'INSTITUTE FOR
FUSION STUDIES

DOE/ET-53088-559 IFSR #559
Fast Magnetic Field Penetration into an
Intense Neutralized Ion Beam

R. ARMALE and N. ROSTOKER,*
Institute for Fusion Studies
The University of Texas at Austin
Austin, Texas 78712

June 1992

o) University of California, Irvine, CA

THE UNIVERSITY OF TEXAS

AUSTIN







FAST MAGNETIC FIELD PENETRATION INTO AN INTENSE
NEUTRALIZED ION BEAM

R. Armale and N. Rostoker, University of California, Irvine, CA 92;717

Abstract

Experiments involving propagation of neutralized ion beams! across
a rriagnetic field indicate a magnetic field penetration time determined
by the Hall resistivity rather than the Spitzer or Pedersen resistivity, In
magnetohydrodynamics the Hall current is negligible because electrons
and ions drift together in response to an electric field perpendicular to the
magnetic field. For a propagating neutralized ion beam, the ion orbits are
completely different from the electron orbits and the Hall current must
be considered. There would be no effect unless. there is a component of
magnetic field normal to the surface? which would usually be absent for
a good conductor. It is necessary to consider electron inertia and the
consequent penetration of the normal component to a depth c/wy.. In
addition it is essential to consider a component of magnetic field parallel
to the velocity of the beam which may be initially absent, but is generated
by the Hall effect. The penetration time is determined by whistler waves
rather than diffusion. '

Introduction

In magnetohydrodynamics Ohm’s law. is E+ éV x B = 0 ie. the fluid is considered
to be a perfect conductor. To include finite resistivity Ohm’s law is employed in the form
J=c¢ (E + %V X B). The Hall effect (or the antisymmetric part of the conductivity
tensor) is omitted. This is appropriate because magnetohydrodynamics is based on an
expansion in the mass to charge ratio m/e to the lowest order in which m and e do not
appear explicitly. To this order the electron and ion'E x B-drifts are the same and there is
no Hall current. For a neutralized ion beam the ions have energies of hundreds of keV and
the electrons tens to hundreds of ev. The electron and ion orbits are completely different
and the ion orbits are not well described by the drift approximation. The Hall effect may
not be neglected. lon motion may often be neglected and this regime is called elect xon
magnetohydrodynamics in the Soviet literature.? In the present case the ion motiora is
assumed to be frozen. The problem of field penetration is treated with Maxwell's equations

and Ohm's law in the form?*

. m Jj . ij=E+VxB+VP,




n=(m [ne?T.) is the resistivity, n = plasma density, 7. = electron-ion collision time, B =
magnetic field, £ = electric field, j = current density, V = fluid velocity, and P, = electron
pressure; this term will be neglected.
Combining Maxwell’s equations V x B = (47/c)j (neglecting displacement current) and
VxE= —8B/c<9t and Eq. (1) an equation is obtained for the magnetic field:
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[n the following we shall consider solutions of Eq. ( ) that correspond to neutralized ; ion
beams. A slab model illustrates the fact that the classical diffusion rate obtains unless
there is a normal component of the magnetic field. Then a cylindrical model of a beam
Propagating in a transverse magnetic field is treated, in which case there is a normal com-
ponent with the result that the Hall effect is important in determining the penetration time
of the magnetic field.

1. Slab Model
This model is illustrated in Fig. 1. All quantities depend onlyonz and ¢t. B =e,B (z,t)
and V =e, V5. Equation (2) for this case is

JdB. [l . 0] 9*B,

= —_—] —— 3
ot irx at| oz? (3)
For initial condition assume
B.= B.: + b,
B.: = ByO(t) (3.1)
b. =0 when t <0 .
Rather thantreat a beam with a front, we consider that the external magnetic field is turned
onat t =0. O(¢) is, for example. a unit step function. The field. due to beam currents, is
irnitially zero. It is convenient to introduce orthonormal functions that satisfy the boundary

conditions 6,(L/2,t) = b.(=L/2.t) = 0. ®, = \/2/Lcosknz, k, = (2n + Ur/L,
n =0.1,2.... Assume b, = 3", an(t)q)n(::), substitute Eq. (3):

= (L4 DEZR] + DR2ay = —Bos(t) (#u1)

onll) - Dk?t
BZI+DL p{l+Dk§T¢}®"(I) fort>0 (4)



D = c*p/4r and (,|1) = 2 2/L{(~1)"/ka. Fort = 40 in Eq. (4), the series can be
summed to give

[cosh(Lw,/2¢]

which is plotted in Fig. 1 along with the corresponding result when electrons inertia is

B, = By+b, = B, { [cosh(:t:w,,/é)] } (5)

neglected. This illustrates diamagnetism where the initial magnetic field penetrates to a
depth of order ¢/w, = /D1, which is about 2cm in a typical ion beam experlment This

can be a significant fraction of the beam radjus.!
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Fig. 1 Slab Model of a Neutralized lon Beam
To consider the effect of a magnetic field normal to surface of the beam, assume

B=-e.B, +e,B,(z,t) + e.B.(z,t)



