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Abstract

Particle simulation using a nonlinear adiabatiq electron response with two streaming
ion species and nonlinear theory are used to study the collisionless thermalization of ion
beams in a hot electron plasma. The slow beam or subsonic regime is investigated and
the criterion for the transition from predominantly light ion to predominantly heavy

ion heating is developed. Long-lived ion hole structures are observed in the final state.
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I. Introduction

In a plasma with a potential sheath or double layers, such as occurring along auroral mag-
netic field lines in the upper ionosphere, ion species with different charge to mass ratios
are accelerated to different streaming velocities. The streaming velocities of the ions can
easily approach the ion acoustic speed since the sheath and double layer potential drops are
determined by the electron temperature. When the plasma source of the accelerated ion is
.at a low temperature, as in the case of the ionosphere, this acceleration mechanism natu-
rally leads to the generation of ion beams with velocity spreads small compared with their
streaming velocities. Such multiple cold ion streams are unstable to the ion-ion acoustic
instability. Satellites observations’? shows that O ions are preferentially heated to Ht ions
within the auroral cavity region. This linear ion-ion acoustic instability or ion-streaming
instability leads to wave generation and to ion-heating problems within the magnetosphere,
and there is a growing field of interest with numerous recent works are being published.
Bergmann and Lotto® studied the stability of.O*'-H+ outflows in the ionosphere and
reported that the O*-H* two stream instability is a key mechanism for the heating of the
upflowing auroral ions. Dusenberry and Martin? did a numerical study using various particle
distribution models for the auroral ions and characterized the excited mode either nonres-
onant ion-ion two stream mode or resonant acoustic mode and suggest that wave-particle
interactions with these waves are responsible for the parallel temperature heating of the
auroral ions. Subsequently, Dusenberry, Martin, and Winglee® extended their previous work
to oblique modes and carried out linear analysis varying the relative ion concentration, ion
mass, and T, /T;. Dum® carried out extensive linear and quasi-linear analyses of beam-plasma
and two stream instability from the hydrodynamic to the kinetic regime which is applicable

to instabilities with ion beams. Winglee et al.” studied the heating of ion beams produced



by ion-ion acoustic instability by using 2-D particle code with artificial electron-ion mass
ratio m/m; and exi)la,ined the heating as the net transfer of energy from the light ions to
the heavy ions.

More recenﬂy Schriver et al.® and Schriver and Ashour-Abdalla® both performed parti-
cle simulation using guiding-center particle code with purpose of finding the range of the
nonlinear behavior of the ion-ion acoustic modes for varying the most relevant physical pa-
rameters in the auroral zone® and in the plasma sheet boundary lay;er respectively.® Chen and
Ashour-Abdalla'® also applied the same approaches to study the heating of the polar wind.
Karimabadi, Omidi and Quest!! carried out a simulation using 2-D hybrid-particle code and
repofted the saturation mechanism of the ion-ion acoustic instability is ion trapping in the
two degenerate obliquely propagating waves.

Here we study numerically and analytically the nonlinear evolution of the ion-ion acoustic
turbulence along with the linear analysis. We considered the weakly unstable or subsonic
case where only the parallel propagating one dimensional turbulent heating is pronﬁnent.
We consider the diversion of the free energy from the streaming ions into the heavy and light
ion species. We attempt to clarify fhe three stages of the evolution and give several formulas
for the types of collective thermalizations occurring in subsonic regime where the electrons
have a su]asta,ntially high temperature. We obtained the results usinga semi-implicit hybrid
particle code that allows the use of massless electrons. The semi-implicit time stepping allows
the study of the long-time behaviour where we report the coalescence instability results in
the formation of a few large scale structures. The final long time structures appear to be

the phase space holes of Dupree.!?



II. Ion-Ion Acoustic Wave Stability and Simulation
Equations

A. Linear Stability Analyses

The linear kinetic dispersion relation follows from the linearized Vlasov equations for the
two ion species and the electrons. One ion species is designated as light (L) and the second
species as heavy (H) where in the numerical examples we consider the case of hydrogen
(H*) and the heavy ion species of singly ionized oxygen (Ot). By following the standard
procedures the linear kinetic dispersion relation governing the waves and their stability is
given by

1
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where the argument of plasma dispersion function Z(¢) for electron, light ions and heavy
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Here vpr, vpy are the light and heavy ion streaming velocities with respect to the laboratory
rest frame in which the electron drift velocity, if any, is a negligible effect. For brevity, we will
also introduced the subscript 1 for the light ion quantities and 2 for the heavy ion quantities.

