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The universal drift instability and other drift instabilities driven by density and tem-
perature gradients in a toroidal system are investigated in both linear and nonlinear
regimes via particle simulation. Runs in toroidal and cylindrical geometry show dramatic
differences in plasma behavior, primarily due to the toroidicity-induced coupling of ratio-
nal surfaces through the poloidal mode number m. In the toroidal system studied, the
eigenmodes are seen to possess (i) an elongated, nearly global radial extent (ii) a higher
growth rate than in the corresponding cylindrical system, (iii) an eigenfrequency nearly
constant with radius, (iv) a global temperature relaxation and enhancement of thermal
heat conduction. Most importantly, the measured x; shows an increase with radius and
an absolute value on the order of that observed in experiment. On the basis of our obser-
vations, we argue that the increase in xi with radius observed in experiment is caused by
“the global nature of heat convection in the presence of toroidicity-induced mode coupling.
PACS: 52.65.+z, 52.25.F1i, 52.35.Kt




I. Introduction

Drift wave instabilities and their subsequent turbulence are believed to be an impor-
tant component of the experimentally observed anomalous transport!? of heat in tokamak
plasmas. In this work we present our study of electron drift wave turbulence and ion tem-
perature gradient driven drift wave turbulence through the particle simulation technique.
We focus on the effect of toroidicity on these instabilities, the associated turbulence, and
on particle and energy transport.

A nonuniform plasma in a shear-free magnetic field is unstable to an electron drift
wave with a growth rate proportional to (dn/dz)? from either collisions or the electron
Landau response. Due to the dependence on the square of the density gradient the mode
is called the universal mode? although there are mechanisms for stabilizing the instability.

The presence of shear, however, fundamentally alters the character of the'mode, and
necessitates a nonlocal treatment.® The resulting differential eigenmode equation givés
rise to a family of normal-mode solutions (#i(z),! = 0,1,2,...), localized to the rational
surface ¢ = 0 where k& = 0. Inclusion of the non-resonant kinetic electron effects near the
mode rational surface in a sheared slab is found to make the drift wave absolutely stable
for any finite amount of shear.>® The non-resonant electron stabilization arises from the
region where |ky| < w/v., which is expected to be strongly influenced by both toroidicity
and turbulent electron diffusion.

One important destabilizing mechanism for the drift wave is the effect of toroidal
geometry, including poloidal mode coupling and trapped particles. In a toroidal system,
the variation of magnetic field quantities in the poloidal direction (6), as well as the
magnetic drifts of the particles, can strongly couple the poloidal harmonics. Thus, drift
waves at different mode rational surfaces will also be coupled. Using a simplified model,

Taylor” examined this case and found that linear toroidal mode coupling could eliminate

the shear ion damping of the drift wave. An improved analysis of this problem by various



researchers®™'? confirmed the existence of a marginally stable mode in the toroidal system.
This new drift-wave branch is known as the “toroidicity-induced” mode, and inclusion of
additional destabilizing effects have shown it to be absolutely unstable for small values of
ki pi (~ 0.3) and values of shear relevant ‘to tokamaks.!t-14
In addition to the electron drive associated with the universal mode, there aré the
driving mechanisms of the electron and ion temperature gradients and the unfavorable
magnetic curvature on the outside of the torus. In fact recent experiments'®!® which
_raised the temperature gradients with auxiliary heating report enhanced heat transport
over that without auxiliary heating. The destabilization of the ion drift wave by the
combination of the 1on temp.erature gradient and the unfavorable magnetic curvature in
the torus was predicted by Horton et al.l."
While the aforementioned works have provided much information and insight as ,t?,;t}_,‘f

behavior of density and temperature gradient driven modes, they generally suffer several

drawbacks. Due to the complexity of the analysis, many simplifying assumptions: are

often made and application to realistic systems may be difficult. In addition, nonlinear

stucdy is needed. Theory illustrates how dramatically toroidicity can alter the properties
of drift wave instabilities and turbulence. Toroidal effects may likewise prove crucial
for adequate understanding of the drift wave turbulence in toka.maky plasmas and éheir
transport properties. We should find that not only the electron drift wave but also other
drift wave modes and the associated levels of transport are significantly affected by toroidal
effects.

In the following section we describe the Toroidal Particle Code (TPC) simulation pro-
gram. In Section III we study the results of universal mode turbulence simulation runs
employing toroidal and cylindrical topologies. These runs employ a single high toroidal
mode number and 7; = 7. = 0. In Section IV, these results are extended to the ion tem-
perature profile case, where we present runs with several values of 7; using an adiabatic

electron response. For 7; = 7, = 1, comparisons between runs with kinetic and adiabatic




electrons are made. Additional discussion and conclusions are given in Section V.



II. Toroidal Particle Code (TI;C)
A. Computational Methods

The Toroidal Particle Code, or TPC, is a multi-geometry, multi-model (primarily ki-
netic), and multi-platform simulation code developed at the Institute for Fusion Studies
(IFS).'® TPC exceeds 60,000 lines and is w;;itten in MPPL (A More Productive Program-
ming Language), a public domain Fortran preprocessor. A modular and hierarchical
_ design is used, allowing the code to support a variety of dynamics types and/or field
.sovlvers, switchable via MPPL macro variablés and conditional compilation.

A toroidal (7, 6, {) metric is employed. Typically a global radial discretization (r=0to
r = a) is employed, with a nonuniform grid spacing, although local (r = Tmin to 7 = ray)
discretizgtior}s are also supported. The field representation is two or thrée-dimension_al,

where either a grid or mode expansion can be used to represent the azimuthal coordinate.

The code is capable of operating in either the cylindrical or slab limit, which is used to

assess the effects of toroidicity in a controlled fashion. Simulation runs are analyzed using

the Toroidal Post Processor (TPP) which is the post run analysis program for TPC gener-.

ated output. The post-processor includes a variety of independent diagnostic packages,

including diagnostics for: spectral analysis and display, time evolution of potential, snap-
shot diagnostics (density, temperature, etc.), transport analysis (e.g. thermal diffusivity
as a function of radius or time), test particle trajectories, and interferogram a.ha.lysis,
among others.

The particle species in TPC are represented by a variety of descriptions, including full
kinetic, drift kinetic, gyrokinetic, Boltzmann (adiabatic). Each of these can be modeled

using standard particle-in-cell (PIC) treatment or a Lagrangian Vlasov (or &f) representa-

tion, and there is an optional Monte Carlo collision operator. At the time of this writing,

TPC is being tested and used with the gyrokinetic and Lagrangian Vlasov models. For this

paper we focus on results employing more conventional particle-in-cell models. That is,




the ion species is advanced with the full Lorentz force, and the electron species is either
drift kinetic or adiabatic. Additional details of the various algorithms employed by TPC
are available elsewhere.®

Although the conventional full dynamics PIC model is known to suffer from inherent
noise problems, the method is robust and free of some of the uncertainties of more modern
approaches. Further, while noise may mask the growth of weak instabilities, it is not
necessarily the dominant factor in the underlying transport, and has little effect on the
real part of the frequency. A method, albeit an expensive one, for discovering limits to
the simulation’s validity is to increase the number of particles to see if the result changes,
and this has been done for some cases in thié work. For the majority of simulation runs

presented in this work, the intrinsic noise is seen to be far overshadowed by the strength

of the plasma instability (cf. Section IV).

B. Geometry and field representation

The geometry we employ is illustrated in Figure 1. The (r,6, @) coordinate system we
use is orthogonal and right-hgnded, with the surfaces of constant » being nested, concentric
circles of revolution (tori). The internal representation of the coordinates is such that the
code may run in the cylindrical limit simply by letting the toroidal curvature (1/R) go to
zero, and the slab limit is obtained by letting the cylindrical curvature (1/r) go to zero.
The metric components for this system are k., = 1, hy = /7y, and h¢ = R/Rq, where
R = Ry +rcosb, ({ = —Ry¢p, and the differential arc length is ds® = dr? +rd6? + R3d¢? =
dr? + hidxz + héd(;z.

For the runs discussed in this work the magnetic axis lies at r = 0, and flux surfaces lie
on surfaces of constant r, corresponding to an idealized zero beta tokamak. Tokamak-like

magnetic fields are used with

R
By = B¢°—R3 (1)
T
Bg = B, 2
8 Roq(T) ] ( )
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where g(r) is the safety factor, varying from ¢(0) >~ 0.6 to g(a) ~ 4.0 in the present
studies. Electrostatic field qﬁantitiés (p, 8, E) are discretized using a nonuniform grid in
r, a uniform grid in 6, and a mode expansion (i.e. gridless) representation in (. The
nonuniform radial grid allows improved resolution near the rational surfaces, while being
efficient and Straightforwarél to implement when radial finite differences are used in the
field solver.!® In 6, field quantities are transformed between real and mode space as

necessary using a Fast Fourier transform. The gridless representation in ¢ allows a high

degree of accuracy (andrhence lower noise) in simulation of a single “high” toroidal mode -

number. A full three dimensional (3-d) grid representation is also available but not used
in the runs described here. An example of the (r,8) grid showing a typical nonuniform
radial grid is given in Figure 2. )

Note that in our system, a mode of the form f(r) exp(imG—anS) has a direct represen-
tation, in contrast to models which employ a square grid cross-section.' This representgtiPn
allows simple control of the cross-field resolution, a predictable fall off in mode streﬁgth

with increasing mode number m from the finite size particle effect (i.e. filtering), and a

good match between the simulation quantities and the diagnostic package.

