INSTITUTE FOR
FUSION STUDIES

DOE/ET-53088-564 IFSR #564

Particle Simulation Algorithm with
Short Range Forces in MHD and Fluid Flow

S. CABLE, T. TAJIMA, and K. UMEGAKI
Institute for Fusion Studies
The University of Texas at Austin

Austin, Texas 78712

July 1992

THE UNIVERSITY OF TEXAS

'AUSTIN

SHORT COMMUNICATION

Particle Simulation Algorithms with
Short-Range Forces in MHD and Fluid Flow

S. Cable, T. Tajima, and K. Umegaki
Institute for Fusion Studies

The University of Texas at Austin
Austin, Texas 78712

Abstract

Attempts are made to develop numer:ical algorithms for handling fluid flows in-
volving liquids and yliquid~gas mixtures. In these types of systerﬁs, the short-range
intermolecular interactions are important enough to signiﬁca.ﬁtly alter behavior pre-
dicted on the bésis of standard fluid mechanics and magnetohydrodynamics alone. We
have constructed a particle-in-cell (PIC) code for the purpose of studying the eﬁ'ects of
these interactions. 'Of the algorithms considered, the one which has been successfully
implemented is based on a MHD particle code developed by Brunel et al.In the version
presented here, short range forces are included in particle motion by, first, calculat-
ing the forces between individual particles and then, to prevent aliasing, interpolating
these forces to the computational grid points, then interpolating the forces back to
the partivcles. The code has been used to model a simple two-fluid Rayleigh-Taylor
instability. Limitations to the accuracy of the code exist at short wavelengths, where

the effects of the short-range forces would be expected to be most pronounced.

I. Introduction

Fluid dynamics and magnetohydrodynamics (MHD) have been studied quite often through
the modern techniques of computer simulation. There have been a large number of research
and review papers on such methods.

Nevertheless, very few attempts have been made to include short-range interactions in
dynamical fluid or MHD computation. Phenomena arising from these interactions include
liquid-like behavior such as surface tension and consequent droplet formation. The short- -
range forces tend to be quite intense at molecular distances but carry almost no influence
beyond these distances. For example, at the interface of a liquid and gas, the surface tension
arising from the short-range forces can maintain the density of the liquid at values many
times greater than the density of the adjacent gas. It is this severe discrepancy of scales in
density, arising from the quick fall-off in strength of short-range forces with distance, that
makes stiff demands on computational models. Moreover, typical fluid simulation techniques
employing a continuum model may face difficulty (or, at least, awkwardness) in treating the
boundaries between gas and liquid phases when the boundary can rapidly change.

One commonly used technique involves removing the advective nonlinearities in the fluid
equations by following the characteristics of moving fluid elements [1-4]. This technique
is equivalent, in principle, to following a model macromolecule (or plasma particle) that
posesses appropriate properties such as mass and momentum as well as perhaps some inter-
action properties.

It behooves us to consider a computational model which includes short-range forces to
model liquid behavior, as this model perhaps allows natural tracking of freely changing
boundaries of different phases. Applications may include not just the mixture of a liquid

and a gas but a wider range of multi-phase fluid sytems, such as admixtures of oil and water.

II. Adiabatic Fluid Algorithm

We have constructed a PIC code for the purpose of studying the effects of short-range,
intermolecular forces on fluid and MHD flow. Here we present the algorithm we have used.
We also present two other algorithms which can, hopefully, be helpful in overcoming timescale
problems.

The algorithm is based on an adiabatic MHD particle code developed by Brunel et al. [5].
In this algorithm, computational particles carry mass and momentum. Fluid quantities such
as pressure, density, and fluid velocity are intérpolated from the particles to a computational
grid. In return, these quantities are used to construct fluid forces which are interpolated
back to the particles and used to alter the particle velocities.

The algorithm works as follows:

(1) Fluid density is computed: p"(x) = 3, Spu(x" — x;) where Sy, is the interpolation
function and the sum is over all particle positions within some predetermined distance from
the cell at x.