For the ion-ion acoustic instability it is appropriate to introduce the space time nor-
malization & = w/wyr, and k= kApe, where wyy, is the light ion plasma frequency. The
normalized kinetic dispersion relation can be written as

(D) = 1+ [1+82E)] + 25 2 [148:2(0)]
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where n;r, n;p is the equilibrium number density of light and heavy ion species and 7 = T, /T;.
This kinetic dispersion relation is compared with the hot electron-cold ion fluid dispersion
relation in the limit of

p, &r>»1 and &<l
where the dispersion relation (4) becomes

- 1 1 mr nig 1
ko) =1+4=——-——= - % =0 °
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where velocities ¥py,, Upy are normalized by Apewpr. We define the hydrodynamic beam

stability parameter n as

. = n;g mp, — namy (6) .

niL Mg NiMmg

which is less than unity due to mg; > my unless there is only a trace of the light ions?"

The principal roots of the kinetic dispersion Eq. (4) are shown in Fig. 1 for the reference
parameters given in Table L. Four separate branches of kinetic branches are found. Among
these four princiéal roots there exist only one unstable mode (denoted as I) and there is also
one marginally stable mode (denoted as III) for wavenumbers from kAp. =0.196 to 2.50. The
other two roots (II, IV) in Fig. 1 are damped for all wavenumbers. For comparison, we solve
‘the dispersion relations in the fluid limit where there are also four fluid modes which can be
matched with corresponding kinetic modes in Fig. 2. The analyseé shows that in vthe fluid
limit, modes I, II, and IV have finite imaginary part while mode III has zero imaginary part
for a wavenumber from kAp. = 0.431 to 2.384. The three modes (I, II, and IV) with finite
imaginary part have degenerate real frequencies for a wavenumber which give zero imaginary
part for mode III. The unstable kinetic and fluid modes are compared in Fig. 3. The kinetic
mode has a smaller growth rate than the fluid mode due to the linear ion Landau damping
but a wider range of unstable wavelengths than the fluid mode.

For large kAp. the fluid mode I has a real frequency above wyr, where wyy, is the light

ion plasma frequency. To see how the growth rate of the most unstable mode varies with
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the light ion fractional population density the linear dispersion relation (4) is solved for the
nor/no parameter variation. Fig. 4 shows that growth rate has its maximum when light ion
species has equal density with heavy ion species. In Fig. 4 the mass ratio between heavy and
light ion species is kept as my/mr=16. Another parameter variation of interest is the mass
ratio (mry/mygr). The linear analysis results for the heavy ion mass ratio variation while light
ion mass is fixed are given in Figs. 5 and 6 showing that the growth rate has a logarithmic

dependence on m./my.

B. Simulation model and the Algorithm

The particle simulation code used to study the evolution of the two-ion acoustic instability
is based on the quasi-neutral particle model®® which modifies the Poisson solver to take into
account the importance of the near quasi-neutrality. In this model for electrons, we have
only thermal adiabatic electrons n. = ngexp(ep/T.) in the massless limit, which rapidly
cancels the charge separation due to the ion density fluctuations. By eliminating the electron
dynamics we gain a large numerical advantage i.e., large time step satisfying wpAt < 0.5
instead of the condition wp.At < 0.5 to resolve high frequency electron plasma oscillations.
In giving up the electron oscillations and parallel electron velocity distribution we loose a
weak flattening of the very low velocity part of ele(;tron velocity distribution function. The
adiabatic electron response appears in the Poisson solver and remains nonlinear. The ion
dynamics determine the low frequency collective fluctuations with the ions advanced in time
by the standard 1-D leap frog particle pusher. The field solver which supplies the electric
force to the particle pusher is the 1-D iterative Poisson equation solver. Since th(; electron
response has its intrinsic exponentially strong nonlinearity and is a source term in the Poisson
equation several iterations of the Poisson equation solver are necessary in the nonlinear stage.

The iterative 1-D Poisson solver with Boltzman electron

€

ne = noexp (?f) (7)
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is obtained by rewriting the charge density

' 0% B ep
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which is exactly rewritten as

%o 4wnge?

Oz? T.

e e ‘
p = —4rme [n,- — ng exp (%j) + ng (1 + %) — no} . (9)

By subtracting linearized Boltzman electron response from both sides of the equation and
including the Debye shielding term in the left-hand side of Eq. (8) we can minimize the
iteration at each time step required to solve Eq. (8). The final form of iteration scheme is

82¢(n+1)

0z?

o ) eo™ ON
- 47rnoﬁ-<p(”+1) = —47re[n,(- ) - no] — 4meng Hl + (';,e } — exp ( S;e ,- (10)

with boundary conditions ¢(z 4 L,) = ¢(z).