C. Field Solver
TPC solves the Poisson equation
V2% = —4rp - (3)

and computes the electric field E = —V ¢ with the Laplacian decomposed into the two
components given by ’

Vi=vViiC B
where ©V? and C are defined by |
18 108 &

Ve= 5t et e T aa ®)
, _cosf § sinfld RI-R? QP :
C=% & ERrmtTE s (6)




Here V2 is the cylindrical Laﬁlacian, and C represents the toroidal contribution ({ =
-Ro¢). Eq. (3) is solved by Fourier analysis in § and (, finite differencing in r, and
iteratively solving the resulting tridiagonal system of equations. Convergence scales with
inverse aspect ratio, with less than 10 iterations typically required for 5 decimal places
accuracy. The charge density is given by p = p’/J where p' is the flat-space clarge density
and J = 8(r,x,{)/8(z,y, z) is the transformation Jacobian for the toroidal coordinate
system-(which also includes the effect of the nonuniform radial grid).

For an axisymmetric tokamak the Hamiltonian of the system is independent of ¢ (or
#). The Fourier modes (n) in this direction are thus independent; n is the so-called good
quantum number of linear theory. On the other hand, the symmetry in 8 is broken due
to the effect of toroidicity, leading to a linear coupling between poloidal (m) modes with
a coupling coefficient on the order of the inverse aspect ratio (¢ = 0.2 at r/a = 0.5 in the
runs reported here). Coupling between different n modes occurs only nonlinearly such
as through mode-mode coupling and with an effective coefficient of e®/T ~ 0.01-0.05,
which is much weaker than the m coupling.

Therefore for the runs performed in this work we choose a gridless representation for
the fields in ¢, with a single toroidal n mode retained. Additional toroidal modes may be
added in a measured fashion (to be examined in a later work). This approach makes for a
good lowest-order calculation, in which the effects of the strong § coupling are accurately
modelled while retaining good radial resolution around the rational surfaces. Further,
this situation is directly relevant to the case of a plasma with a limited set of dominant-
toroidal n modes such as might occur near marginal stability.

In the limited-n configuration the simulation runs are quieter than for a full 3-d run, all
clse heing equal, which compensates somewhat for the intrinsic noise of a full dynamics
model for the ions. Retaining only a single or limited set of toroidal modes allows a
distance of several radial grid points to separate adjacent rational surfaces. Nonlinearities

such as the advective nonlinearity are retained through following the exact (or nearly



exact) particle dynamics.

D. Particle Dynamics

In the standard case the ion motion is given by the Lorentz equations of motion

dx

?:V (7)
v q
E=;}-(E+VXB) (8)

which are advanced in time using a non-dissipative leap frog algorithm.'®

The electron motion is given by the drift equations

dx S

E = vy + ’U”b (9)
!

va=ug+ g~ < {(1#/m)VB + (b Vb)} +(19)

B fp-Ly.vs - (i),

where ug = E x b/B, b = B/B, p = tmvl/B, and Q. = —eB/mc. Eqgs. (9-11) are

“advanced in time via a predictor-corrector algorithm.

E. Diagnostics

Most of the diagnostics used by TPC are fairly standarci an&m\;;‘-lnl(»not be discussed
here. An exception is the transport analyzer, which is used extensively in analysis of the
simulation runs in Section IV. The diffusivity is traditionally obtained macroscgpica.lly,
by dividing the particle flux by the (negative) gradient of the density profile. Similarly,
the thermal diffusivity is traditionally obtained by dividing the energy flux by the product
of the mass density and the (negative) gradient of the temperature profile. The problem
with either of these methods is that the density and/or temperature gradient may become
arbitrarily small in a given radial region, resulting in an extremely noisy measurement for
D and x. This can be solved most efficiently by using a microscbpic means of calculation,

based on the statistical mechanics of a random-walk process. Namely, the diffusivity can




be written as
TN [zi(t) - z5(0))°

b= 2%AN (12)

for a sample of N particles (indexed by j) in a given region of space, and z is the cross

field coordinate. The thermal diffusivity can be written in a similar manner by

L1 [T(8)5(8) — T3(0)=;(0))
X = iz [ Ti(t) 25\)!T2 (0)z;(0)] (13)

where T is the kinetic energy for the jth particle and T is the bulk kinetic energy. Instead
Cof t =0, an appropriately chosen initial time or a sliding window may be used. This
formula is clearly capable of representing both conductive and convective heat transpoft,
and test runs of convective transport show good agreement between the microscopic and
macroscopic methods of calculation. Details of these tests will appear in a separate work.
For the simulation runs reported here, a sample of N = 2048 or N = 8192 particles
for transport statistics was used. This is sufficient to obtain transport coefficients as a
function of both r and ¢ from the microscopic formulae, although the decrease in the
number of particles in the tail causes poorer statistics there (the transport markers are
sampled from the particles making up the bulk plasma, and thus have the same density
and temperature profiles). In addition the data at smaller radius (r/a < 0.1) is not as
reliable for the same reason, as the vanishing of the Jacobian near r = 0 leads to a similar
decrease in the number of particles for a given value of densii{y there. Thus, plots of
transport coefficients presented in Section IV typically range from 0.1 < r/a < 0.5 only.
In this work we express x in units p?v;/L,, wheréas the natural units for the post-
processor are p%{;, with pio the mean value of p; across the entire plasma. The conversion
between the two systems of units raises the question of which “average” value to use for
the ion Larmor radius. Any average value that ignores the localization of the mode will
be incorrect, since it is not representative of the value felt by the physical conductive or
cnnvective process. Since x is. thought to scale with some power of p;, it makes the most

physical sense to average only over the active region when calculating p;. This scaling

10



gives a conversion factor of (p%/p?)(Ln/pi) = 23.2, where we have taken the center of the

active region to be at g(r) = 1 (note that for the cases studied, the central mode is m = 9,

n =9, and is close to the location of maximum power).
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III. Universal Mode Turbulence

[n this section we compare theory and simulation results for the universal drift wave

instability and the associated turbulence in slab, cylindrical, and toroidal geometries.

A. Linear Theory and Simulation in a Slab Plasma

[n order to describe the linear eigenmode structure and the stability of the universal
mode in a sheared slab plasma, we need to compute the perturbed electron and ion )
densities and invoke quasineutrality.'® The electron density response 7. may be written®
as

€MNg
MNe =

1462 (1-2)] 8 (14)

€

and the ion response n; as

eng w! w!\ dly , 52 i~
i = T [1 + G Z(¢) (1 - :) Lo(b:) — GZ(6:) (1 - U) EP?%}] 4 (1‘5)

1

where n, is the average local plasma density, T; the temperature of the jth species (j=e
or 1 ), and where {; = w/v2lkylvj, v; = (T;/m;)?, b; = k2 p?, pi = v/, p? = i,
T = T./T; To(b;) = Io(b;)exp(—b;), Ip is the modified Bessel function, and Z is the
plasma dispersion function. The diamagnetic frequencies can be written in a convenient

dimensionless form as
]

e rf s (epkin) (16)

where « is the inverse density scale length. By imposing the quasineutrality condition

ne x~ m;, we derive the eigenmode equation which takes on the form of a differential

equation in the radial direction (r or the local radial coordinate z):

A

| [pfj—; + Q(m,w)] =0 A (17)

where

Q= [-QZ(C&) (1 - w;) dd_I;O'J i '

{4z (1- %) w1+ 6c) (1- “’-J) o)} )

12



This equation is solved subject to the appropriate boundary conditions, that is, outgoing
waves for ¢ = too. For large |z| the solutions of Eq. 17 are given by the Wentzel,

Kramers and Brillouin (WKB) condition

B(c) ~ Q~/4() exp {ié [z [Q(m’)]“z} (19)

where the outgoing wave boundary condition requires that for Imw > 0 the choice of
+1 is such that [®(z)] — O for [z| — oo. Since this formulation is symmetric about the
mode rational surface (z = 0), the equation may be solved in the ha.lf-spa.ce-between
. z = 0 and ¢ — +oo, with the specification of even or odd parity about z = 0 for the
additional boundary condition. The method of numerical integration for determining the
eigenfunction and eigenvalues from Eq. 17 and the outgoing wave boundary conditions is
given by Sydora et al.?°

Simulation of the slab drift wave was performed using the two-dimensional slab limit
of TPC, obtained. by setting h, = 1 and h; = 1. A weakly nonuniform grid in z wa.s
employed to improve the resolution about the mode rational surface. ‘An exponential
density profile of the form n(z) ~ ngexp(—xz) was used, with & = |0lnn/0z| = L;! the
constant inverse density scale length. 7

The remaining simulation parameters are giveﬁ by : N, = 49152 (the number of
particles in each species), Lo = L, = 64 Ao (Ao is the average grid spacing in z), N, =.
N, = 64, At = 20w}, vp = 2.5 Agwe, To/Ti = 1, me/m; = 0.01, Qo/w, = 10, and
particle “size” of a grid spacing in both z and y (using two passes of the binomial digital
filter in z'®). The shear and density scale lengths are given by L,/L, = 13.6, rcp.-‘= 0.17,
with p;/0¢ = 2.5. The mode rational surface is at ¢ = zo, where g = L./2 and z ranges
from 0 to L;. The condition that the ion resonance layers remain within the system is
given by the cond.ition that |z; — zo] 5 L./2, where z; is given by the resonance condition

w = ky(z;)v;. Since the drift wave frequency is smaller than the diamagnetic frequency,

13




this will be satisfied if w* = ky(z;) v;. Thus, we have

(W) < Jei(w®)l = Fove (20)
= Piﬁ—: (21)

where ky = kyz/L,. For the present parameters, z;(w) is just inside the simulation region
for the lowest mode (kyp, = 0.24), and well inside for higher mode numbers.

