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Abstract

A new method of analyzing the toroidicity-induced Alfvén eigenmode (TAE) from
kinetic theory is presented. The 'analysis includes electron parallel dynamics non-
perturbatively, an effect which is found to strongly influence the character and damping
pf the TAE - contrary to previous theoretical predictions. The normal electron Landau
damping of the TAE is found to be higher than previously expeéted, and may explain

recent experimental measurements of the TAE damping coefficient.
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Toroidicity-induced Alfvén eigenmodes (TAE) are currently of great interest because they
may destroy the confinement of fast ions in a burning tokamak plasma.!=" Their excitation
depends critically on the difference between the growt‘h rate due to the fast ions and the
damping rate, mainly due to electrons. Past theories have predicted a very low Landau
damping for the TAE,*® and have determined the dominant form of damping of the TAE to
be Landau damping due to the magnetic curvature drift of the electrons.? Perhaps stimulated
by recent Tokamak Fusion Test Reactor (TFTR) results* showing a higher excitation thresh-
old than expected, recent theoretical studies have focused on alternate damping mechanisms,
such as continuum damping,>® and trapped electron effects.” In contrast, the present study
attempts to demonstrate that a non-perturbative treatment of electron parallel dynamics
(the source of normal Landau damping) yields intrinsic Landau damping of the TAE signif-
icantly higher than originally thought. The theory also points out interesting relationships
between the TAE and the global Alfvén eigenmode (GAE).

Damping calculations, i.e. analytical estimates and numerical values obtained by direct
integration of the basic equations, are in good agreement for a wide range of parameters
including those relevant for the TFTR TAE experiment. In the latter case the calculated
damping is quite close to the experimental estimate. Numerical results indicate that there
is only one mode when no kinetic effects are present. It is found that equilibrium current
(essential for the GAE®~1%) and toroidal coupling are both essential for the formation of
this “MHD” (magnetohydrodynamic) TAE. Kinetic effects alter the mode structure of the
MHD TAE, shift its frequency, and cause it to damp. Kinetic effects also introduce a
countable infinity of new modes (also like the GAE?), one of which may lie within the éap.
Quite surpfisingly, depending on the plasma parameters, we find that this “kinetic TAE”
may have a lower damping coefficient than the MHD TAE. This is the case for the TFTR

TAE experiment,* and for a TFTR deuterium-tritium (D-T) burning experiment (discussed



subsequently). The modes further outside the gap generally have high damping coefficients.
They correspond to the continuum, which has been discretized by the electron dynamics.
Further such details will be given in a future publication.

We consider a TAE formed by the coupling between two poloidal harmonics m; and ma.
As our model, we use an equation describing Alfvén waves in an inhomogeneous, currént

carrying, cylindrical plasma, corrected by toroidal coupling to first order in inverse aspect

ratio s(r) =r/R,
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In this equation, the poloidal electric field E(r) ~ eim0+n¢=wt) the poloidal wavenumber
K = (¢* + €2)~2(mg + €?n)/r, the parallel Qavenumber k= (¢ + &) V2(m — nq)/R,
while A = w?/v] — k?, G = (dA/dr)/K — AZ/KZ, o = k*?/[1 + ¢Z(¢)]. In addition,
A = e(2gk — eK)/[r(¢* + €2)], ps = ¢5/wei, ¢ = w/([klve), and Z is the plasma dispérsion '
function. The coupled system is compieted with the equétion formed by 1 < 2. The left-
hand side of this equation was derived in Ref. 8 and used to ekamine kinetic Alfvén waves
(KAW) and (‘}AE.S'10 It stems from the well-known system of equations describing Alfvén
waves derived in Ref. 11. Electron kinetics are described by the term containing o, while G
embodies the effect of equilibrium current (G ~ +s where s = ding/dinr). [To leading order
ine, G= (dkz/dr)/(rf{z).] We note that the toroidal coupling term on the right-hand side
of Eq. (1) is the same as Eq. (30) of Ref. 1. Neglecting the kinetic term, Eq. (1), apart from
the last term on the right-hand side, is the same as Eq. (35) of Ref. 6. Equation (1) may
alsd be reduced to Eq. (2) of Ref. 5 under appropriate limits.