The reference simulation parameters, as given in Table II are the system length. L, =

128A, light ion stream velocity vpr = 0.045Awpe, heavy ion stream velocity vpy = 0.0, -

pdrticle size a, = 1A, mp/m, = 183.6, mg/me = 16 X 1836, initial temperature ratio
T./T; = 100, total run time is NAt = 4000 x 10wp'el, total number of particle is ny =

nor + noy = 25600.

C. Qualitative Description of the Evolution of the Ion Acoustic
Instability
To see hoW the ion thermalization depends on the; light to total ion density ratio nor/ne
a series of simulations are performed with other simulation i)arameters held fixed. The
measured saturated heavy ion temperatures are shown in Fig. 7 along‘with the light ion
temperatures for the fractional densities nor/no = 1/2, 2/3, 3/4, 4/5. As nor/no becomes
larger the heating ratio of the heavy ion temperature increases rapidly reaching Ty ¢/ Th: =
29.4 at nor/no = 4/5, where Ty is the final heavy ion temperature and Tl; is the initial

heavy ion temperature. In contrast the heating of the light ion temperature is essentially
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constant with Tp;/Ty; ~ 12. The final heavy ion temperature level Ty ¢/ Ty; for nor/no = 4/5
is about three timeé‘la,rger than that of Twy/Th: for nor/no = 1/2. The difference in the
time behavior of the thermalization in these two case is shown in Fig. 8 for the heavy ion
temperature and in Fig. 9 for the light ion temperature.

To understand the saturation mechanism of the heavy ion temperature we look at the
phase space (z,v;) evolution along with the plot of the spatial variation of electrostatic
potential at several times of interest in the evolution. Five time values are selected in the
heating sequence and shown in Figs. 10 and 11 for the ngr/ne = 3/4 case (n = 1/48).
At t = 0 the light and heavy ion streams are loaded with equal temperatures as shown in
Fig. 10a,b. At twpe = 2000(tw,r = 47), in Fig. 10c which is in the linear stage, the phase space
(z,v;) plot shows that both the light and heavy ion species are driven by the fastest growing
linearly unstable m = 8 mode with kAp. = 4.5. In Fig. 10d, we show the spatial variation
of exp(ep/T.) at the same time and see that at the position of the negative potential wells
where the density has a depression there exists a corresponding cavity structure in phase
space. At twpe = 4000(tw,r = 93), in Fig. 10e, which is the beginning of nonlinear stage
where linear m = 8 mode coalesces to the m = 6 mode. At tw,e = 10,000(tw,;, = 233), in
Fig. 11g, which is in the middle of nonlinear heavy ion heating process, modes are coalesced
into m = 3 mode. At tw,, = 40,000(tw,r, = 934), in Fig. 11i, heavy ion temperature reaches
its saturation level with m = 2 coalesced mode. Comparing Fig. 11h and Fig. 11j we see
that the location of the coalesced phase space vortex has its cavity exactly matched with the
electrostatic potential wells which are marked by arrow in Fig. 11h,].

To have a closer look at the phase space evolution separate phase space diagrams for each
ion species along with the corresponding spatial behavior of ep/T, are made in Figs. 12, 13
and 14. At the linear stage tw,e = 2000(tw,;, = 47) (Fig. 12a) we see that both the light
and heavy ion species are accelerated by the electrostatic field. A substantial fraction of the

light ion species oscillate around the minima of the electrostatic potential. The ions cross



the trapping separatrix as the waves grow in amplitude but are excluded from the interior
of the vortex by the KAM surfaces that occur in the single particle Hamiltonian H(p,,z,t).
From the sequence in Figs. 12, 13, and 14 one sees that the light ion species are strongly
accelerated only during the linear regime. The heavy ions having ripples in their phase space
stream with an amplitude éompara,ble to its thermal velocity and oscillates with the same
frequency as the light ion. At tw,, = 3000(tw,z, = 70) in Fig. 12b, which is in the beginning
of nonlinear stage the amplitude of the ripple in the heavy ion stream becomes more than

twice the value in its linear stage. The linear mode structure of the m = 8 shown in both

ion sp ecies is  experiencing slight distortion. At twy, = 4000(tw,r, = 93) in frame (c), which -

is at the middle of nonlinear heavy ion heating process, the mode with m = 8 has coalesced
to the mode m = 6. The amplitude of the heavy ion ripple is now tripled and its.linear
mode structure begin to loose its shape. From tw,, = 8000(tw,;, = 187) in frame:(d) to
twpe = 40,000(tw,r = 934) in frame (f) the coalesced modes (m = 5 ~ 6) are marching to
longer wavelength (m = 2 ~ 3) that are domination at the saturation stage. Both the light
and heavy ion streams ha_,ve lost their linear wave structure completely and the heavy ion
species becomes thermalized uniformly over the phase space. The‘ light ion species partially
preserves their low m mode structure with long-lived cavities in its phase spaée. In the high
amplitude regime the light ion bounce or trapping frequency wy, =k(e@/mg)'/? is faster
than the growth rate v, the phase space cavities are required by the KAM surfaces in the
single particle Hamiltonian . The adiabatic invariance of the single particle action J (H,t)
given by