The energy for the run was conserved to within 0.3% for 6000 time steps. The first
five modes (in y) of the potential ®&(z, k,) are stored for analysis. For k, = 2rm/L,, with

m=1,...,5, we have

kypi = 0.24, 0.49, 0.74, 0.98, 1.23 d

for the five modes examined.

As kyp; is increased, the frequency decreases due to finite ion La;mor effects. Thi“s
reduction in frequency in turn causes the eigenfunction to become increasingly localized
since the ion resonance moves closer to the rational surface. Both effects are seen in the
simulation. The theoretical and observed frequencies for the m = 3 and m = 5 modes
agree within the accuracy of the spectral estimator, and frequencies for the remainder
agree within a factor of two. The greatest difference between the observed eigenfunctions
and eigenvalues occurred for the lc;west mode number, m = 1; this is most likely caused
by interaction of the mode with the boundary. As illustration we show the measured
eigenmode structure for the m = 2 (kyp; = 0.49) mode shown in Figure 3 (a) and the

theoretical result in Figure 3(b).

B. Theory of Drift Waves in Toroidal Geometry

The shear stabilization of the drift wave in the slab plasma as discussed in the intro-
duction is fundamentally altered by the spatial inhomogeneities, i.e. the breakdown of
symmetry brought about by toroidal geometry (measured by #/R). In a toroidal config-

uration with realistic r/R the magnetic fields have a strong variation with the poloidal

14
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coordinate §, and the Laplacian operator itself has §-dependent terms. This 6 dependence
results in coupling between drift wave eigenmodes at neighbg)ring mode rational surfaces,
which can inhibit or increase the convection of energy. Since it is this convection that is
primarily responsible for the stabilization of fhe mode in the slab model, the stability and
mode structure properties of the drift wave are substantially modified.

The model employed by Taylor” was that of a plane slab, in which the magnetic
field -strength or shear varied strongly in the “poloidal” direction (represented-here by
".the y coordinate). This variation coupled the poloidal Fourier components, resulting in
a differential-difference equation in the (z,y) coordinates. The electron response was
assumed to be adiabatic, and a fluid ‘ion response was used. The assumption of weak
dependence on poloidal mode number (m) allowed m to be approximated as a continu-
ous quantity. This “strong-coupling” approximation reduced the two dimensipnal partial
differential equation to an ordinary differential equation, expressed as a combination of
both £ and m. The main conclusion of Taylor’s Qork is; that shear damping normaily
associated with the drift wave is severely reduced, resulting in a mode that is radia;liy
extended over an appreciable length of the plasma. By contrast, the slab-like drift mode
is very localized around the mode rational surface.

The nullification of shear damping in a toroidal system wz;s isulraseqtiently explored by
a number of researchers, using more realistic theoretical models. The radially extended
nature of the mode was verified by Ross and Miner.?! The tivc:.»-dimensiond eigenmode

1,* who obtained

equation in a toroidal configuration wa:s considered. by Horton et a
solutions in both the weak-coupling and strong-coupling limits. Subsequent research
efforts!0:88.23.11.24 haye typically employed the ballooning mode representation to express
p’erturbed quantities, in order to rigorously satisfy periodicity in both 4 and ¢. With
this approach, the validity of the solutions formally span the range from weak to strong
cbupling. The majority of the research efforts, however, have not pursued a fully kinetic

treatment (represented in the nonadiabatic particle response), nor solved the higher order

15



radial problem.

| The published literature on the toroidal drift wave problem shows considerable varia-
tion in the approximation used for reducing the particle response, which is a consequence
of the comple).city of these terms in toroidal geometry. Even when the trapped particle
motion is taken into account a small 7/ R approximation (B = Bo(1—r/R cos §)) is used to
obtain the elliptic integrals E(m), K(m), with m = vﬁ/evi. Adiabatic electrons and fluid
ions are often employed, perhaps with the addition of a destabilizing trapped electron
response term. This approach is sufficient for investigating the qualitative character of
the mode, including its radially-extended ballooning character. However, the importance
of the full kinetic effect on the stability is hard to gauge. A formal expression of the full
particle response was given in 1980 by Connor et al,?® but the expressions must undergo
considerable approximation before an actual solution is possible. If nonadiabatic terms
are kept, the manner of solution will necessarily employ either an integf’al formulation or
an iterative method, which makes theoretical analysis much more difficult.

The nonadiabatic electron passing response was included perturbatively by Chen and
Cheng? and using an integré,l method by Hesketh.?* Each of these works employed ki-
netic ions (under the assumption w > wp,) and obtained qualitatively similar results.
The growth rate was found to increase without bound as k, p; is increased, a.s well as
with increasing toroicifcity (measured by the parameter €, = L,/Ry). For the parameters
studied by Hesketh, the mode reached a maximum growth for a shear of § ~ 1.7. The
neglect of the ion drift resonances, however, is not justified at larger values of k, p;, since
the real fréquency decreases as this parameter increases. The inclusion of this resonance
proves to be an important stabilizing effect, as was shown by subsequent papers.'>!4 The
result is that the growth is maximized at a value of k p; ~ 0.3-0.4. A more thorough
theoretical treatment of the toroidal drift universal wave problem, including the nona-
diabatic electron response and ion drift resonance, is found in a paper by Schep and

Venema.'* This investigation was based on the earlier work of Schep et al,?® which con-

16



-

-

sidered approximate forms for the int'egral‘trapped and passing electron responses. This
work shows that when both r.esponse terms are i(epf, large cancellations may occur, and
the total response gives the proper behavior when one passes to the infinite aspect ratio

———-—- limit (plane slab). Using these methods in the toroidal drift wave problem, the real and
imaginary frequency variati(-')n was found“.to be qualitatively similar to that predicted
by Cheng and Tsang'? and by Hesketh.!® To expedite comparison of theoretical findings
to the siinulation results, we choose parameters for the simulation run similar to those
studied by Schep and Venema.!*

An additional point discussed in the literature concerns the relation of the toroidicity-
induced mode to the slab-like mode, as the toroidicity (i.e. €,) is increased. In the work’of
Hastie et al'® and Choi and Horton,® the slab mode was observed to evolve continuous‘li);
into the toroidal mode, while Chen and Cheng® argue that .the mode is a gompletely'ﬂ
different branch. The apparent conflict between these observations was resolved in a -
separate investigation by Schep and Venema,?” where it was shown that the slab mode

always connects to one of the harmonics of the toroidicity-induced mode. The connection
is usually one of the higher, more heavily damped harmonics, depending on parameters.
The appearance of multiple drift wave harmonics in toroidal geometry can be under-

. stood by analogy to the band sfructure in solid state physics. If the radial variation of the
equilibrium quantities is sufficiently weak, the potential will be symmetric with respect to
translation in the radial coordinate over an integral number of rational surfaces. This lo-
cal translation symmetry admits solutions which are Bloch functions, resulting in a band
structure for the eigenvalues known as the Brillouin effect. Similarly, the toroidal drift
wave eigenmode equation admits a number of solutions in terms of multiple harmonics,
resulting from the additional degrees of freedom in the presence of multiple mode rational
surfaces. Although the fundamental harmonic will have the strongest growth, the higher

- harmonics may be unstable or only weakly damped as well. However, the higher order

harmonics are usually not considered in the theory. Depending on parameters, the slab-

17



like mode may connect to the lowest even harmonic (as observed in the earlier papers) or
more usually, to a higher even harmonic. Parameter studies by Schep and Venema?” were
presented in which the slab-like mode connected to the n = 6 or n = 8 toroidicity-induced
mode.

The theoretical treatment of the toroidal drift wave problem is in principle similar to
that of the slab problem. The particle distributions are assumed to satisfy the Vlasov
equation, in which the lowest order distributions represent the equilibrium solutions. For
an electrostatic perturbation, the perturbed distributions are obtained by a time inte-
gral along the unperturbed particle orbits of the electrostatic potential and zeroth order
particle distribution functions. The perturbed densities are obtained from the velocity
space integration of the perturbed particle distribution functions, and the quasineutrality
condition gives an integral equation for the potential.

