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Abstract

The nonlinear evolution of the tearing mode instability with ec/luilibrium shear flow
is investigated via numerical solutions of the resistive magnetohydrodynamic equa-
‘tions. The two-dimensional simulations are in slab geoimetry, are periodic in the
z-direction, and are initiated with solutions of the linearized MHD equations. The
magnetic Reynolds number S was varied from 102 to 10°%, a parameter V that mea-
sures the strength of the flow in units of the average Alfvén speed was varied, and
the viscoSity as measured by the Reynolds number S, satisfied 5, > 103. When the
shear flow is small (V' < 0.3) the tearmg mode saturates within one resistive time,
while for larger flows the nonhneaI saturation develops on a longer time sca.le The
two-dimensional spatial structure of both the flux function and the stream fu_nction

distort in the direction of the equilibrium flow. The magnetic energy release decreased
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and the saturation time increased with V, for both small and large resistivity. The
validity of the numerical solutions was tested by verifying that the total energy and
the magnetic helicity were conserved. Total energy dissipation rate dE/dt decreases as

the tearing mode approached its saturated state.



I. Introduction

The resistive tearing instability is an important phenomena in laboratory and space plasma
and was first studied in its linear regime by Furth et al., 1963. The instability grows in »
a narrow layer of the plasma where the resistivity term dominates tlj.e local magnetic field
term in Ohm’s law and theréby allows the field lines to tear or reconnect, and form magnetic
islands. The linear growth rate of the tearing mode scales as S~3/° where S is the magnetic
Reynolds number (déﬁned below)v.

Large shear flow motions have been observed between the footpoints of solar flares as
well as along field lines (Wang and Zirin, 1990), where tearing and reconnection may occur
(Priest, 1985). The analytic linear theory of the tearing mode with eciuilibrium shear flow
and viscosity has been considered by-severa.l authors (Paris and Sy, 1983; Dobrowolny et al.,.
1983; Porcelli, 1987; Chen and Mérrison; 1990a, 1990b). The_se studies conclude that ﬂ(;ws
approaching the AlfVél;l velocity can ,gr‘gaa,tlyl modify the stability criteria of the tearing in-
stability. This was also shown to hold numerically in the linear regime for a single tearing
mode (Einaudi and Rubini, 1986, 1989; Ofman et al., 1991).

Nonlinear saturation of the tearing mode occurs within one or several growth times and
,fhe growth slows down from exponéntial to algebraic (Rutherford, 1973). Numerical evolu-
tion of the nonlinear tearing mode (without flow) in slab geometry was studied by Schnack,
1977, and Schnack and Killeen, 1979 using the finite difference alternative direction implicit
(ADI) approach. The energetics, growth rate and spatial behavior for several values of resis-
tivity and for both constant-i) and non-constant-i) regimes were investigated by Steinolfson
and Van Hoven, 1984. The effect of plasma rotation on the nonlinear tearing mode was con-
sidered recently by Persson and Bondeson, 1990, and Persson 1991. They solved the reduced

MHD equations with the spectral approach, and found that when flow is sufficiently strong,
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the viscosity sufficiently small, and the m =2/n =1, m = 4/n = 2 modes are present, the
nonlinear evolution of the tearing mode can lead to nonlinear 'oscilla,tory behavior. These
nonlinear oscillations were obtained analytically by Chen and Morrison, 1991 using center
manifold reduction.

Here, the nonlinear evolution of the tearing ‘mode with equilibrium shear flow par-
allel to the magnetic field is investigated numerically via solution of the incompressible
two-dimensional resistive MHD equations in slab geometry using the finite difference ADI
method. We find that the presence of equilibrium shear flow can reduce the amount of mag-
netic energy release, increase the saturation time, and can affect the topolog}; of the field
and currents generated by the instability.

The paper is organized as follows: In Sec. II the nonlinear MHD equations in slab geom-
etry, the initial magnetic field configuration, the equilibrium flow profiles and the relevant
conservation relations are presented. In Sec. III we present the numerical method of solution.