J = }{ [%(H — ep(z,t)) v dz

which prevents the ion from filling the cavities when v < wyz, = k(ew/myr)'/2. All the phase
space cavities shown in Figs. 12 and 13 are matched with the negative potential wells of
e@/T, in Fig. 14. The depth of the potential well increases from the linear state to the

nonlinear heating stage and then becomes shallow again in the slowly decaying state after
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saturation.

D. Evolution of the Wavenumber Spectrum

The time evolution of the average wavenumber (m), . in the spectrum is computed and
shown here for the nor/ng = 4/5 and ngr/ne = 1/2 cases. The evolution in Fig. 15 shows
the rapid convergence of the average wavenumber to low-m number modes. The lowest

average wavenumber is (m)_ . = 2.5 for both of the two different light iom concentration

ave
ratios. But the number of periodic cycles required to reach the lowest (m) number is larger
for the nor/ne = 4/5 case than for the nor/no = 1/2 case. For these cases the most
unstable electrostatic mode is m = 9 for nor/no = 4/5 and m = 7 for nor/ne = 1/2. The
time evolution of the electrostatic field energy of the most unstable modes and also of the
m = 2 modes are given in Fig. 16. The fastest growing mode energy decays by two order
of magnitude after trapping of the particle at the end of the linear growth. While the most
unstable mode m = 9 experiences strong damping, the lowest persistent mode, m = 2 reaches
a quasi-steady state in both cases.

The frequency modulation appears during the field energy saturation. For the ngr/ng =
1/2 case, the m = 2 mode saturation level has weak damping and a weal modulation of
the saturation level. The modulation with a period of about ten times the basic period is
much stronger in the case of nor/ng = 4/5. Figure 17 shows that the longest m = 1 mode
in the system is modulated by the short wavelength mode for the nor/no = 4/5 case and
the nor/no = 1/2 case also shows evidence of wave modulation. These wave modulations
are shown clearly by the two time correlation spectrum for the most unstable modes: the
m = 9 for nor/no = 4/5 and the m = 7 for nor/no = 1/2 in Fig. 18. Beat wave formation
are shown in both real and imaginary part of the two time correlation function.

The heavy ion heating mechanism appears to be the result of the trapping oscillation

and the nonlinear modulational instability which generates a modulation frequency below
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the heavy ion bounce frequency. The heavy ion bounce frequency is less than the heavy ion
plasma frequency dﬁring the nonlinear heavy ion heating process (Fig. 19). At saturation
the wave dispersion w(k) shows that the low m-number dominance of wave propagation and

the dispersive structure of high m-mode due to nonlinear ion Landau damping (Fig. 20).

ITI.. Dynamics of the Thermalization Process

The evolution of the ion-ion acoustic system divides into three stages. Here we analyze
these stages in some detail. The reference case shown in Figs. 10-11 is used for some of the
application of the formulas although most of the consideration given apply for all regimes

with the beam parameter 7 < 1 which excludes the nearly pure heavy ion plasma.

A. Linear Stage

During the linear growth phase the classical beam-plasma instability dynamics 6&cuis as

modified by the presence of the electron dielectric function °

L ,
(k) =1+ (11)

kX%,
produced by the polarization of the thermalized electrons. The plasma polarization strongly
reduces the strength of the long wavelength electric fields but has only a weak effect on
‘the smé.ll scale modes kApe > 1. In the early phase of the subsonic regime (¢, > vp =
vpr — vpy) the reduction from eo(k) is small since the fastest growing modes have k ~

WpL/VD > WpL/CsL /\;1; Col = (Te/m,-[,)l/2 & \pi. In addition to the dielectric_ shielding

there is a weak dissipation produced by wave resonances with the very low velocity electrons

it = (5) w00 (52) = (5)" (2)” (2

where we use k >~ w,;/vp for the unstable spectrum. We completely neglect this weak

giving

dissipation of the waves into the electron distribution. Retaining the electron resonance
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would only produce a small flattening of the electron distribution f.(v) for |v| < w/k < c,.
In the supersonic regime vp > ¢, this electron heating becomes appreciable.
In the early hydrodynamic beam-plasma phase of the system the evolution is controlled

by the beam parameter through Eq. (6)

For a heavy-light ion mixture the beam parameter is small unless the plasma has only a
trace of the light ion density ny/ng < mp/mpy < 1. We exclude this unusual case (7 > 1)
“here.