In the slab analysis, the integral equation for the potential is approximated as a
differential equation of a single variable. In this case, the orbit integral of ¢(z(t'))* is
evaluated using the Taylor expansion of the potential in (z(¢') — z)", which is valid for
sufficiently small radial wavenumbers k.p; <« 1. For the toroidal problem, however, two
points should be noted. First, the perturbed quantities must be a function of both r
and @ due to the poloidal inhomogeneities. This leads to a partial differential equation
of two variables, which is required in order to describe the shift of the dominant poloidal
mode number with a translation in radius. Second, an integral term will be necessary in
the toroidal problem even for small k,p; to retain the trapped particle responses. This
integral term occurs due to the increased complexity of the particle motion, which cannot
be given in a simple, closed form for finite r/R. The perturbed distribution functions
can be obtained through adoptien of gyrokinetic coordinates®®; however, the resulting
expressions are véry complicated and do not exist in closed form. Although approximate
forms of the perturbed distributions exist,?:2® the subsequent velocity space integrations

required for the perturbed densities present serious additional difficulties.
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Here we consider for illustration a simplified theoretical model which retains many
of the features of a more precise treatment. The fluid ion response is adopted, and an .

electron response of the form

ne =0 (50) (1-45) (22)

where § is some simple anti-hermitian operator that governs the nonadiabatic electron

response. The perturbed potential is written in the form
4(6,p) exp i(NC — M) — iwt] (23)

where p = r — 1o is the radial distance from the mode rational surface given by M =

Ngq(ro), q is the safety factor, and N is the toroidal mode number. The toroidal depen-

dence can be dropped by axisymmetry, and the resulting eigenvalue problem takes on the

general form , . e

a

£(6,p;w) $(8,p) = 0. | (24)

~ The operator L is in general an integral operator, which is represented by the 16 operator

in this analysis. With some approximation, L can be given by

. 2 . 2 '
L = %-2- — gt (aﬁé + iz) —€ (cos 0 +13 sm@%)—/\ »(25)

where k = ng/r, § = rq'/q, ¢ = kp$, and the parameters o and ¢ are given by

€n 2¢,
0= — €= —
qrbs’ Tbs?

. (28)

where ¢, is the toroidicity (Ln/Ro) and b = k?p?. The eigenvalue A is related to the

frequency by
w/w* —14+b(1+7)—146

A=
b3%(1 + 1)

(27)

Note that Connor and Taylor?® included an additional term, resulting from the variation

of w* with radius.
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For the drift wave problem, the modes of interest have long parallel wavelengths and

short perpendicular wavelengths. The requirement of long pz-ara,llel wavelength is given as
B.-V$é =0 (28)

This condition is well satisfied in the present analysis only near the rational surface, i.e.

q(r) = M/N. Alternately, we can adopt an eikonal form of the perturbed potential as
®(,6) exp(iS(r, 6, ) " (29)

such that

B - V5(r,6,¢) = 0. (30)

This representation satisfies the long wavelength requirement, but the resulting functions
®(r,0) and S5(r,d,() are periodic in theta only at a mode rational surface. The dual
requirements of periodicity and long parallel wavelength can be satisfied through use of
the ballooning mode representation for the perturbed potential.?®3® We then make the

expansion
+co

&(z,0)= ) exp(—imﬁ)/:c df &(6, z) exp(imf) (31)

where the dependent coordinate in the poloidal direction has become § = 6 + 27xn (the

“extended” poloidal variable), and  is given by
$(6,2) = A=) exp [~iz(d £ 64)] £(4, ). (32)

Here A(z) is a slowly varying envelope for the mode, and f(9, z) satisfies to lowest order
a one-dimensional eigenmode equation in the extended variable f with a parametric de-
pendence on z (0 is a slowly varying function of radius, and is not specified to the lowest
order). The lowest order eigenmode equation in the toroidal model is given in terms of
the extended poloidal variable 8, in contrast to the radial variable p in the slab model.
This change occurs as a result of the poloidal inhomogeneities and give additional wave

trapping terms in the one-dimensional mode equation. The radial envelope dependence
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in the present model can be obtained via a radial eigenmode equation to ﬁigher order in
the expansion parameter 1/N.
With inclusion of the nonadiabatic response terms (and ion drift resonances), the
equation for f(ﬁ, z) takes on the general form |
[d%; - V(é,w)] a(f,w)d = /dé' K(8,8';w)d(6) (33)
(from Schep and Venema'!). Their method of solution for Eq. (33) employs a shoot-
ing code for solving ;‘Jhe homogeneous ¢quation by initially neglecting the integral term;
this first order perturbed potential ®(4) is then numerically integrated to obtain the
9-depéndent right hand side as part of an itéfation procedure.

This theoretical analysis predicts the existence of unstable solutions. The most un-
stable mode is the lowest harmonic (! = 0), and is the only harmonic considered. The
ion drift resonance has a stabilizing influence on the electron drift mode, so thatthe
perpendicular wavenumber of maximum growth occurs at about k,p; ~ 0.2, for sys?em
parameters of § = ¢ = 7 = 1, ¢, = 0.1, m;/m, = 1836 and € = 0.1 (invers\.e aspect
ratio). For comparison purp.o"ses, these parameters were duplicated as closely as possible

-in the simulation, but numerical constraints prevent an exact match (most signiﬁc#ntly
in the mass ratio). Furthermore, the need to maintain adequate radial resolution ensures
that the equilibrium quantities will vary significantly over the width of the mode. The
.quantities that vary in radius in the simulation include the shear (3), toroidicity (en), and
diamagnetic frequency (w*). The variation of equilibrium quantities in the simulation
may require the higher order equation for the radial dependence to be solved in order for
close correspondence with theory. In addition, the theory is strictly valid only in the limit
of high toroidal mode number; the relative smallness of the toroidal mode number in the

| simulation (n = 9) may require c_a.lcula_tion to higher order.

The effect of varying the diamagnetic frequency has been examined by Connor and

Taylor,?® where it is shown that a decrease in the strength of coupling between modes

at neighboring mode rational surfaces will result. This coupling crucially determines the
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qualitative nature of the mode. For very wgak coupling, the Fourier modes at neighboring
mode rational surfaces are nearly indepetident and are radially localized, as in the slab
limit. These modes possess weak “sidebands” on neighboring mode rational surfaces,
which become stronger as the coupling is increased. For sufficiently strong coupling, the
Fourier modes sum to bec<.>me a single “quasimode”, which extends over many mode
rational surfaces. The quasimode tends to be localized in @, so that it may appear to
“balloon” towards the outside of the torus. The parameter regime considered by the
simulation does produce the theoretically predicted ballooning behavior, although effects -

due Lo the radial variation of w* may also be present.

C. Toroidal Simulation .

Here we present simulations for 7;. = 0 in a toroidal and cylindrical configuration
using a single toroidal mode number, n = 9. The rational surfaces contained within
the system ralige from ¢ = 5/9 (m = 5) to ¢ = 15/9 (m = 15). Undesired rational
surfaces are excluded by eliminating the appropriate Fourier components of the electric
potential. For these runs the slab-like drift ion resonance layers for each rational surface
are contained within the simulation region, satisfying the boundary conditions necessary
for stabilization of the slab-like drift wave eigenmodes. For reference, we summarize all
the runs performed in this work in Table 1, along with those modes expected to contribute
to the fluctuations and transport. |

The parameters for the simulation run are as given in Table 2 (note: for this run
only, the maximum poloidal mode number is 15). The radial variation of the initial
electron density, the variation of grid spacing in r, and the number of particles per cell
as a function of cell number is shown in Figure 4. The marks above the nonuniform grid
ticks indicate the locations of the mode rational surfaces. See Figure 5 (a) for the radial
variation of the safety factor q, shear parameter 3, and the toroidicity parameter ¢,. The

electron/ion profiles have been loaded in such a way as to minimize the departure from
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quasineutrality. The simulation was run for a total of 15,000 time-steps (T' = 6000 Q;!).
Energy conservation was 15% over the length of the run. The gradual increase in energy
is caused by inaccuracy in the time integration due to unde.rsampling with respect to the
highest frequency waves, and this slow increase in the thermal energy can be ignored (1t
is stochastic in nature and does not affect the results presented here).

The toroidal run shows instability in the vicinity of the m = 7-9 rational surfaces
(r/a ~ 0.4) with growth rate v/w* ~ 0.12, close to the theoretical value when trapped
electrons are taken into account.®® This was accompanied by weak profile flattening in
the same fadial region, which diminished after saturation of the mode. The growth rate
as measured by the simulation run is higher than the value given by Schep and Venema!*
due tn a combination of effects: .preseﬁce of trapped electrons, a larger inverse aspect
ratio, and a larger mass ratio (m./m; = 0.01) than in that work (note: all.of these effects
are destabilizing). Saturation for these modes occurs at a level of |e®/T| ~ 0.04. Recall "~
that kgp; ~ 0.2, and ﬁsing pi/Ln ~ 0.025, we have 1/kg¢L, for the observed modes (see
Fig. 5). By contrast, the cylindrical run showed no discernible unstable modes and profile
modification. -

| We next examine the mode structure of the potential on long time scales via spectral
analysis, with the power spectrum is calculated by the maximum entropy method. This
technique employs a frequency-space approximation that is well suited for resolving sharp
spectral features.3? The observed frequency spectrum and its dependence on radius and
mode number has new noteworthy features. -

In Figure 6 (a) is the spatially avéragéd spectral density as a function of frequency.
Note the rather broad spectrum similar to that observed in laboratory tokamak plasmas,
although the peaks from the linear mode spectrum are still apparent. The broad spectral

region decays as S(w) ~w™! for w 2 w*.

[n Figure 6 (b) we plot maximum power as a function of w/Q; for the m = 7 mode, and

in Figure 6 (c)-we plot w/§; as a function of radius for them = 7 through m = 11 poloidal
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modes (the arrows mark the rationalhsurfa;mces). This diagnostic eliminates the spectral
widths in order to see the linear physics aspects more clearly—peaks in the calculated
spectrum are located numerically for each radial position and mode number, with only
the strongest power peaks retained.