(2) Pressure accelerations are calculated, as well as magnetic accelerations, if we are

studying MHD flow:

¥y, =—=Vp"/p", where p=po(p/po)" (1)
Fg = ((VxB") x B)"/4rp™ . (2)
(3) Fluid accelerations are interpolated to particle positions':

Fp = Ty Spu(x™ — x3)(Fp, + F%) where the sum is over all grid cells within a predeter-
mined distance of the particle p.

(4) Short-range accelerations are calculated for each particle:

Fro= SOF,(xF —x7) . (3)

These accelerations are then interpolated to the grid cells and then back to the particles. In

our particular code,' the accelerations were calculated by a PPPM method [6]. Effectively,

at each time step, particles are assigned a “box” based on thier positions. The box size is

comparable to the range of the short range force. When pair-wise interactions are calculated,

only particle pairs in the same boxes, or in nearest neighbor boxes, are considered as possible

candidates for interactions.

(5) Particle velocities are advanced by a half time-step:

At
vh =il - (Fp +F5,) .

n

(6) New fluid velocities are computed by interpolation: v} = ¥, Spu(x — x,) V5.

(7) The magnetic field is advanced a half time-step using a Lax method:
At
B2 = (B") + ~(V x (v} x B")

where (B”), . = (B}, ; + B}, ; + B}, + BF;_,)/4.

(8) Particle velocities are advanced another half time-step:

Vit = yn g —2—(Fp +Fy) 4+ v(vi—vp)

where v is an arbitrary constant ranging from 0 to 1. v = 1 prevents multi-streaming.

(9) Particle positions are pushed a half time-step:

n+1/2_A_t .

n+1/2
x 2

=x"+vVv
(10) New fluid velocities are calculated by interpolation:
V}z+1/2> — Z Spv(x _ Xp)(V"+1/2,X"+1/2) .
P
(11) The magnetic field is pushed a full time-step, completing the Lax scheme:
B = B" + At (V x (v} x BH1/2))

4

(12) The algorithm cycle is completed with the final advance of the particle positions:

xnt+l — X'n+1/2 +Vn+1/2_é;_t . (10)

Initially, an attempt was made to add the short range accelerations directly to the particles
in step (4). This approach had to be abandoned because of problems with spatial aliasing
of short Wa,velengtH fluctuations in the fluid quantities. The interpolation scheme acts as a
spatial low-pass filter on the short-range force effects.

In an effort to get past the limitation on timestep imposed by the sound sp.eed of the adia-
batic fluid described above, an alternative incompressible fluid algorithm may be considered.)
It proceeds thusly:

(1) Fluid density, velocity, short-rang.e forces, and magnetic field are calculated at each
grid point. This is done in the same Way as in the previous algorithm.

(2) Acceleration from the magnetic field and short-range forces are calcualted on the grid
points:

A% = ((V xB") x B)"/4np™ . (11)

(3) Preliminary values of the updated fluid velocities are calculated:

Ut = UM’ + AT9AE (12)

where A7 = A%, + A7,
(4) The velocity field is now made incompressible. This is accomplished by first solving

a Poission-type equation for the velocity potential ¢:
Vp™)y —~
v (vers Og) —v (13)

v

where the subscript ¢ indicates a quantity defined at the centers of the grid cells, as opposed
to quantities defined at the grid points, which are labeled by v. The velocity potential ¢ is

of physical significance in that it is proportional to the pressure divided by the density:
g = P

A AL . (14)
Pe

)

Uy is now calculated by

U =T; - (w: + ——(V”")wz) . (15)

(5) The magnetic field is advanced to its preliminary values:
B* = (B) + 5LV x (U} x B), (16)
where (B“)M = (B, + B, +B +BY_)/4.
(6) The fluid velocities are advanced to the next timestep:
Ut = [Uy - (1-6)U3~")/8 . (17)
(7) Updated particle velocities are interpolated from the grid cells:
UpH? = U 4 Y (UH — U, (19)

where 5, is the function of interpolation from grid point v to particle p.

(8) The magnetic field is advanced to the next time step:
B™! = B" + At(V x (Ur1-% x B¥)) . (19)
(9) The cycle is completea by pushing the particle positions a full timestep:
xptl = x7 + ZUZ““’ . (20)

In our particular code, & was set equal to 1/2. The Poisson equation in step (4) was solved
by an SOR method [7].