The phase velocity at the critical condition for the ion-ion beam-plasma instability is

given by :
(w) _ v + n1/3v1
k/. 1+ nl/3
which is determined by the critical condition de/0w = 0 with Eq. (5) and is independent

~ vy 4 73 (vy — vg) (12)

of the electron polarization eo(k). For the critical beam plasma mode in Eq. (12) to be in
the fluid regime the shift of the phase velocity from v, must be out of the thermal spread
vre = (Ty/ mg)l/ ? of the heavy ion species. This condition gives the threshold condition for
the beam-plasma instability 7'/%vp > vy, = (T3/m2)"/? where vp = |v; — vz|. When this
condition on 7 > (vg, /vp)® is well satisfied the instability is in the hydrodynamic regime.
As the thermal velocity spread increases in the heavy ion species so that vy, /vp R /2 the
instability goes into the slow-growing kinetic regime where the growth rate is determined by
Of/0v at v = wy/k.

The simulations start with ion distributions in the hydrodynamic regime vy /vp < 03,
In this regime the fastest growing mode (k,¥m) has a phase velocity closer to the speed of
the heavy ions by approximately one half the difference of the velocity (w/k — v;) given in

Eq. (12). Namely, the fastest growing mode has the speed

1 1/3
(3), 2m+3(3) w (13)
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and the maximum growth rate is

\/3' 1/3
tm =22 (1) ol — v /) (14)
at the wavenumber
w
ko, = U—S(l —vp /2 ). (15)

Equations (13)—(15) are the well-known beam-plasma equations'* applied to two ion species
(heavy and light) streaming system. Mode‘s with k& < k,, are also unstable but have a
different physical origin. For the nonresonant modes k < k,, the light ion plasma provides
a negative dielectric response €;(k,w) = eo(k) — w? /w? < 0 along the resonance w = kvp.

Thus, the heavy ion plasma oscillations at w,g become unstable with

1/2
w = kg & j—ea L (16)
A/ —51(k, k’()D)

In Eq. (16) e; < 0 for £ < km given in Eq. (15). The resonant mode k,, with the mak@mum

growth given in Egs. (13)~(15) occurs in the limit &;(k, kvp) — 0 in Eq. (16).

For the reference case shown in Figs. 10~11 for the hydrogen-oxygen mixture (ny/ng =
3/4,n3/ng = 1/4) the beam parameter is n = 1/48 and the expansion parameter is n/3 =
0.276. The hydrodynamic condition is well satisfied since vp = 0.045Aw,e = cop/2 and
vy, = 1/4vr, 2 0.003Awp,. In the phase space plots the rest frame is chosen as the oxygen
drift frame so that v; = 0 and v; = vp = 0.045Aw,.

For the reference case in Fig. 10 the phase velocity of the critical mode from Eq. (12)
is (w/k).. = 0.216vp = 0.0097Aw,,. The fastest growing mode according to Egs. (13);(15)
has kn = (wp1/vp)(1 — v} /c2)/? = \/Bw, /¢, corresponding to kAp. = 1.5 or using kA =
2rmA /Ly to m = 8 in the periodic simulation box. In the hydrodynamic approximation the
growth rate is v/w,; = (52@)2 (0.219) = 0.164 where wy; = wye(n1me/nomy)? = 0.0202w,,.

In Fig. 10 the evolution of the two-ion streams in the phase space is shown. Frames (a)

and (b) at ¢ = 0 shows the initial Maxwellians in the oxygen rest frame (v; = 0) with the
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drift velocity vp = 0.5¢, = 0.045Aw,.. Frame (c) at twp,e = 2000(twpr, = 47) shows the
beginning of the trapping of the light ions which ends the exponential growth of the beam
mode. Frame (e) at tw,, = 4000(tw,;, = 94) shows the trapping of the heavy ions and the

thermalization of the light ions.

B. Trapping Phase of the Evolution

The linear growth rate of the beam mode continues from the initial noise level until the
resonant ion orbits cross the separatrix becoming trapped in the negative potential wells of
@(z,t). Here we calculate the trapping amplitudes for the light and heavy ions.