It is clear from Figure 6 (b), that there exists a multiplicity of modes with frequencies
below the diamagnetic frequency. This result is a consequence of the strong coupling of
the poloidal modes in toroidal geometry, which allows multiple toroidal drift harmonics to
appear. Further, for an individual m value, this may be manifested in a nearly §-function
dependence of the maximum power on frequency (each peak has a finite width, however).
Ploté for other values of m are surprisingly similar for the highest power peaks, though.
splitting often occurs at lower power.

In Figure 6 (c), we see a global preference for certain discrete frequencies, with mode
activity concentrated in “bands” in frequency space. This is an expected result for poloidal
modes strongly coupled by the toroidicity. Some variation of the dominant frequency
between different mode numbers occurs due to nonlinear splitting and radial variation
of the equilibrium. Note that the theory eliminates the radial variation through the
assumption of translational invariance, and is thus only partly applicable to the situation
in a realistic plasma, even when nonlinearities are mild.

The lowest two frequency bands show the highest degree of overlap between modes
with different poloidal wave number m, and are by far the strongest modes. The lowest
frequency band occurred at roughly w/w* = 0.4, in good agreement with theory.!* The
cylindrical run, on the other hand, shows no band structure in its frequency response, as
expected. In addition, the lowest harmonic seen in the cylindrical run has a frequency
approximately that of the second harmonic in the toroidal run; the ultra-low 'frequency
harmonic appears only in the toroidal case. The ion magnetic drift frequency is on the
order of wp, /Nl ~ 0.001 at kgp; = 0.2, so the ion magnetic drift resonance may significantly

aflect the lowest harmonic. The modes are seen to propagate in the direction of the
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electron diamagnetic drift.

Most modes extend over a large number of mode rational'surfaces, but still show some
radial lécalization. This is consistent with the physics of the parameter regime. For this
parameter regime, the diamagnetic. frequency for a givén poloidal mode is constant with
radius, varying only with m. However, the diamagnetic frequency for the mode ensemble
increases as ng(r). It is this ensemble value that determines the overall appearance and
strength of the quasimode that is formed. This effect can be seen in the spectrum as an

‘increase in frequency with radius, with transitions occurring from one frequency to the
next. Not shown is a higher frequency mode yvhich appears at r/a { 0.5 for the higher
mode numbers (m = 12-15). Thus the mode structure cannot be completely described
by either the strong coupling (ballooning .mode) or weak coupling (Fourier mode) limits,
but has some aspects of each. Qualitatively, the variation of w* with radius reducgys‘__wt}}e
number of poloidal modes involved in a single quasimodé, and limits the radial extent
somewhat. Nevertheless, we find that the ensuing quasimode extends over a large radial
scale, typically 1/3 to 1/2 of the minor radius.

The radial structure obtained from the interferogram diagnostic3® shows peaking of
the potential near the rational surface for the observed frequencies. The waveforms are
typically highly oscillatory in r and overlap an appreciable number of adjacent rational
surfaces. This behavior is a consequence of the weakly damped or unstable, radially
extended character of the mode, in contrast to the rapid radial decay of the slab geometry
drift mode eigenfunction. Radial interferograms for the m = 12 mode are shown in Figure
7 (a) and (b) for the toroidal and cylindrical runs. The width of the interfered potential
in the toroidal case is a.pproxi'mately twice that in the cylindrical run, demonstrating the
radially-extended nature of the toroidal mode. In thé toroidal system, the finite radial
width of the eigenfunction is caused by the variation of equilibrium quantities with r (such

as the diamagnetic frequency), and from truncation of the poloidal mode space.

The interferogram in the poloidal angle shows another aspect of the toroidal nature
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of these modes. Theoretically, strongly coupled modes exhibit “ballooning” towards the
outside of the torus. This ballooning behavior is observed in the simulation, for several
frequency ranges and at many radial grid points; a representative interferogram is dis-
played in Figu.re 7 (c). For the case shown, the maximum amplitude occurs away from

the § = 0 axis (outward direction), although more usually the maximum occurs on the

axis.
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IV. n; and Trapped Particle Modes

Recent tokamak experiments utilize Ohmic heating from the toroidal current as well as
auxiliary heating such as neutral beam injection (NBI) or ion cyclotron resonance heating
(ICRH) in order to obtain high central temperatures. In such tokamak experiments the
interior plasma ion temperature is raised quite high—sometimes as much as 20 keV.

In these plasmas experimentalists typically observe both the anomalous electron heat

transport typical of Ohmically heated plasmas (such as the Alcator experiment) as well

as anomalous ion heat transport.? Although the existence of temperature gradient driven

drift wave instabilities has been known for quite a while,?* the experimental observations

of anomalous ion heat transport prompted renewed theoretical and computational study

of this class of instability. The drive for the temperature gradient driven modes is usually

expressed in terms of 7; = dln T;/81nn; (j = e or i), the steepness of the temperature

gradient with respect to the density gradient. In this sense the previous section deals with
the situation with 7. = 7; = 0. On the other hand the case with 7; = oo is referred to as
the flat density limit of the temperature gradient instability (TGI). In tokamak plasmas

almost always 7 > 1, although in other devices 7 < 0 is possible 3438

" In this section we compare the plasma behavior with finite 7; to that with n; = 0.
Note that an initial state with a constant n; has a temperature profile .given by T;(r) =
Tjo(n(r)/no)". We examine runs in both toroidal and cylindrical geometries for finite 7;
in this section. In addition the simulafion for the 7; instability and associated norﬂinear
behavior may be carried out either with drift kinetic electron dynamics (as done in the

previous section) or with a fluid electron description based on the Boltzmann (adiabatic)

electron response.

The Boltzmann electron response is used for the majority of theoretical studies of

the 7; mode, and we refer to these treatments as “classical” 7; mode theory. Linear
kinetic theory shows that the classical n; mode theory is a good approximation provided

that 7; > 7y, where 7 is of order unity. A detailed example of the change from the
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trapped electron mode to the classical 7; mode behavior as 7; is increased is given in
Figure 1 by Rewoldt and Tang.®® Thus it is instructive to compare results for runs with
kinetic electrons to those with with adiabatic electrons for low values of 7;. Except for
the variation of temperature profile and electron dynamics type, the method of analysis

and runs are the same as in the previous section.

A. Simulations with drift kinetic electrons

See Figure 5 (a) for the radial variation of the safety factor ¢, shear parameter 3, and

the toroidicity parameter €,, and Figure 5 (b) for the ion Larmor radius p;, ratio of ion

Larmor radius to density scale length p;/L,, and ratio of shear length to density scale
length L,/L,

Here we consider runs using drift kinetic electrons. Two runs are presented: a toroidal
run with 7. = 7; = 1, and one with the same parameters in the cylindrical limit as a
control. Although most theory employs adiabatic electron approximations to treat the #;
instability, it is important to carefully delineate the physics of the 7; mode when #; is near
the critical threshold (7; ~ O(1)). It is suggested®®3? that near the threshold the growth
rate of the 7; mode with kinetic electron dynamics is substantially greater than that with
adiabatic electron dynamics.

Simulation pararﬁeters are chosen identical to those of the previous # = 0 run (cf.
Table 2) with a few exceptions. Due to the temperature gradient, the ion Larmor radius
is now a function of radial position, but the gyroradius is chosen in a way such that the
average vah;e is the same for each run. Also, the outside mode (m = 15) from the previous
run was neglected in order to further ensure that boundary effects were minimal.

[n Figures 8 (a) and 9 (a) we give contour plots of the measured spectral density as a
function of w and. r. A strong, low frequency mode in the electron diamagnetic direction
(w/w* ~ 0.4) is observed, spanning an appreciable radial extent (0.2 < r/a < 0.6).

Here the toroidal coupling induces the formation of a single frequency mode, with a
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spectral density 3-5 times stronger than that observed in the cylindrical case. In this
case (7e = 7m: = 1), the temperature gradient causes a strong variation of the diamagnetic

frequency with radius for a givén m, with
w*[Q = 0.0031m exp [~0.5(3.168/a)?|

which causes the individual m modes to be more spatially localized than in the = 0
case. However, the ensemble value of w* (obtained by replacing m by n q(r) in the above
expression) is roughly constant with radius, promoting strong coupling between modes
at different rational surfaces and consistent with the observed mode strength. Some

spectral density features are observed at negative frequency, i.e. with the same sign as the

ton diamagnetic frequency, but in this case (n = 1) the negative frequency components

are much weaker than those at positive frequency. Clearly almost all of the power is

concentrated in the electronbdiama.gnetic b;anch. B

In Figure 8 (b) the spa,tia.i average of the spectral density is plotted versus w/Q; for
w > 0. Here the fall off with frequency is not a power-law, due to enhancement of the low
frequency response. The lower hybrid mode is seen at w/§; = 1.4 and is much weaker
than the low frequency response. Figure 9 (b) shows spatial average of the spectral den'sity
bplotted versus w/§);. |

In Figures 10 and 11 we show the density and temperature profiles a.f two times during
the run, for the electrons and ions respectively. After an initial relaxation due to ¢t = 0
non-equilibrium eﬁ'ecfs, the profiles change slowly in time. In Figure 12 we show the

ion particle diffusion, ion and electron heat transport for the 7; = 1 run plotted versus

radius. The ion thermal diffusivity x; is greater than the electron thermal diffusivity x.