The essential features of the TAE may be obtained from Eq. (1) and its counterpart by
expanding A(r) in powers of r about the position ro where A; = A;. For sirﬁplicity we

assume the radial variation in all other quantities (except E) about rg is unimportant. We
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take ¢(r) = rE(r), r =ro+z, Ay = A — o1z, Ay = A+ ayz, where a; = _dAl/drlrg,
az = dAz/dr|,, and obtain

J J 42 A% w? [ d?
%(A—azx)a—I{f(A‘alx_G1)+g(E_2—Az)]¢1 —€_<d2 I)¢

(2)

The other equation has 1 «» 2 and the opposite sign of a. Here, the quantities A, o, ¢, vy,

K1, K3, Gy, G are all evaluated at r = rg and are therefore constants. (The subscripts were
dropped on A and o since 1 = 2.)

Equation (2) and its counterpart are conveniently analyzed in Fourier space. Parseval’s

theorem implies that any function localized (square integrable) in z will also be localized in

the conjugate Fourier variable. We take

4(2)= [ dpd(p)e™ (32)
~ 1 oo .
—_ —ipz
¢ o /_oo dz ¢(z)e (3b)
and Eq. (2) becomes
d A P 1 K2G, ie w? p? + K2 -
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This equation and its counterpart may be symmetrized by defining the new functions

1/2

Y= ¢ [alein(Pz + 1(12)]

1/2

Py = 52 [azein(Pz + K;)] (5b)
where n=(ar'—a;')(Ap—i0p®)—o(K2/ay— K2/ ay)p— — K G atan(p/ Ky )+ K, Gaapt atan(p/[&o).

Then Eq. (4.) and its counterpart become

[% + ih(?/)] Y1 = =&y f(y) , (6a)
d ZE'I,Z’l
i) = (6b)
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where we have introduced the quantities: y = p/«, & = [@(K2/a, +K3/)]'?, o = (a7t +
05", hy) = A=Gly)~5(+1), A = & /o, Bly) = 1 Gr/(14+7/2) 4 G/ (1447/2)),
Gy = kGi/en, Gy = kG, y1 = Ky /6, yp = Ky/k, & =3%0k3/a, &= ex(aray)~2w? [vd,
fly) = [(¥* + v3)/(¥* + y3)]'/%. We have reduced the TAE problem to a coupled pair of
linear, first order, ordinary differential equationsv with the eigenvalue w entering through
A(w), &(w), and &(w). For the TAE, we expect A(w) to be small (A ~ £), and so it is a good
approximation to put &(w) = &(kv4) and &(w) = &(kv,) and treat A as the eigenvalue. It is
clear from Egs. (6a) and (6b) that sinée 7 is small, it will influence only the high frequency
components of the wave function, as expected.

Before solving Eqs. (6a) and (6b), it is illuminating to examine some properties of ‘the

- system with & = 0. Then these equa.tibns may be combined into
d . d ~ A . . d ~
(Gra+ra-cr-d-itla-a]}n=0. . @

Since f(y),@(y),? are all real, we expect A to be real. Since f(y) = 1 and @(y) —0as

-y — oo, asymptotically Eq. (7) becomes

[d‘i—; + (A% - A?)} $2=0. ®

Consequently for a bounded solution, A? — &2 < 0, Taking the inner pfoduct ( Y=[2dy

of Eq. (7) with ¥J and adding the result to its complex conjugate, we find
(A% = &%) (flal’) = (fldva/dy[) = (FG(C = 2R) o) . G

Sinée f(y) is positive for all y, this (virial-type) equation shows that finite G’(y) is required
to make A% —&% < 0 and thus to create a localized mode. The function f(y) plays essentially
no role in the formation of the mode. Noti‘ce also that since € is small, it is quite likely that
there is only a single mode — one with ﬁo nodes (zero croséings) in 2. This is because as

one creates a node, |dy,/dy|? increases, requiring |A] to increase (on the right-hand side),




but thereby preventing A% — &2 < 0. It is also seen that a larger |G(y)| requires a larger
|d1pe/dy|? and a smaller [42|?, which implies a more localized mode in y-space (and thus
a broader mode in z-space). These tendencies are born out in the numerical solutions of
Egs. (6a) and (6b).