In the wave frame vy = w/k the single ion Hamiltonians are
1 N2
H= 3 me(v')* + eap(t) cos(kz) (17)

where v’ = v, — v, and « stands for ion species. Neglecting the initial thermal spreads,
the typical ion velocities are taken as v; and v, and the trapping condition for Hamiltonian

Eq. (17) is H = e, giving for the light ions the critical wave amplitude

1 myvd /2
tr __ 2 A~ 1YD
€Yy, = §m1('l)1 - ’U¢) = '(—l—m—); (18)
and for the heavy ions
1 man?3vd /2
tr _ 2~ 277 vD
epy = §m2(02 - ’U¢) - (1 + ,’71/3)2 (19)

where we use the critical phase velocity in Eq. (12) to calculate the quantities (v, — vg4)2.
Using the phase velocity from Eq. (13) rather than Eq. (12) lowers the trapping amplitude
for the heavy ions to el ~ 0.2myn%3v}. The phase velocity vy inferred from the center
of the trapping vortices in Fig. 10c is vy ~ 0.01Aw,. which is in better agreement with the
value given in Eq. (12) (n*/3vp = 0.0115Aw,.) than the value in Eq. (13).

Comparing the trapping conditions in Eqgs. (18) and (19) we see that the light ions are

trapped first (e10%" < e3¢%") unless the beam parameter 5 is very small. Comparing ©!" and
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% in Eqgs. (18) and (19) we see that for sufficiently small n given by

my

: 3/2

which requires the low concentration of heavy ions

() < (%)1” | (21)

When the low coﬁcentration of heavy ions given by Eq. (21) is satisfied the phase velocity is
sufficiently close to the heavy ion streaming velocity that the heavy ions are trapped first and
we expect that the heavy ions are thermalized more effectively since they provided the limit
to the beam mode growth before the light ions are trapped. In the case where na/ny =1/4
and (m;/mg)/? = 1/4 the trapping of the heavy and the light ions occur near the same
amplitude.” The phase space diagrams show that the tail of the light ions are trapped just
prior to the heavy ion trapping indicating that the neglect of the light ion thermal velocity
spread in Egs. (18) and (19) is not well satisfied in this particular case. Now we consider
the parameters for this case in more detail.

In the reference case in which ny/ny = 1/4 and (m;/m;)*/? = 1/4 the trapping conditions
.are now from Eqs. (18) and (19). These amplitudes are comparable to the maximum ampli-
tudes shown in Fig. 14, where |e@max/Te| =~ 0.06 in frame (a) and |epmax/T.| ~ 0.08 — 0.09
in frame (b). These frames correspond to the phase space plots in frames (a) and (b) in
Fig. 12 where the apparent phase velocity is |vg| ~ 0.065Aw,. = 1.44vp. Using Eq. (12) with
v = 0,v1 = 0.045Awp, 7% = 0.217 and ¢, = 0.093Aw,. we compute the dimensionless

trapping amplitude

ey 1 <.0353>2 _

T.  2\.0933) — 0.071
and ) .

epy 1 (.0097)2 B

T. 2\.093/ — 0.08
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from Egs. (18) and (19). Thus, for this case the light and heavy ions are trapped at com-
parable amplitudes élthough the light are still presumably trapped. This case ny/ny = 1/4

has the strongest heavy ion heating.

C. Vortex Coalescence in Phase Space

At the time tw,, = 4000 (tw,r, = 93) shown in frame (c) of Fig. 12 there is the beginning of
the coalescence of the phase space trappings. Comparing frame (b) through (c) in Fig. 12
we see that while (b) has eight nearly equal amplitude trapping cells corresponding to the
beam mode k,, value by the time tw,. = 4000 in frame (c) there are six large trapping cells
and two smaller cells beginning to disappear. The process continues to where at the stage in
frame (d) of Fig. 13 there remains four large trapping cells. The result of this evaluation is
a period doubling in the spatial domain and an approximate doubling in the time domain.
At later times this period doubling process continues until there exist two large cells shown
in frame (f) of Fig. 13.

In terms of fluid theory of the nonlinear waves the period doubling can be understood as
the modulational instability producing the exponential growth of the mode k¢/2 driven by
the saturated large amplitude beam mode at kg =~ k,,.