by a factor of about 2, which in turn is greater than the ion diffusivity (D;) by a factor

of about. 4.
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B. Simulations with adiabatic electrons

For the remainder of this section, an adiabatic electron response is employed in our
simulation runs. This configuration is much closer to that of the conventional theory, and
is therefore easier to interp_ret. The n; = 1 case is particularly interesting in comparison
to the previous kinetic electron results, so we shall focus on it separately. In each of
these cases, the run parameters are chosen identical to those of previous 7 = 1 run (cf.
Table 2), except for the absence of kinetic electrons and the variation of 7;. Note that
‘the n; variation, in addition to affecting the strength of the instability, affects the radial
diamagnetic -frequency variation through the decrease of p; with r. |

At the beginning of each simulation run in toroidal geometry there is a transient relax-
ation in the temperature and density profiles due to non-equilibrium effects, specifically
ion diamégnetic effects. This relaxation arises from the fact that a Maxwellian with den-
sity and temperature profiles as a function of r (as the particles are loaded) is not an
equilibrium solution to the zero order Vlasov equation in toroidal geometry when the ion
Larmor radius is significant compared with local scale lengths L,, L, and r. A pertur-
bation expansion in orders of Larmor radius gives difference terms on the order of p;/r,
pi/ Ln, and p;/ L, consistent with our observations (the exact dependence is rather compli-
cated and will not be presented here). Since our simulation runs do not allow development
of an ambipolar electric field, such quick relaxation has little physical effect except for
the modification of the background profiles. As a result, the stated values of p;, 7;, and
w*® must be taken with some caution, as they are initial values only. As an example, for
the 7; = 4 run the initial transient caﬁses relaxation to a value of approximately 7; = 3
over most of the profile. As the run progresses, the value of 7; further decreases across
the profile due to effects of the instability and the associated transport. For simplicity of
nomenclature, we shall thus refer to each run in terms of the initial value of ; only. Also
note that transport measurements are taken only after the initial relaxation in order to

get a result for fluctuation-induced transport alone (if included, the transport due to the
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initial relaxation can severeiy bias the result).

'Further, we note that due to the strong toroidicity (a/Rq = 0.4), both ion temperature
gradient modes and trapped ion modes are expected to be present in general. The ion
bounce frequer;cy is comparable to the observed mode frequency in some cases, leading .
us to believe the trapped ion effects may be important part of the observed instabil-
ity. However, separating the destabilizing effects of the trapped ions from 1.:hat of the
ion temperafure gradient instability in the simulation analysis is practically impossible.
Thus, for simplicity we shall simply refer to the “n; mode” when discussing the observed

phenomena, although the results may apply to the trapped ion mode as well.

1. 7},’:1

The 7; = 1 run with adiabatic electrons showed essentially no growth of the ele_ctnc
potential. This result occurs due to the absence of the kinetic electron drive and bec:ﬁse
7 = 11is so -close to marginal stability for the classical 7; mode. Further, the spectral
density intensity and transport were smau compared to the other runs discussed in this
work. It is nevertheless interesting to compare this run to the kinetic electron n; = 1 run
of the previous section since they differ only by the addition of the élgctron drive.

Figure 13 (a) shows a contour plot of the spectral density versus (r,w) The spectral
intenéity of the potenéial at positive frequency is seen to be 50 times smaller than for
the kinetic electron case discussed in the previous section. The plasma response shows
some similarity to that of the kinetic electron case, having roughly the same ra.dia:l extent
(0.05 < r/a < 0.55), and approximately the same frequency (w/@:‘ ~ 0.4). A relatively
strong ion feature appears for r/a ~ ().15; this feature also appeared in the kinetic electron
run but was hardly noticeable due to the much stronger response‘at positive i'requency.
The power is more or less evenly divided between electron and ion branches, ahd the

individual modes are still recognizable.

Figure 13 (b) shows the spatial average of the spectral density plotted versus w/Q;,
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logarithmic axes, positive w. The spectral density is observed to decay as w™!*. The ion
cyclotron frequency is seen at w/Q; = 1.0,‘.showihg that the high frequency component is
substantially weaker than the low frequency response even for this relatively quiet case.
Here the lower hybrid mode is missing since the kinetic electron response is absent. The
sharp peaks at higher frequ;encies are artifacts of the diagnostic.

Figure 14 shows the ion density and temperature profiles at two times during the run,
well after the initial transient. The profile modification between these two times is clearly

- small.

2. T],'=2,3

For the 7; = 2,3 runs, robust instability was observed, with a maximum growth rate
of y=78x10"*"Q; at r/a = 0.45 for the 7, =2 run and vy = 1.4 x 1073 Q; at r/a = 0.42
for n; = 3. The transport coefficients D and x were calculated for each and are presented
in the following section. The spectral densities are given in Figures 15 (; = 2) and 16
(n: = 3). In these figures, part (a) shows a contour plot of the spectral density S(r,w),
with the solid lines representing the effective w*, and part (b) shows a logarithmic plot of
the spatially averaged spectral density as a function of w/;.

In both cases, a strong mode was observed, with real frequency near w/f; ~ 0.003.
The peak energy exceeds that in the 5; = 1 run by approximately one and two orders
of magnitude for the 7; = 2 and 7; = 3 runs, respectively. In each case, the observed
mode has a frequency remarkably constant in r coﬁpared to the effective diamagnetic
frequency, and extends across many rational surfaces. The spectral density is observed to

1

decay as S(w) ~ w14 in each case, for w* < |w| < Q.

3. Th=4

In this section, we show results from both toroidal and cylindrical 7; = 4 runs. The

dramatic differences that appear underscore the importance of toroidal effects to 7; tur-
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bulence and transport.

‘The 7; = 4 (toroidal) run showed the most robust growth of all the runs reported in this
work, as well as the highest transport, with a maximum growth rate of v = 2.2 x 1073 ;
at /a = 0.39. The mode saturates at around ¢ = 2000 ;.

In Figures 17 and 18 are plots of the spectral density for the toroidal and cylindrical
7; = 4 runs, respectively. Part (a) shows a contour plot of the spectral density versus
(r,w), with the solid lines representing the effective w*; and part (b) shows a losarithmic
- plot of (), versus w/§; for w < 0. The spectral density in the toroidal case is dominated
by a nearly constant frequency mode, spanning 0.2 < r/a < 0.5, with w/w* ~ 0.60 at
the center of the mode. By contrast, the spectral density for the cylindrical case is an
order of magnitude weaker and consists of several “blobs” spanning a radial distance of
§r/a ~ 0.05, each with a slightly different frequency. The frequency dependence for the
cylindrical case also shows a weak downward trend with increasing radius. Note thiat the
frequency for the cylindrical case is not expected to track w* precisely‘because of finite
Larmor radius effects, rather, w* represents an upper bound. There is some weak activity
for 7/a ~ 0.5 with w > w*, but this is most likely caused by nonlinear (rather than linear)
coupling.

In Figure 19 we Plot the growth rate and real frequency as a function of increasing
ni, for the runs given in this section. A nearly linear dependence of 4 on 7; is observed,
consistent with the results of linear theory. The real frequency w shows a nearly flat
dependence on 7;, with the exception of the 7; = 1 case for which there is no strongly-
excited toroidal mode. In each simulation, the potential was observed to grow for many
poloidal mode numbers m and many radial locations, typically near the rational surface
for each mode. A representative plot of electrostatic field energy as a function of time for
thAe 7. = 2, 3, and 4 is shown in Figure 20 (a), (b), and (c), respectively. In each case

there is a clear rise above the noise level as the instability sets in.

As the instability develops, we observe the formation of very large scale vortices
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(“streamers”) in the electric potentiai, especiaﬂy for the n; = 4 run. These structures
develop most strongly towards the outside of the torus and are nearly radially aligned
there, however, the contours near § = +7/2 show some outward shear caused by the
variation of g(r) over the length of the streamer. In Figure 21 we show the variation
of the potential in (r, §) for four separate points in time, using constant values for each
contour. In (a), near the beginning of the linear growth phase, the mode has begun to
show a global organization. In (b) the mode has reached maximum amplitude; here the
elongated structure is clearly seen. In (c), the mode has saturated and the vortices are
in the process of being torn apart. Finally, (d) shows the potential at the end of the run,
well-past saturation, and the large scale vortices have virtually disappeared. ]

In Figures 22 and 23 we show the ion density and temperature profiles at two times
during the run, for the toroidal and cylindrical runs, respectively. The toroidal run shows
noticeably greater levels of transport than in the cylindrical run. Also the profile modifi-
cation seen in the 7; = 4 toroidal run is much greater than for the runs with smaller #;
shown previously.

In the next set of figures we present the thermal diffusivity x; as a function of radius for
our simulation runs, as well as the thermal diffusivity observed in experiment. For these
plots x; is expressed in units of p?v;/L,, the so-called gyro-Bohm scaling. The experi-
mental values are obtained for JT-60,*® TFTR,® DIII-D*® and JET*° (‘note: unpublished
data was used in order to get x; versus radius for JT-60). In reducing x; to dimensionless
form, estimation of the radial averages of p;, v;, and L, was required. Therefore the
experimental values as shown should be taken with some caution.