B is assumed to be constant, and V = e, V0. Equation (2) reduces to two equations

0B, ¢ 8] 8*B, <* B, 8°B,

at  ar! {1 e E Oz? + 4w nec Oz? (6)

0B, c? ! 8]18*°B. ¢* B, 0*B, .

ot &l |lTT ot| 0z  4r nec 9z® (7)
The last term in Eqs. (6) and (7) are due to the Hall effect. Assume the same initial
conditions as Eq. (3) — i.e. only B, is switched on. Because of the Hall coupling term

there will be a B, component even if it is initially zero. The solutions are

2 (=1)retm

B, = By, Zn: L (L5 D) [sin(wat — k,z) + sin(wnt + knz)] (8)
B.=Bo,{1-> 2 (cl)remim [sin(wnt — knz) + cos(wnt + kyz)] (9)
z = 0z - /CnL (l-}-DszQ) n n n n

wa = Dyk?/(1 + DkZr.) where Dy = c*ny/dr = cB./4rne; 1, = (1 + Dk2r.)/Dk2. For
low n modes n = 0,1, w, = (Qr/w?)(cka)? where Q; = eB,/mc, and T, = w7, [(ckn)?.
Equations (8) and (9) describe whistler waves that traverse the beam and are slowly damped
at the same rate as Eq. (4). If By, B, are observed as a time average and w,m, > 0, after
a few whistler periods 27 /wn, B, =0 and B, = B,,.

For a slab model the normal component B, = B, must be constant and this does not
correspond to the experiments with beams. We therefore consider a. cylindrical model as
illustrated in Fig. 2. The magnetic field B = Bge, is turned on at ¢ = 0. For an ideal
conductor there is no normal component of B. If electron inertia is included as in Fig. 2
there will be a variable normal component to a depth of order c/w, at t = +0 and the
normal component will penetrate along with other components. The differential equations
corresponding to Eqs. (6) and (7) will be written in dimensionless variables by using the

beam radius "a’ for length units, the difusion time 7o = 4ma®/nc? for time units and B, for
magnetic field units.

aA: r c : a— 2 MH &/ >, : |
5 = 1 + <E;) 5 v ,—T(B-V)Bz—psm%(r) (10)
2
9B, _ (1 + [ £ i V2B, + (B . v)v2a4, (11)
ar aw, C)rJ n
?'VA= B?pi%ﬁ-%’-% andﬂV2=%%P%Tfi‘ai:ﬂ qﬁ=%ﬂg,r—_:t/ro,p=r/a,a.£1d
B =B/B,. b, = dA./pdb, by = -0A./dp, B, = cos 80(t) + b, and B, = —sind0O(t) + by.



E, = E,. Previously these equations have been solved’ with ng =0, B, =0. We assume
solutions of the form

ELECTRON INERTIA INCLUDED - NORMAL COMPONENT

OF B TO A DEPTH e
B

=

Fig. 2 Cylindrical Model of a Neutralized Ion Beam

Z )sin €0 ~ f sin 8 - (12)
= Z )sinf8 ~ g,sin26 . (13)
=1

The leading term of Eq. (12) is suggested by the source term of Eq. (10). Equations (10)

and (11) are linearized by the approximation B -V 2 cos 6(9/9p) — (sinb/p)3/58 in which

case (B-V)V24, ~ sin 20. Equations (10) and (11) are solved in terms of the eigenfunctions



and eigenvalues of

Vi®n(p) = —(A)*®%(p) (14)
with the boundary condition
{i@iwéi} =0, (15)
dp p=1

The normalized eigenfunctions are

V2

@i(p) = mjz(al—l.np) = [n, ¢ (16)

and A% = ay_1.,n=1,2... etc. the roots of the Bessel function of order ¢ — 1. Assuming
file,7) =T, alVn, 1) and 92(p,7) = Tpal?|n,2) Egs. (10) and (11) are transformed to

daf!) - d 2 2/2

=+ al el + % §m;a£3)(r) n, 1 ot P m,2) = — o (1) (17)
da,(f) ny d 1

dr + anaf) -+ 2—77- mé C!gnag)(T) n,2 % —_ ‘; m,l =0. (18)

From previous analysis® it is apparent that after a short time only the lowest n = 1 mode
survives. Based on this fact we retain only the lowest terms n = 1 and m = 1 as a first

approximation. In this case the electron inertia term can also be neglected. The two
coupling terms are “

d 2
<1,1,——+—(1,‘2> = 3.3 and <1,2
dp p

The solution for A4, is

1—1'1,1>=—1.3.
dp  p

1 2 g
A, = —;2— —Jll((aaho;lp)). e"(afl +ad, )(r/2) [COS 3r + <al+§m) sin ﬂr] sin @ (19)
01 g

where 3% = 25 (ny/27)? and Br = €2, /w2 (c/a) so that the time behavior of Eq. (19) is
similar to the lowest modes of Egs. (8) or (9) of the slab model. Thus we have shown that
for a cylindrical beam crossing a magnetic field the fast penetration of the magnetic field

is due to the whistler mode time scale that dominates the usual diffusion time scale.
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