- At the end of the trapping stage, as in frame (c), there is a well-defined large amplitude
wave

¢ = g cos(kox — wot) = Re ((poe"k”_"“’”) . (22)

This large amplitude wave acts as a pump wave inducing periodic modulation for any longer
wavelength k.< kg plasma mode given locally by dispersion relation e(k,w|ng,(z,t)) = 0.
This system with a modulation of the density is generically susceptible to the modulational
or decay instability with kg — k+k with an exponential growth of the k = ko /2 decay mode.
In this stage of evolution the velocity distribution function is complicated so that e(k,w) has

several branches as in Fig. 1a, but no strongly growing mode as appeared in Fig. 1b since the
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thermalization of the beam has occurred to eliminate the linear driver. From the spectral

distribution I(k,w) in Fig. 20

T/2 wT t di * L
I(k,w) = /_ o 47 /t_T Z BN Bult+7) . (23)

computed from Ey(t) throughout the simulation run we find that the intensity of I(k,w) is
strongest along w? =~ k?v} with kAp, S 1/2 and the wave speed vy is very near to ¢,. The

dominance of these long wavelength modes occurs in the late time stages. The long waves

' k202
w2=k2v§ {1— bt (1_5_71)] |

2
pr n

dispersion is given by

where én/n is the density modulation produced by the beam mode kg = k.. Taking k = ko/ 2
and deﬁniﬁg the frequency mismatch éw = 2wy — wy, for the decay wave the stabilityj of the

decay wave @(t) is given by the Mathieu equation with

d%py,
dt?

+ w2(1 + hcoswot)pr =0

with h = (k?¢?/w?;)(6n/2n). The decay wave varies as @i(t) = e cos(wg,t/2) with s = -

+(wgy /2)(R%/4 — 6w?Jwi )/? giving unstable growth for |h| > 2|6w|/wy, where 6w is the
0 ko 0

frequency mismatch between the modulational wave kg, wy, and the decay wave wy, k = ko /2.

We estimate that |§w|/wg, is small, of order £2A%,, so that the trapping potentials in Egs. (17)

and (18) give sufficiently large density modulations to be unstable to the growth of the period

doubling decay modes.

IV. Conclusions

For the case of weak or sub-sonic ion-ion acoustic one dimensional streaming turbulence
considered here we find that the collective heating and subsequent evolution is already com-
plicated with several distinct phases. The effective free energy from the relative stream

velocity vp that goes into the waves at the initial wave breaking point is determined by the

17,



light ion streaming relative to the wave frame AE; = 2 myv} /(1 +7'/%)? unless the concen-

/2, For very low concentrations of heavy

tration of heavy ions is very low ny/n; < (my/m3)
ions the situation changes as described in Sec. IIL.B. After the wave breaking, the light ions
are thermalizeci with a rather flat velocity distribution that has a total energy content of
order mrv%. The heavy ions develops low density tail of higher velocity particles. In this
stage initial fast growing mode with wavenumber comparable to w,r/vp are damped. The
new wave-particle system shows a parametric decay to wavelength doubling. The dominant
potential structure is transformed to the m = 2 or 3 from the linear driving mode m =7 or
9 modes. The final state in which the total turbulent electrostatic potential energy has sub-
sided to one half of its peak value is best characterized as a self-organized state with one or
two phase space holes. Thus the evolution is to a final state which still has some free energy
in that it is far from the Maxwellian velocity distributions. The final states are stable to the
linear waves for the corresponding spatially averaged velocity fi(v) and fa(v) distributions
as shown in Fig. 21. Nonetheless the system being out of equilibrium supports nonlinear
self-organized collective modes of the form phase space holes as originally conjectured by

Dupree.'? Thus, non-wave constituents are found to be important for describing the final

state of the system.
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Figure Captions

1.

The four principal roots of the Vlasov dispersion relation Eq. (1) for the reference
parameters in Table I. (a) Mode frequencies w/w,r, versus kAp.. (b) Mode growth rate

v/wprL versus kApe.

. The four modes from the fluid dispersion relation Eq. (5). Labelled I, II, III and IV

to correspond with Fig. 1. (a) mode frequency versus kAp. and (b) mode growth rate

versus kApe..

. Comparison of the principal unstable mode I from Figs. 1 and 2. (a) mode frequency

and (b) mode growth rates.

Variation with mixture ratio nz/ng of the unstable mode I of (a) mode frequency and

(b) growth rate for the wavenumber kAp, = 1.66 which corresponds to ¥max in Fig. 3.

Variation with heavy ion mass m;y/m. of the unstable mode I (a) frequency and

(b) growth rate at kAp. = 1.66 and ny = ny.

Parameterization of the logarithmic dependence of the growth rate in Fig. 5 with the

variation m./mpy = 1/1836.

Variation of the measured saturated temperatures of heavy and light ions, solid triangle
represents final heavy ion temperature Ty(t,)/Tx(0) and empty square represents final

light ion temperature T7.(¢,)/T1(0) as a function of the light ion fraction nr/no.

. Comparison of the heavy ion heating curves for the cases (a) of ny/ny = 4/5 and

(b) nz/no = 1/2.

. Comparison of the light ion heating curves for the cases (a) of np/ng = 4/5 and

(b) np/no =1/2.
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10.