An alternative third algorithm for introducing short-range force effects has also been
considered, though it is not yet implemented ina working code. Short-range forces are not
explicitly calculated. Rather, a surface tension fluid force is calculated wherever the fluid
density gradient exceeded some predetermined value €. In the physical equations of motion

of fluid or MHD flow, the surface tension force at a sharp interface is given by
Fr = oxnié(x — x,) , (21)

6

where o is the surface tension coefficient, and « is the local radius of curvature of the interface,
defined along with the unit vector i so that the force always points into the fluid from which
the interface appears concave.

To adapt this force to a fluid code mesh, we make the change

{-O‘ﬁ-Vﬁ if [Vpl > €

ok§(X — x,) = (22)

)
0 if [Vp| < e
where i = Vp/|Vp| and € is chosen beforehand. This method of handling surface tension
was developed by Brackbill, Kothe, and Zemach [8].

The algorithm proceeds in a fashion similar to the incompressible algorithm outlined
above, with two exceptions. First, as has been stated, short-range forces are not directly
calculated. Second, surface tension is included in the calculation of the preliminary velocities
U". This is accomplished by an implicit inner iteration scheme in which the continuity and
momentum equations are coupled:

R = —VU*® . R 05t + R
Ryt = Q- (VU* - Ri)06t + R™
o O.Rn+6
m o= A”;,————’”ilV-R”‘L”}GcSt-{—U"
H { I
ﬁ*n+9

_ n+8 n+8 n+6
m+1 — w(Um - Um+1) + Um—l ’

where

R=Vp,

\%

R :
Vol

1l

Q=RR-1I, (23)

and [p] is the difference in density across the interface and (p) is the average of the density

7

across the interface. Upon convergence, U = ﬁ;_ﬂ. The last two algorithms discussed

have not been successfuly implemented at this time.

ITI. Simulation of a Rayleigh-Taylor Instability

We implemented the first algorithm in a simulation of a two-fluid Rayleigh-Taylor unstable
system. The simulation code is two-dimensional. All distances were normalized to the grid
spacing A. All velocities were normalized to the sound speed ¢, = vpo/p where 5 is the
average mass density and po is an arbitrary physical pressure. Time was normalized to
At = A/c,. All mass was normalized to the particle mass. The computational grid size was
64 x 64. The timestep was At = 0.05.

The initial density profile was

p(y)=p1+p2+pz_p1tanh<y—_@> :

2 2 Ysize
where p; was the density at the bottom of the computational area, p, was the density at
the top of the area, yin¢ was the location of the center of the interface region, and ys,e was
the approximate thickness of the interface region. In our particular simulation, i, = 32,
placing the interface half-way between the top and bottom of the compuational area, and
Ysize = 4. p1 was three particles per cell and p, was 12.3 particles per cell. Particle positions
were initialized by first placing the particles in a series of horizontal rows. The z-direction
spacing between particles was kept constant. The y-direction spacing between rows was set
inversely proportional to the local density. Then, in each row of particles, alternate particles
were moved one half of the distance up to the next row of particles. This was done to keep the
particles in the thin region outside of one another’s range of interaction. The entire system
was made subject to a gravitational acceleration of ¢ = —0.057, and was stabilized by an
inhomogeneous magnetic field in the z-direction (i.e. perpendicular to the computational

area). Boundary conditions were chosen to be periodic at the z boundaries and reflective at

8

the y boundaries.

Outside of the interface region, the fluid velocities were perturbed according to

(cosh(ky)

—U. T~ int — Ysize 2

Vfp = sin(ka:) X < p(y) ’ Yint — ysize/2 <Y < Yint + ysize/2 (24)
COSh(k(ymax - y)) .
. in size 2.
\lesinh(k(ym—yim) , Y=Yty /
and

' inh(k
(-0.1 x° o (y) Y < Yint — ysize/2

" sinh(kyin)
Viy = COS(kIB) X q(y) y Yint — ysize/2 <Y < Yint + ysize/2 - (25)

sinh(k(Yemax — ¥))
sinh(k(Ymax — Yint)) ’

where p(y) and ¢(y) are second and third order polynomials respectively. These polynomials