In Figure 24 are plots of x;(r) for the toroidal and cylindrical 7; = 4 cases mentioned
above. The cylindrical run shows the expected decrease with 7, while the tor‘oida.l run
shows an overall upward trend. The large jump seen just to the left of r/a = 0.5 for the
toroidal case coincides with the right edge of the radially extended peak in S(r,w) (note

a separate run using 8192 sample particles but otherwise identical parameters found a
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rﬁuch smaller feature in the toroidal x; value here). The thermal diffusivity for both runs
shows a large increase for r/a < 0.5 (not shown), which we believe may represent edge
effécts and/or poor statistics in the tail region. A simulation run using 200K particles
and otherwise identicél parameters resulted in a x; with essentially the same features.

In Figure 25 we plot x;(r) for toroidal simulation runs of 7; = 1,2,3, and 4. The
thermal diffusivity shows a clear upward progression with increasing 7;, with an order of
magnitude separation between the 7; = 4 and 7; = 1 diffusivities at r/a ~ 0.5. Finally, in

Figures 26 and 27 we compare x;{(r) for the 7; = 3 and 7; = 4 cases to that seen in several
present-day tokamaks (Figure 27 contains the improved measurement using 8192 sample
particles). A strikingly similar radial dependeﬁce between experiment and simulation is

seen.

C. Discussion

The heat transport coefficient x; in toroidal geometry is observed to be nearly an
order of magnitude greater than that for cylindrical geometry over a wide range of 7;
values, including 7; = 0. The cylindrical geometry result for x; is about an order of
maguitude too low to explain observations frém tokamak data, an effect also investigated |
by Kotschenreuther et al.#! In that work, annular toroidal kinetic simulation was used to
obtain a value for x; of the same order of magnitude as that seen in tokamak experiments,
although the radial variation did not show the characteristic increase in x; with r seen in
experimeqt.

The transport (as measured by the x; diagnostic) also increased as a function of ;.
The measured x; for all runs was seen to increase as the instability developed, then drop
after saturation to some finite level. In order to get a steady state result, measurements
ol x; were made aftef saturalion where possible. Since saturation was just reached by the
end of the run for 7; = 3, and not reached at all for 7; = 2, the x; curves for these runs

are almost certainly influenced by the effect of the instability (longer runs may be helpful
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here). For the 7; = 4 case, the x; measurement thus represents essentially the saturated
state value, although some effect of the linear growth phase may still be present. The
increase in x; with 7; is most marked towards the outside of the torus (r/a < 0.4) for
these parametérs. The data at larger r (r/a 2 0.55) is typically omitted because of
poor statistics caused by relatively few marker particles there. The x; value at small r
(r/a < 0.1) is somewhat suspect for the same reason (a fixed density near » = 0 implies
that the number of particles vanishes there).

The temperature and density profiles are observed to relax much more rapidly as
7; increases. This is consistent with the observed greater growth and greater measured
transport. Likewise the relaxation of the temperature profile for the 7; = 4 toroidal case is_
much more pronounced than that for the n; = 4 cylindrical case. Note that the observed
temperature profile relaxation in the toroidal run is global rather than local, indicating a
global process of heat transport is responsible. Simulations to longer times show that as
the temperature.proﬁle relaxes, 7; is remains nearly constant with radius.

The toroidal runs show a real frequency w that is nearly independent of radius, with an
eigenmode structure that is bl:.'O&d compared to the distance between rational surfaces. By
contrast, runs in cylindrical geometry were radially localized with significant variation of
the eigenfrequency across r, as well as a lower value for the spectral density of electrostatic
fluctuations. Clearly, the toroidal effects (most notably the coupling of modes at different
rational surfaces) have led to the formation of a global “quasimode”, evidenced by the
nearly constant (in ) eigenfrequency and growth rate. The smooth variation of the mode
intensity co.ntours also supports the view that a global quasimode has formed, consistent
with the results of section III.

The observation of a global quasimode in toroidal simulations is consistent with theo-
retical expectations.”®2® A more precise comparison is difficult due to the approximations
typically made in theory (cf. Section III). Namely, reduction of the equation for electric

potential to an ordinary differential equation in the extended poloidal variable 8 elim-
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inates all information about radial variation (translational'\invariance). This treatment
results in a quasimode that eitends radiafly o?ef many rational surfaces but is otherwise
of undetermined radial width. Only by taking higher order effects (typically not done)
into account can a finite radial width be attained. Such effects, which ser‘ve'to decorrelate
the mode radially, include tixe variation of equilibrium quantities such as w* with radius
or nonlinearities. A radial mode width on the order of (dlnw*/dr)~! or (d?Inw*/dr?)~1/?
is thereby expected,?® implying that as 7; is increased the global mode width decreases
(everything else being equal). This argument is in conflict with the simulation results
presented her'e.‘ As 7; is increased the mode width is seen to in fact increase (cf. Figure
17). Of course the mode strength increases dramatically with increasing 7;, which will
also have an effect on mode width. )

In the 7; = 3 and 7; = 4 runs the radial extent of the rﬁode is sufficiently large.so
that the absolute value of the frequency exceeds that of the local (initial) diamagnetic
drift frequency |w?| for 7/a R 0.4. Although this must be viewed with some caution as
the profiles are evolving in time, it represents a possibly important mechanism for energy
transport.. In the interior region, where |w| < |w}|, the global mode grows by extracting
kinetic energy from the (hotter) plasma there. In the outer region where |w| ~ |w!| the
_ rﬁode releases the wave energy to the colder plasma there. ‘The net-effect is that the
global mode can provide a conduit for heat flow (i.e. a heat pipe) from the interior to the
exterior of the plasma. This heat pipe effect may be an importan’t factor in the observed
values for x;, and explain the difference between tranéport in the toroidal and cylindrical
systems. |

In a cylindrical system there is no global mode structure; each eigenmode is loca.lized
so that heat transport is only local. Further, since each eigenmode is independent the
eigenmode width scales with the ion Larmor radius. Thus the heat transport decreases

with radius (i.e. decreasing.temperature), and on a global scale is random rather than

‘coherent. This view is consistent with the simulation results presented here and by other
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authors.*!

In a toroidal system, however, two effects combine to dramatically elevate the heat
transport while giving it a global character. These effects are (a) the global nature of
the mode caused by poloidal mode coupling, and (b) extension of the global mode into
locally stable regions. Recall that diffusivity is measured in units of [d]?/[t], where [d] is
distance and [t] is time. The enhanced global nature of the mode increases the distance
heat can flow, while the extension of the mode into regions where it is heavily Landau
damped increases the rate (1/[t]) at which the wave energy may be transferréd to the
. plasma. Both of these effects may contribute to the elevation of x;. In our simulations
the radial mode width is observed to decrease with decreasing 7;, and the observed heat
transport 1s correspondingly reduced, consistent with this explanation. A related effect
seen in the 7; = 4 run is a jump in x; to the outside of the rational surfaces in the system.
This can be interpreted as a local heat sink in light of the comments made above.

Finally, we als.o observe the mode strength to increase substantially near the threshold
7 in the presence of kinetic electrons. Consequent transport is also substantially higher.
In the kinetic electron run we can compare the ion thermal diffusivity x;, electron thermal
diffusivity x., and ion particle diffusivity D;, as the free movement of electrons allows for
both electron heat transport as well as ambipolar motion of both species. As mentioned
previously, we found in this case that x; > x. > D;, where D; ~ D,.. In our normalization
D; can be considered the same as the convective ion heat transport coefficient, while x;
or X. represent the sum of the convective and conductive ion or electron heat transport
coefficient, respectively. However, in most of the simulation cases the convective contri-
bution to the heat transport is much smaller than the sum; thus in these cases x; or x.
are effectively the measure of the conductive heat transport. Both the convective and

conductive transport are enhanced due to the fluctuations.
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V. Summary

In conclusion, particle simulation of toroidal plasmas has been used to observe drift/trapped-
particle driven turbulence and transport as 7; is increased from zero to large positive
values. For toroidal runs the value 1 < n; < 2 marks the transition from a predomiﬂantly.
electron drift wave fluctuation spectrum‘to an ion drift wave fluctuation spectrum. The
transition also marks the change from little to large ion heat transport. These results are
consistent with the standard theory.?®*? OQur simulation runs involving kinetic electrons
show comparatively higher level of fluctuations and thus also higher level of transport.
This effect is worth merﬁ:ioning, as most theoretical and computa.tional work to date em-
ploy the adiabatilc electron respénse or the non-dynamical electron (1 — i6;) responsé for”
conceptual and analytical simplicity. |

Our simulation run with kinetic electrons for 7. = 7= ‘0 shows clear evic'lencgiggf‘;’t(he
theoretically predicted toroidicity-induced mode. We see activity at several vfrequencie‘s
below tﬁe diamagnetic frequency, separated by unoccupiea “bands” in frequency space.
" The loivest frequency mode occurs at a real and imaginary frequency close to that pre-
dicted by linear theory. Further, these modes show the radial elongation and outward
ballooning characvteristic of a toroidicity-induced mode. |

For ; > 1 the plasma is shown to be stroﬁgly unstable to temperature gradient
driven modes. Simulation runs in a toroidal system show marked differences from runs
in a cylindrical system. The eigenfrequency in the toroidal runs was found to be nearly
independent of the radius over distances long compared to the rational surface spacing.
For large 7; runs we observed the growt}} of radially extended‘, phase-locked rﬁodes (i.e.
“streamers” ), which broke up in the nonlinear phase. The heat transport peaked during
the instability, then dropped to a (near) steady state value. The measured y; in the
toroidal systefn was enhanced by nearly an order of magnitude over that in the cylindrical

system. Further, the toroidal x; is seen to be an increasing function of radius in agreement

with experimental observations.
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We argue that the observed heat transport is directly linked to the observed global
quasimodes that are formed in the presence of strong poloiaal mode coupling. The de-
velopment of structures that are very long radially implies that energy can travel long
distances, giving rise to an increase in x;. Further, at high values of 7; the mode can
be robustly unstable yet stretch into a region of high dissipation (through ion Landau
damping), increasing the rate of energy transfer. These observations may qualitatively
explain why the heat conductivity x; in a torus tends to be a increasing function of radius

_as 7; is raised, as seen both in our simulation runs and in experiment. On the other hand,
nontotoidal simulations (slab or cylinder) or even the so-called annular torus (localized
portion of a torus) simulations do not show an increasing x; as a function of minor radius.
In slab or cylindrical simulation, the local value of the ion Larmor radius p;(z) determines
the localized mode width. Since p; is a decreasing function of radius due to the effect of
the temperature gradient, the value for x; is also observed to decrease with r.a.dius.