If the K? and K? terms are dropped in the coupling terms on the right-hand side of Eq. (2)
and its counterpart (often used as an approximation), a similar virial-type construction shows
that a finite G’(y) is not required to make A? — &2 < 0. It indicateé, incorrectly, that a TAE
may be formed by toroidal coupling alone. Since it is more accurate to keep the K? and K 2
terms, this suggests that many terms are of the same order and so one must be cautious when
dropping various terms. Finally, we point out that with & # 0 the condition A% — 52 < 0 is
no longer necessary to permit a localized solution.

We now analytically derive the dispersion relation and damping coefficient using a varia-
tional technique. Two derivations are presented. One includes & perturbatively anci is valid
when & is sufficiently small. Here the damping scales as Im(7) as expected, but is enhanced
significantly by & and G. The other includes & non-perturbatively. Here the dependence of
Aongisin general quite complicated, but a simple iterative formula holds in the regime of
interest. Results are compared with values obtained by direct numerical integration of the
basic equations.

Recognizing from the previous arguments that f(y) plays a minimal role in the form
of the TAE, for simplicity we set f(y) = 1 in Eqs. (6a) and (6b). We further make the
simplification G(y) = Go/(y? + 1), where G, = —;—(G’l + G4) (generally Go > 0). We write
P = ¢§°) + ¢v£l), and the same for 1, and A, where the superscript(!) terms are of O(3).

Then to leading order

d (- Go \ .
i (30— [t = it o
d [ Go (0) _ +2/(0)
[dy_z<A<o)_y2+l)}¢2 = iep® (10b)
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' *
from which it is clear that 1/)%0) = ¢£o) . With ¢§°’ = Yp + 1y,

Hr _ [g+ AO _
dy

° -~

(y2+1)J¢R, (11)

and
d y>+1 d¢R [A(0)2 ' 24 Go(& — AO)

=0, 12
dy ' +p dy y2+1 ]% (12)

where p = (€ — AO* 4+ Gy)/(2 — AO), Taking the inner product of Eq. (12) with g gives
: g

2 2 - R 9 :
- <§2 i; (%R) > + (RO —&) (gh) + Go(e - A0) <yzif—1> 0. (13)

As our variational procedure, we take the trial function ¥ = e~*¥*/2 with the parameter A,

substitute into Eq. (13), and carry out the integrals. This gives (approximately)
—~A\/24+ A0 é? + (TN 2G5 = RAO@) =, S (14)
The parameter X is determined by finding the Ye)‘(tremu.n.lA of .Eq. (14), which corresponds to
A= [Go(& - A“’))]2 . - (15)

Substituting this into Eq. (14) gives the leading order dispersion relation

1—7rG 1-7G§/2

A®) = 16
_ 1 +xG2/2 (16)
Thus AQ® < 22 a5 expected.. At first order we have
d . [x0 Go. (1) 4 ;= (1) (A a2 (0) -
@ +f AV — y"’—-{-l_ |+ &Y, = —1 [A —o(y* + 1)] v, (17a)
d ©_ _Go_ o (1) (1) _ a(,2 © .
@-z A 7l mp —z[A 3y’ + 1)) 9, (17b)

These equations may be combined into a smgle equation for d) Y . Taking the inner product of
the resulting equation with 1,b2 , integrating by parts, substituting the leading order equation

for ¢§°’, and using the symmetry properties of g and v¥; leads to




A (43 + i - ) (8- ;1)>
=5 (] + ¥R + 1) +i(F —v}) A0 +1) - Go]) . (18)