01 X Y > Yint + ysize/z P

were chosen so that 1) the fluid flow would be initially incompressible in the interface region,
as it was in the rest of the computational area, 2) v, and 8,v, would be continuous at
Y = Yint — Ysize/2 and at Yy = Yint + Yeize/2, and 3) v would be continuous at ¥ = Yint — Yeize /2
and at ¥ = Y + Ysize/2. The above velocities were assigned as fluid velocities to the
computational grid points. Particle velocities were then initialized by interpolation from the
grid. |

For an initial test of the code; the short-range force on a particle 1 from a particle 2 was

chosen to be particularly simple, namely

_ . (x1 — x3)
n(7|[X; — Xg|/Teq) ————= : |xy — <2
F"(Xl _ Xz) = S1 (ﬂ-l 1 2[/ 6‘1) le _._ le) I 1 X2| Teq (26)
0 |x1 — x2| > 27, .

The value of r,, was chosen as . /P2 With this choice of a short range force, particle oscillation
periods would be on the order of 1.9 x A/c,, so they would not be too short for the time

step to handle.

The short-range forces could be expected to effect the system in a manner reminiscent of
surface tension, namely, reducing the growth-rate of the instability [9]. However, our prelim-
inary run of a 110 timestep simulation gave only ambiguous confirmation of this expectation
so for. A simulation was first run with the short-range force “turned off”. The growth rate
of the instability was calculated from the square root of the kinetic energy, which is plotted
as a function of time in Fig. 1. The kinetic energy followed a cosh(«t) type of curve at early
times. At the time that its growth became clearly exponential, it had reached a value of
about 21.75. The growth rate was 0.033 in simulation units. This is in the ballpark with

| the classical value of 0.054. (It should be noted that attempts to measure the growth by the
“bend” in the interface did not reveal a clear regime of exponential growth.)

A simulation with the short range force described above was also performed for 110
timesteps. When the kinetic energy began to grow in a clearly exponential manner, its value
was about 16.44, about 24% less than the value of the kinetic energy without short-range
forces. (See Fig. 2.) However, when exponential growth actually did begin, the growth rate
was 0.074, over twice as high as the growth rate without short-range forces. By the end of
the runs, the values of the two kinetic energies were comparable.

It might be thought that the added kinetic energy growth in the short-range force simu-
lation came from particles moving toward more stable local equilibria with one another. It is
true that the initial particle arrangement was not a true equilibrium. In a true equilibrium,
the dense region particles would be arranged in a hexagonal configuration with nearest-
neighbor particles separated approximately by the equilibrium distance of the short-range
force [10]. In contrast, the inital arrangement of dense region particles was square packed,
with nearest neighbors separated by 1/4/2 of the equilibrium distance. Of course, the par-
ticles pushing against one another would create a type of equilibrium, at least temporarily.
The truly problematic particles would be the ones near the interface. In order to keep the

interface density gradient small enough for the computational grid to handle, the interface

10

particles had to separated by distances greater than the equilibrium distance but less than ‘
the cut-off distance of the short-range force. This means that the particles near the interface
were strongly attracted to one another. This point needs further study.

However, it would appear that this non-equilibrium arrangement is not the source of the
added growth of kinetic energy. The square root of the kinetic energy plus the change in the
short-range potential energy is plotted as a function of time in Fig. 3. If the added kinetic
energy growth came from particles moving toward local equilibria, the short-range potential
energy would become more negative. Therefore, the kinetic energy added to the potential
energy would grow more slowly than the kinetic energy in and of itself. However, this is
not what happened. The kinetic energy plus the change in the potential energy grew much
faster than the kinetic energy alone. In fact, this quantity had its own range of exponential
growth; its growth rate was 0.65. In late times, this quantity drops off markedly, beginning at
t = 2.2. However, this does not explain the enhanced growth at early times. It might be that
the strong short;range force enhances the available free energy at the early (settling) stage
of the run. Note that the simple theory does not include this eflect so that our theoretical
knowledge is incomplete here. We most likely need a more appropriate form of short-range

“forces, which will be explored in the future.

