles of the electrostatic potential are also shown at the given times. This

highly unstable system is used in testing of gather/scatter and field-solver routines.

3. Time history of the electric field and kinetic energy during three periods of the radial

oscillations of the electron ring.

4. Test particle orbits: a) and b) show banana orbits with different initial conditions. c)
shows the time history of the toroidal canonical angular momentum for the orbit in
b), which passes near the coordinate axis, 7 = 0. d) shows the orbit of a particle that

drifts into the wall.

5. The evolution of the magnetized rings in toroidal geometry, showing the eventual break-

up of the electron ring due to a diocotron instability.
6. Comparison of banana orbits traced out by full-dynamics and guiding-center particles.

7. Time history of the electric field and kinetic energies for three different models: a)
Full-dynamics ions and electrons, b) full dynamics particlés with the éf algorithm, ¢)

drift-kinetic electrons with the 6 f algorithm.
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Fig. 1
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