12.

14.

15.

and 11. Phase space dynamics of the unstable system for nz,/no = 3/4. Here n = 1/48
(n'/3 = 0.276). | |

(a), (b) twpe = 0 initial configuration

(c), (d) twpe = 2 x 10%(twpr, = 47) near maximum of linear growth phase

((e), (f) twpe = 4 x 103(tw,r = 93) beginning of nonlinear ion trapping occurred with
a trapping potential ep/T..

(8), (h) twpe = 10%(twpr, = 233) coalescence of trapping oscillatioﬁs into two phase
space holes

and

(1), () twpe = 4 x 10°(tw,;, = 934) final relaxed, stable state of the interaction of
hydrogen/oxygen mixture .

and 13. Phase spa.cé. dynamics of the unstable system for nr,/no = 1/2. Here n = 1/16
and n%/3 = 0.397

(a) twpe = 2 x 10%(tw,r, = 47) at the peak of linear stage.

(b) twpe = 3 X 10%(tw,z, = 70) At the beginning of nonlinear stage.

(c) twpe = 4 x 10%(twpr, = 93) At the middle of nonlinear heavy ion heating process.

(d), (e), and (f) correspond to twye = 8 X 103(twpr, = 187), tw,, = 10*(tw,r, = 233),

and twpe = 4 X 10%(tw,, = 934) mode coalescence procedure at the saturation.

Time evolution of ew/T, for the case shown in Figs. 12 and 13.

Time evolution of the mean wavenumber (k(t)) relative to the longest wavenumber
kmin = 27 /Ly = 0.012A5, in the box. (a) small heavy ion component ny/no = 4/5 and

(b) equal heavy-light ion mixture ny/ng = 1/2.
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16.

17.

18.

19.

20.

21.

Electrostatic field energy (EZ(t)) /4nnoT, for the fastest growing modes and the long
wavelength (m = 2) modes. (a) and (b) for nr/no =4/5 and ny/ne = 1/2.

Time dependence of the autocorrelation function (a) small heavy ion component ny/ny =

4/5 and (b) equal heavy-light ion mixture ny/ny = 1/2.

Time dependence of the autocorrelation function for Ej(t) for most unstable modes
(a) small heavy ion component nr/ne = 4/5 and (b) equal heavy-light ion mixture

nr/no = 1/2.
Time evolution of the ion temperature and the heavy ion bounce frequency for the case

Spectral distribution I(k,w) from the Ex(t) (a) for n/ne = 4/5 and (b) for equal

heavy-light ion mixture nz/no = 1/2.

Heavy and light ion velocity distribution functions in the final relaxed state.
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Table I — Reference Plasma Parameters
Oxygen-Hydrogen Mixture
my/mr = my/my = 16
ng/ne =nr/ng = 0.5

ngmy, 1

- nrmg - Ig
vpr, = 0.045Aw,, = 0.01125v,

= 0.48681,

Tir = Tig = 0.017,

Table II — Reference Simulation Parameters
Ape = 4A vTe = 40wy,
a = A (Particle Size) Ny = Ny = 12800
L, =128A = 512)\p,
Fmin = 27/L, = 0.012)51

Fmax = 7/A = 1265}
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Parameter-s:Vd]=0.045 th=0.0 VTe=4'O Te/Ti=lOO

mL=1836 mg mH=16 mp, nOL/nO= noH/"o= 0.5

Kinetic Four Modes
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| (o) | | )| |
L 0.3 - /l/ Iv B ) 0.1
: /}4 i :
1 1 L - HI
Fluid Four Modes
Parameters : Vd1=0.045 th=0.0 VTe=4'0 Te/T i=100
my =1836 m, my=16 my “oL/“o= noH/no= 0.5
W /gy, ¥/ ey,
(@) / I .
k kde Fig. 2




wbémparison between Unstable Kinetic mode and Fluid mode

Parameters:le=0.045 V4,=0.0 VTe=4'O Te/Ti=IOO

mp =1836 m, mH=16 mp, nOL/nO= nOH/n0= 0.5
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my=1836 m, kA 4.=1.664 NoL/MG= Nypy/ny= 0.5
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Saturated Ion Temperature

Te/T
31.25 T '
» i
| s TH(s)
875 5 TL(s) ) ‘
5 n
I -
125 | g o .4 ]
& 4
6.25 ]
0 l l | |
0 0.2 04 0.6 0.8 1
noL/no
Fig. 7
Ion Temperature Evolution (Heavy)
Nop/Ny=4/5 Nop /ny=1/2

Fig. 8



Ton Temperature Evolution (Light)
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