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Abstract

The theoretical transport from kinetic micro-instabilities driven by ion temperature
gradients in a sheared slab is compared to experimentally inferred transport in L-mode
tokamaks. Low noise gyrokinetic simulation techniques are used to obtain the ion
thermal transport coefficient X. This X is much smaller than in experiments, and so
cannot explain L-mode confinement. Previous predictions based on fluid models gave
much greater X than experiments. Linear and nonlinear comparisons with the fluid
model show that it greatly overestimates transport for ‘experimental parameters. In
adkdition, disagreements among previous analytic and simulation calculations of X in

the fluid model are reconciled.

Ion temperature gradient driven (ITGD) instabilities are often considered as a possi-

ble explanation for anomalous transport in strongly heated tokamak plasma confinement

devices, since several qualitative features of the data are roughly consistent with the theo-

retical properties of ion temperature gradient driven instabilities.!?® Low noise, nonlinear
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gyro-kinetic simulation techniques have been developed*®%7 to examine ITGD turbulence
in sheared magnetic fields in a slab geometry. Predictions for X from these codes are pre-
sented here. The simulation results roughly agree with gyrokinetic mixing length estimates
for diffusion Dy, with X ~ 2.5Dps. These X are much too small to explain experimental X
values; we conclude that the slab branch of ITGD instabilities are not responsible for L-mode

transport.

Previously, ITGD transport in slab geometry has been considered extensively using fluid

8,9,10,11 12,13

models without kinetic effects. Analytic nonlinear theories and numerical simulations
of (ITGD) transport have been pursued. Unlike the gyro-kinetic results here, the fluid pre-
dictions for X are much larger than experimental X in the center of the discharge.3'4*® The
large magnitude of X from these fluid models has lead to widespread speculation that experi-
ments must be hovering close to marginal stability for these modes.?19141516.17 Experiments
to test the marginal stability hypothesis' give negative results. In view of these qualitative
discrepencies, we will compare the fluid and kinetic models in detail.

Figure 1 shows the theoretical predictions and experimental results from Ref. 3 for the
thermal transport coeficient X in a typical L-mode TFTR discharge (#41309). Note that this
discharge is significantly above threshold, n/n. & 2 — 4. The gyrokinetic X is much smaller
than experiment, both for simulation results and linear kinetic mixing length estimates.
Notice the large discrepancy with previous fluid results, both analytic and numerical. To
obtain the gyrokinetic mixing length estimate, linear eigenfunctions were obtained from an
integral eigenvalue code with full gyroradius effects. This was cross checked with results
in the literature,?®?! and with simulation results in the linear growth phase from the two
independent fully gyrokinetic initial value codes.*®®" The frequency and growth rates in all
cases agreed to within 5-10%, thereby establishing the accuracy of all the codes. More recent
fluid treatments have included kinetic effects and give dramatically improved agreement with

gyrokinetic treatments.'®® Unfortunately, space does not permit a detailed comparison here,



except to say that the improved fluid models lead to conclusions similar to those here.
Fully nonlinear, kinetic 3-d simulations for realistic parameers have also been performed
for the slab gyrokinetic equation (accurate to lowest order in the gyrokinetic expansion

parameter)

%5f(x, vi,9)) + 2 X V($) - VEf + V) éf

oV (®) far + [L+0(v? = 3/2)| 2-V (8) - & far (1)

where 6f = h + q(¢) far/Ti, h is the usual nonadiabatic distribution, time is normalized by
wyi, = and y by p;, and { ) is the gyroaverage.

Two completely different algorithms were used; 1) a §f particle algorithm with greatly
reduced noise,*>® and an implicit spectral algorithm*” .

1) Previous particle algorithms, such as the original gyrokinetic algorithm of Lee,ﬁjhave
statistical fluctuations in the number of particles per cell, which leads to noise in ¢. This
can swamp the ¢ from saturated micro-instabilities.