This may be simplified by noting that (%) ~ & (%), A® ~ —&, & < 1, Gy < 1. Then

AW = AW = 5 (p2(y? + 1)) / (¥%), which may be evaluated with our trial function and
Eq. (15) simply as

~ g

AW ~ AT (19)
Thus the damping coefficient is proportional to Im(&) and is enhanced by the small param-
eters € and G’o-

If  is sufficiently large, the perturbation scheme fails. The scaling of the dispersion
relation with & in this case may be found from a non-perturbative variational ‘analysis.
We point out, however, that as & increases, the wave function becomes more complicated.
This cannot be accounted for in our simple variational procedure. Consequently one should
ultimately verify the results by direct numerical integration of Eqs. (6a) and (6b).

Again for simplicity we set f(y) = 1 and G(y) = Go/(y? + 1) and then Egs. (6a) and
(6b) may be combined into a single (Schrédinger) equation for 1,

d’ 2 2 . dho(y)
@g‘f'ho(y) —E i

where ho(y) = A — Go/(y% +1) — &(y* + 1). It is interesting to note the similarity between

=0, (20)

ho(y) and the effective potential for the GAE discussed in Ref. 8 [c.f. Eqgs. (23) and (24) and
Figs. 1 and 2]. However, the correspondence is not complete since in the present case the
effective potential is hZ — €% — i dho/dy, making the problem significantly more complicated.
Taking the inner product of Eq. (20) with i,, usiﬁg the trial function v, = e=*¥*/2 with the

parameter A (now complex), and carrying out the integrals leads to
1 R o, R L _ ~
-5 A+ A% =2 (1)1, (24 - %Go) e [Z(A AN % %] 0. (@)
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The parameter A corresponds to the extremum of Eq. (21). A perturbative analysis of this
equation (neglecting &, calculating A, then putting & back and ﬁhding the correction to A)

gives results substantively similar to Eqs. (16) and (19). However, when the effect of & is

~ stronger, (enhanced by small \), the 3A/\ term dominates and we can write

Ly A2 GA
—sA+A? ¢ —-U—/\——o (22)

This has the extremum A = (26A)Y/2 and gives the dispersion relation

This equation is easily solved iteratively. It is a result very different from the perturbative
analysis. There are three fundamental differences: 1) A is independent of Gy, 2) Re(A?) > &2
and 3) Re(-ﬁ) > 0. The second point does not necessarily imply that the mode lies outside
the gap. Because of the normalization, the vé,]ue of A corresponding to the gap Boundary
is approximately given by Agp = £1&(a1a)Y(af! + of!) ~ :t’“%"f—nfleL The mode
corresponding to Eq. (23) is the “kinetic TAE” described in the introductory remarks. It
may, depending on the plasma parametérs, have a lower damping coefficient than the MHD
TAE.

The dispersion relations given by Eqs. (16) and (19) or Eq. (23) are valid only when the
wave function is reasonably close to the assumed form ¥ = e~*¥*/2, To verify this, A, ¥y, -
and 9, were found by direct numerical integration of Eqs. (6a) and (6b) with a shooting
code (orlgmally developed by J. Sedlak) The equations were solved as the coupled system
with the WKB-type boundary cond1t1ons

b _ Hi[E? - B2 ~ h(y)

Ve - E/f(y) 2

‘at y > 1 and y « —1 respectively. The code input Gy, Gs, ¥2, 32, &, & (which were

calculated from their definitions). The solutions were rapidly convergent and robust.