IV. Conclusions

We have developed algorithms that allow natural treatment of multiphased fluid sytems
where short-range forces influence the dynamics in the fluid or MHD equations. A pre-
liminary implementation and its application to a Rayleigh-Taylor instability are reported.
This attempt is preliminary but, to our knowledge, is a new attempt to approach the above
mentioned problems that have been largely left unattacked to date.

The algorithm described here a;mounts to a “marriage” of a fluid algorithm and a molecu-

lar dynamics algorithm. It has been managed to some degree, but is not without its expected

11

problems. First and foremost is that, in a fluid code, short-range forces can be expected to
act similarly to surface tensions. However, surface tensions have their most dramatic effects
at short wavelengths [9]. It is precisely in such situations that the fluid algorithm fails. This
problem can be overcome to some degree by increasing grid resolution (and particle number)
at the expense of cornputiné time. Finding a more elegant solution to the problem must be
deferred to further research. The code does seem to perform well at long wavelengths, how-
ever. A second problem is related to timescale. It may be desirable to introduce short-range
forces with oscillation periods much shorter than the timescale of the overall fluid motion.
To avoid overly long computer runs, this problem will have to be dealt with by altering the -
algorithm, probably by introducing some type of implicit time stepping scheme.

Of the algorithms presented in Sec. 2, we have had success in implementing only the one
described here. Writing a code based on the third (continuous surface tension) algorithm
will be tried in the future. The second (incompressible) algorithm has not been successfully
implemented in modeling a Rayleigh-Taylor instability. In a preliminary attempt at imple-
mentation, a code based on this algorithm lost a substantial part of its kinetic energy in a 500
timestep run. This problem arose even with short-range forces “switched off.” Several minor
variations on the pushing of fluid and particle quantities were made to the code, none of
which returned significant improvement. Another incompressible algorithm has been devel-
oped, based on the Eulerian algorithm of Aydemir and Barnes [11]. It has exhibited similar
difficulties. The element common to both codes was the SOR routine used to isolate the
compressible part of the fluid velocity. Perhaps this routine is introducing artificial viscosity
into the fluid flow and needs to be replaced.

This work was supported in part by the U.S. Department of Energy contract DE-FG05-
S0ET-53088.

12

References

1. F.H. Harlow, in “Methods in Computational Physics” (B. Alder et al., Eds.), Vol. 3,
p. 319, Academic Press, New York, 1964.

2. R.W. Hockney and J.W. Eastwood, Computer Simulation Using Particles (McGraw-
Hill, New York, 1981).

3. J.U. Brackbill and J.J. Monaghan, Particle Methods in Fluid Dynamics and Plasma
Physics (North-Holland, Amsterdam, 1988). |

4. T. Tajima, Computational Plasma Physics (Addison-Wesley, New York, 1989), Ch. 6.

5. F. Brunel, J.N. Leboeuf, T. Tajima, and J.M. Dawson, J. Comput. Phys. 43, 268
(1981).

6. R.W. Hockney and J.W. Eastwood, Computer Simulation Using Particles (McGraw-
Hill, New York, 1981).

7. W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes
(Cambridge University Press, 1986).

8. J.U. Brackbill, D.B. Kothe, and C. Zemach, LANL preprint, 1990.
9. 5. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford, 1961).

10. D. Greenspan, unpublished preprint.

11. AY. Aydemir and D.C. Barnes, J. Comput. Phys. 53, 100 (1984).

13

Figure Captions
Fig. 1. Growth of square root of kinetic energy in simulation of Rayleigh-Taylor instability.

No short-range force effects included.

Fig. 2. Growth of square root of kinetic energy in simulation of Rayleigh-Taylor instability.

Short-range forces have been added to equations of particle motion.

Fig. 3. Square root of kinetic energy plus short-range force potential energy.

14

1.65

1.55

iR

1.0

2.0

3.0

(A/Cy)

4.0

5.0

Fig. 1

1.60

mx
| —_—
") _svomv

1.50 |-

1.40

(A/Cy)

Fig.

2.00

1.75

1.10

¥

1.0

2.0

3.0

(A/Cy)

4.0

5.0

Fig. 3