In the 6 f particle algorithm,*®7 the nonlinear equation Eq. (1) is solved for é6f by inte-
grating the right side along the nonlinear particle orbits (i.e., the method of characteristics).
Dimitz and Lee® independently implemented a &f alg;)rifhm, but did not notice its low
noise properties. The particle positions are evolved and act as markers for the value of
6f. Note that f is related to the full distribution function f and the background fas by
6f = (f) — fm+({¢) — ¢) q far/T;; thus §f is proportional to the fluctuating amplitude, not
the background fy;. The perturbed charge density is computed by accumulating 6 f on the
markers to a grid. Statistical fluctuations in ¢ are smaller than previous codes by roughly
the factor §f/ f; thus the 6f algorithm requires orders of magnitude fewer particles to simu-
late microinstabilities. Since the nonlinear orbit equations preserve phase space volume, no
net marker bunching errors arise. For 3-d runs, §f was damped to zero near the boundary

to prevent quasilinear flattening.
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2) A spectral algorithm which expands the distribution function in basis functions*®:_ .

Fourier modes in the z direction, Hermite funtions in , and a grid in v. Large time steps
are possible since the linear terms in the equation are solved implicitly, using analytically
derived linear orbit integrals over S for given . Also, Hermite functions are close to the
linear eigenfunctions, so few are needed. The heat flux out one side in = was reintroduced
through the other side, preventing quasilinear flattening.

The simulations had good energy conservation. Also, the saturated fluctuations had
correlation widths less than the simulation box size, so that edge effects should not dominate.
For the particle algorithm, the box size (for n = 4) was = = 21p;, y = 25p;. The wavevector
k, p; = 0.18N, for N =1 — 5, and there were 5N rational surfaces in the simulation volume
for each N. The linear modes strongly overlapped for N > 2, and significant overlapped for
N = 1; there was significant nonlinear radial broadening, so that all N strongly overlapped
at saturation. Several runs were repeated with k, p; = 0.1N, N = 1 — 5; relatively little
transport was caused by the low k, modes, and the spectrum rapidly decayed as k, decreased.

The radial heat flux for Eq. (1) is I' = [dvéf (% v? —3/2) 2%1. To identify the
modes most responsible for transport on average, we note that [dzdydzT =
Sk tky (@), [dvbf_y - (% v? — 3/2) = Y @& The code result for @ is shown in Fig. 2
for a time value well after saturation; heat flux is dominated by modes with k,p ~ 0.4,
slightly less than the most linearly unstable mode. Note that the heat flux rapidly decays
away from this peak value.

The spectral code used similar parameters, but only 3 or 4 k, values could be used due
to expense. Though the |¢|?* spectrum for the spectral code had decayed less at the cutoff,
it still gave results for X within 40-60% of the §f particle code.

Despite the large difference in the two algorithms, they give transport values roughly
close to each other, and roughly consistent with the gyrokinetic Dys. We conclude that the

transport in the gyrokinetic model is much less than in experiments.



Previous predictions of slab n;-mode transport, and comparisons with experiments, led
to a widespread inference that the transport is so enormous the profiles must be close to
marginal stability.®®1014151617 Indeed, in Fig. 1 the analytic X is roughly 30 times larger
than the kinetic code results for X in the inner half of the discharge. In view of this qualitative
discrepancy with widely used results in the literature, we must explain the reason for these
differences.

These previous results were based on fluid models. We begin by comparing fluid and
gyrokinetic results for linear modes. To set comparison parameters, note that for the shot
shown in Fig. 1, 2.5 < 7; < 5.2 and 0.21 < L,/L, < 0.36 for 0.1 < r/a < 0.6, and for many
L-mode shots, n; =4 and L,/L, = 0.25 are roughly typical.

 Comparisons of the fluid and kinetic cases are shown in Fig. 3 for the growth rate «
and linear mixing length estimate of the diffusion coeficient Dys = 7A¢2 (where Az =
[eldz/ [ |0p/0z|dz for both cases). We use k, p; = 0.4, which is near the peak of the
gdeth rate and of the saturated spectrum found here; in Ref. 8 and in fluid simulations.1213

The fluid model overestimates Dys by more than an order of magnitude for typical ex-
perimental parameters. Kinetic ion Landau damping is important over the bulk of the
eigenfunction. For fluid theories to be valid, R = w/vs, <k”> > 1 must hold (where
<k||> = [ |okyldz/ [ |p|dz); however R 2 1 for experimental parameters, and R S 2 even for
n; = 14.