In a more realistic system, modes are distributed beyond the radial region we consid-
ered in the present investigation. In this case we anticipate the rise of x; with radius to
continue. A physical plasma also possess a large number of toroidal Fourier (n) modes,
which will have an effect on the results reported here. When multiple toroidal n-modes
exist, particles simultaneously experience more than one of the coupled (in m) quasi-
global modes seen in our simulations. This should lead to a smoother radial variation of
the heat conductivity than in the present case (cf. Figure 27) as well as a higher level of
overall transport. Note, however, that the increase in ’x; caused by the presence of many
n modes should be mitigated somewhat (perhaps entirely) by the decorrelation caused by
nonlinear coupling of the modes. These expectations are confirmed by simulation runs
involving multiple n modes, to be presented in a later work.

The simulations performed thus far with TPC appear to agree with the theoretical
predictions in regimes where the linear effects dominate and the radial inhomogeneities

are not too severe. In other regimes where the physics is much less well understood,
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important links between transport and fluctuations are seen. Several improvements to
the algorithm are currently underway, which will reduce tihe cost in running the code as
well as iinprove accessibility to actual tokamak parameter regimes. We do not, however,
expect that thé'physical characteristics of the fluctuation and transport processes reported

here will be significantly changed by these improved algorithms.
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profile configuration fluctuation o

n; =10 toroidal toroidal drift, trapped e, 1+

i =0 cylindrical slab-like drift

=1 toroidal , ‘toroidal drift, trapped e~,:*, 7; mode
n=1 cylindrical slab-like drift, 7; mode

7 =1,23,4 toroidal, Boltzmann e~ response  -| fluid-like drift, trapped e~,it, 7; mode
= cylindrical, Boltzmann e~ response flurd-like drift, 7; mode

Table 1: Summary of simulation runs
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reference value

parameter

n = %9

m = (£)5-14
m/M =1/100
(T./T) = 1
(we/82;) = 10.
Ae/ps = 1.
(pi/a) ~ 0.008
(;Cgp,) ~ 0.2
en(= %’:—) ~ 0.1
5(==)~ 1.0
(pi/Ln) ~ 0.025

T~3

Smn ~ 0.03 (in center)
Sr ~ ().004 (in_center)

toroidal mode number

poloidal mode number

aspect ratio

ratio of electron to ion mass

ratio of electron to ion temperature

ratio of plasma to ion cyclotron frequéncy

ratio of Debye length to ion Larmor radius
ratio of ion Larmor radius to minor radius
perpendicular wavenumber

toroidicity parameter

shear parameter

ratio of ion Larmor radius to density scale length
ratio of circumference of a circle to its diameter
Distance between rational surfaces

Radial grid spacing.

Table 2:

Parameters for simulation runs
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Figure Captions

Toroidal coordinate system.

. Schematic of (r, 8) grid for typical case.

Eigenmode structure of the potential: (a) Simulation eigenfunction for the m =
2 even mode. (b) Theoretical eigenfunction from shooting code. The solid lines -

represent the real parts and the dashed lines represent the imaginary parts.

Simulation parameters :(a) Initial electron density profile, (b) nonuniform grid, and
(c) number of particles per cell. The.grid and density profile are plotted versus
radial variable; the particles per cell is plotted versus radial cell number. The mode

rational surface locations are indicated by the marks above the nonuniform grid

ticks.

Radial variation of simulation quantities, from top to bottom: (a) safety factor g,
shear parameter (3), toroidicity parameter €,; (b) ion Larmor radius density p;, ratio
of ion Larmor radius to density scale length p;/L,, ratio of shear length to density
scale length L,/L, all for 7; = 1; (c) same as (b) for 7; = 4. Each is plotted versus

r/a.

Frequencies and power spectrum obtained from spectral analyzer: (a) Spatially
integrated power as a function of w/{l;. (b) Spectral density maxima versus w/2;
for the m = 7 mode. (c) w/Q; at maximum power as a function of radius for the

m = 7 through m = 11 modes. The arrows mark the location of the mode rational

surfaces (¢ = m/n = 7/9 through 11/9).

. Interferograms of the potential for the (a) toroidal run and (b) cylindrical run. These

are plotted versus r for the m = 12 mode, both real part (solid line) and imaginary
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10.

11.

12.

13.

14.

15.

(dotted line). (c) Amplitude interferogram of the potential plotted versus 6 for a

given value of r.

. Spectral density for kinetic electron simulation, n; = 1: (a) Contour plot of the

spectral density as a function of (r,w). The solid line shows the effective (ensemble
averaged, m — n¢(r)) wr,/. (b) Spatial average of the spectral density plotted

versus w/{};, logarithmic axes, positive w.

Spectral density for kinetic electron simulation, 7; = 1: (a) Contour plot of the -

spectral density as a function of (r,w). The solid line shows the effective (ensemble

- averaged, m — nq(r)) wy;/Q;. (b) Spatial average of the spectral density plotted

versus w/{);.

Profiles for kinetic electron simulation, 7; = 1: (a) Electron density and (b) tem-

perature versus r/a.

Profiles for kinetic electron simulation, 7; = 1: (a) Ion density and (b) temperature

versus 7/a.

Ion particle diffusion (D;), ion and electron heat transport (x; and x.) for 7 = 1

run with 400k ions and 400k drift kinetic electrons.

Spectral density for adiabatic ~lectron simulation, 7; = 1: (a) Contour plot of the
spectral density versus (r,w). (b) Spatial average of the spectral density plotted

versus w/(Q;, logarithmic axes, positive w.

Profiles for adiabatic electron simulation, 7; = 1: (a) Ion density and (b) tempera-

ture versus r/a.

Spectral density for adiabatic electron simulation, 7; = 2: (a) Contour plot of the
spectral density versus (r.w). Notice the global mode at a single frequency. The
solid lines represent w* for this run. (b) Spatial average of the spectral density

plotted versus w/€Y;, logarithmic axes, positive w.
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16.

18:

21.

22.

23.

Spectral density for adiabatic electron simulation, 7; = 3: (a) Contour plot of the
spectral density versus (r,w). Notice the global mode at a single frequency. The
solid lines represent w* for this run. (b) Spatial average of the spectral density

plotted versus w/Q;, logarithmic axes, positive w.

. Spectral density for adiabatic electron simulation, 7; = 4, toroidal geometry: (a)

Contour plot of the spectral density versus (r,w). Notice the global mode at a
single frequency. The solid lines represent w* for this run. (b) Spatial average of -

the spectral density plotted versus w/{l;, logarithmic axes, positive w.

Spectral density for adiabatic electron simulation, 7; = 4, cylindrical geometry: (a)
Contour plot of the spectral density versus (r,w). Notice the separate peaks present
for each poloidal mode m. The solid lines represent w* for this run. (b) Spatial

average of the spectral density plotted versus w/§;, logarithmic axes, positive w._

. Growth rate versus n; simulation.

. Representative plots of electrostatic field energy for growing modes in (a) 7; = 2, (b)

n: = 3, and (c) 7: = 4. Notice exponentiation of field energy followed by saturation.

Potential contours for the toroidal run at (a) the beginning of linear growth, (b)

the end of linear growth with streamer structures, (c) saturation with the start of

streamer breakup, (d) saturation after streamer breakup. -

Profiles for adiabatic electron simulation, 7; = 4, toroidal geometry:(a) Ion density

and (b) temperature versus r/a.

Profiles for adiabatic electron simulation, eta; = 4, cylindrical geometry:(a) Ion

density and (b) temperature versus r/a.

. Heat transport: comparison of x;(r) versus r/a for cylindrical and toroidal runs.

800k ions, adiabatic electrons, 7; = 4
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25. Heat transport y;(r) versus r/a for various values of 7; in toroidal runs. Notice

dramatically reduced transport for 7; = 1.

26. Comparison of TPC 7; = 3 simulation to JT-60,%® TFTR,'® DIII-D*® and JET*

experimental heat transport. Simulation used 800k ions, and adiabatic electrons.

27. Comparison of TPC 7; = 4 simulation to JT-60,3% TFTR,'® DIII-D* and JET*°

experimental heat transport. Simulation used 800k ions, and adiabatic electrons.
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