Numerically computed eigenvalues for the MHD and kinetic TAE modes for TFTR
plasma parameters are shown in Table 1. Also shown are the damping coefficients ¥/w
corresponding to the lowest-damped mode and, for comparison, values of (7/w)mea due to
the magnetic curvature drift of the electrons [calculated from Eq. (10) of Ref. 2]. The plasma
density and ¢ profiles were chosen to scale parabolically with r/r,, while the temperature
T, ~ [1—(r/rp)]%. Two cases are considered. The first corresponds to the TFTR TAFE exper-
iment discussed in Ref. 4. Here, R =2.4m, r, = 0.75m, T, = 1.7keV, n = 2.7 x 10!3 cm™3
B =1.1T, gcntr = 1.04, and geqge = 2.8. The second case corresponds to a D-T burning ex-
periment with R = 2.5m, 7, =0.8m, T. = 10keV, n = 104 cm=3, B = 5 T, gentr = 1.04, and
Zedge = 3.1. In both cases an effective mass of 2.5 was used. For each case, we consider a low
mode number: n = (1,1), m = (1,2) with ¢ = 1.5, and a higher mode number: n = (2,2),
m = (2,3) with ¢ = 1.25. The latter case fits the experimentally measured q ~ 1.3 of Ref. 4
with n = 2. As shown, the damping coefficients for the MHD TAE are a bit larger than
those for the “kinetic TAE.” Note that the darﬁping coeflicients are higher for the higher
mode numbers. This is due to larger values of #, which scales as &%(~ mymy) relative to
the other normalized parameters. The predicted damping coeflicient for the TAE experi-
ment is quite close to the experimentally measured value (of Ref. 4) of ~ 3%. In each case
7/w > (7/w)med.

Figure 1 shows the wave function ¥1(y) corresponding to the “kinetic TAE” for the
first row in Table 1. For n = 2,%1(y) has a slightly more oscillatory character due to
the larger value of &. The wave function for the MHD TAE is more oscillatory than the
“kinetic TAE” for these plasma parameters. The wave functions for the D-T burning case
are qualijza,tively similar. For other plasma parameters, e.g. for DIII-D, we find the situation
reversed, with the MHD TAE ha.ving a smooth profile and a lower damping coefficient.
Generally; 1,(y) ~ —1(—y).

Predictions of the real part of A from Eq. ( 16) (the perturbative derivation) are found
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to lie within 50% of the values shown in Table 1 for the MHD TAE. In contrast, predictions
of the imaginary part of A from Eq. (19) are small by up to an order of magnitude. The
largeness of & for these cases causes the perturbation scheme to fail. We find better agreement
between the perturbative pr-e&ictiohs”a,n-d the numerical results for othef plaéma parameters,
when @ is smaller. Values obtained iteratively from Eq. (23) are generally in close agreement
with those for the “kinetic TAE” in Table 1. The real part of A is within 20% for all
cases, while the imaginary part is within a factor of two. Better agreement should nof be
expected because of the difference between the actual shape of the wave function and our
trial function.

In conclusion, a non-perturbative treatment of electron parallel dynamics (the séurce of
normal Landau damping) predicts a non-negligible intrinsic Landau damping of the TAE.
This, combined with other damping mechanisms, including mode coupling to the kinetic
Alfvén wave (continuum damping®®), could render the TAE harmless in a reactor environ-

ment.
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Table I: eigenvalues and damping rates

TFTR case n Amnp Ak (7/w) (Y/@)mea
TAE 1 (—44-1.6¢)x10"2 (12.—-1.2{) x107?2 1.4x10"?2 3.9x10-3

2 (-7.0-9.60) x1072 (21.-4.37)) x10"% 2.8x10~? 5.1 x 10~3

D-T

—

(-4.3 —0.741) x 10~2 (9.5 —0.631) x 10~2 7.3 x 103 4.3 x 10~2

[S™]

(=7.0 —5.37) x 10~ (16.—-2.0{) x 10~2 1.3 x 10~? 5.4 x 10~3
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Figure Caption

1. Numerically computed wave function t;(y) in Fourier space for the n = 1, m = 1,2
(¢ = 1.5) “kinetic TAE” and for plasma parameters corresponding to the TFTR TAFE

experiment (Ref. 4).
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