Although linear results are instructive, nonlinear results are needed for experimental com-
parisons. A renormalization of the fluid propagator equations in the “one point” theory was
given in Ref. 10. In this theory, the dominant effect of the nonlinear terms was represented
by diffusion-like operators, with turbulent difusion coeffients Dz, D,,, viscosities gzz, fyy
and mobilities B;,, B,y in terms of the fluctuating field amplitudes. (See Ref. 10 for exact
definitions). In Refs. 10-11 §/8¢ terms in the mode equations were replaced with —iwy,

where w, is the real frequency of the linear eigenode. D is the complex eigenvalue to make




v = 0; the real part of D was used for the equilibrium transport. After Fourier transforming

in z, one obtains

[—iw(1+k3 )+iky (1 — Kk2)+ k2 (= k2 + p*¥k2) 4 B2 k2 + ¥ EZ](p+0)
(TEiw(T+ kL) +iky(1— K L)+ k2 (uo=k2+ pvvk2) + oo k2 + P k2] —ik, —iw— D=ok2+ Dvvk?}

. 4 d . g d
= (sky)*(—iw + Dwk: t Dyykz) 18‘5 (—iw + Dok + DyykZ) —(p+e). (2

dk =
where s = L,/L,, K = T;(1 + n)/T. and T’ gives the parallel compressibility. After taking
I'=0,s—0and k, — 0 (where w, — 0), Eq. (2) is equivalent to the equation quoted in
Ref. 9 and 10 (with z = k2, and neglecting equilibrium flow). The s — 0 and &, — 0 limit
of Eq. (2) gives D = 3.265 k, K for the £ = 0 mode and D = 20s k, K? for the I = 1 mode.®
These analytic results have been widely used in the literature to infer that the transport
from slab 7;-modes is so large the profiles must be close to marginal stability.321%.16:17

In Fig. 4 we compare 1) the s and k, — 0 asymptotic formulas 2) numerical solution
of Eq. (2) with all terms included for £ = 1, which is the dominant fluid mode 3) values
from an interpolation formula for the fluid simulation results in Refs. 12-13 4) gyrokinetic
results. (The ratios u/D and /D were taken to be 1/2, which is consistent with statements
in Refs. 5-6. Also D**/D¥ = == [(% = u**[u¥ = 1 was used; this is appropriate if the
¢ spectrum has k; ~ k, which is roughly true of the eigenfunction of the full Eq. (2) for
kyp=04.)

(Also, the fluid simulation interpolation formula is Xguid sim = (K — K,) exp[—4.7s/(K —
5/K)], and smoothly combines results in Refs. 12-13; it is valid for K > 2.5.)

Several conclusions can be drawn from Fig. 4: 1) the full Eq. (2) gives excellent agreement
with the fluid simulation results for experimental s and n; we will therefore regard this X
as the appropriate result for the fluid equations 2) for experimental parameters, s and the
dominant k,p are outside the domain of validity of the asymtotic formulas D = 3.26s k, K?

and D = 20sk, K?; those formula overestimate the fluid X for experimental parameters



3) the fluid X appropriate for experimental parameters is roughly an order of magnitude
greater than the gyrokinetic result 4) the asymptotic fluid formula for s — 0 and &k, — 0
and £ = 0 gives X values 30 or more times larger than the gyrokinetic results.

In Ref. 9, the s and k, — 0 fluid X was compared favorably with the kinetic X at
s = 0.036; however Fig. 4 shows that these results cannot be extrapolated to experimental
s vvalues. Comparisons of the magnitude of the s — 0 and k, — 0 fluid X formula and
experimental X are thus highly misleading, and should not be used as a basis for inference

about marginal stability.3915:16:17

In summary, we conclude that the slab branch of the ITGD instability is too weak to be
responsible for transport in L-mode shots. However, other investigators!*2* have estimated

that the toroidal branch can give substantial tra,nsp.ort. The gyrokinetic codes used above

.are being modified to include toroidal effects; preliminary results show that these give much

higher transport than the slab case. Thus, the toroidal branch of the ITGD mode deserves

consideration as a possible candidate to explain transport.
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