Section IV is devoted to the numerical results, and a summary is given in Sec. V.

II. MHD Equations

We assume that collisional MHD theory (see e.g. Drake, 1977) is applicable, that the plasma
is incompressible with constant isotropic resistivity n and constant perpendicular viscosity

(Braginskii, 1965) v, and that gravitational effects are negligible. The basic equations in cgs

units are:
lav 1 2
play t(v-V)v|=-VP4+ —(VxB)xB+vVivy (1)
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where c is the speed of light, p is the constant plasma density, B is the magnetic field, v is
the plasma velocity, and P is the plasma pressure. We use Cartesian geometry (with unit

vectors ex, ey and e, and choose equilibrium magnetic and velocity fields of the form:
V="Vo(y)ex +Vid X e =V, D x e, ' (5)

where ¥ and ® are the total flux and stream functions, and v, ¢ are the flux and stream
functions relative to the equilibrium quantities By and Vo.

Substituting Eqs. (4) and (5) in Eqs. (1)~(3), taking the curl of Eq. (1), thus eliminating
the pressure P, and considering the e, — ey components in dimensionless form gives ‘the
following 2-D MHD equations

o _ (09 9% 4 06 1y
W"“(a_y'm) o +(8 +F>a Viv
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where V2 = a—i;—}- §:—2 and 2 = 0. We have also assumed that the equilibrium magnetic
field is maintained by an external electric field and we imagine a similar agent maintains the
equilibrium flow. The coordinates are referenced to the magnetic shear length scale ag, the
time to the Alfvén time 7, (given below), magnetic field to B = |Bo(y — oo)|.

.The dimensionless parameters are the magnetic Reynolds number S = 7. /73, the viscous
Reynolds number S, = 7,/7;, and the shear parameter R = a;/a,, where a, is the velocity
shear length scale. The relevant time scales in these definitions are the resistive time 7. , the
Alfvén time 7, and the viscous time 7, given by |
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The quantities F' and G are the normalized equilibrium magnetic and velocity field,

respectively, in the z-direction. We assume that F is given by

F(y) = tanh(y) (8)

and present results for each of the following velocity profiles
G(y) = Vtanh(Ry) ; (9a)

or

G(y) = V{1 — sech(Ry)} (9b)

where V' is the velocity parameter in units of the Alfvén velocity V,. Hereafter we refer
to Eq. (9a) as the tanh velocity profile and to Eq. (9b) as the sech velocity profile. The
geometry of the tearing mode in Cartesian coordinates, and the equilibrium quantities are
shown in Fig. 1. In Fig. la, the tanh velocity profile is shown, thus V; and B, have the same
dependence on y. The two flow profiles and their derivatives (i.e., flow shear) are shown in
Fig. 1b. It is evident that the tanh flow profile has the largest shear at y = 0 (the tearing
layer), and the sech flow has the largest shear away from the tearing layer.

Resistive reconnection of the B, component of the magnetic field across the tearing layer

is measured by the change in the magnetic flux across y = 0

Ad(t) = /0 e

%zﬁ(m',o,t) da' , (10)

where 2,,, is one period for the periodic boundary conditions. The nonlinear growth rate
p(t) is given by
0
1) =—Ad(t). 11
(1) = 5 Ad() | | (1)
The growth rate calculated from Eq. (11) agrees with that for linear tearing (when the

instability is in the linear regime) for both V = 0 (Steinolfson and Van Hoven 1984) and



V # 0 (Ofman et al., 1991). Additional relevant quantities are the changes of the magnetic

and kinetic energies relative to the equilibrium values ; i.e.

' 2 ,
AEu(t) /yy"‘“ / e <F+g¢> +(g—f) —F2] dedy (122)
Ymax Tmax [ 0 L '
A.EK(t):/ymin /0 ~(G+ a’;’) + (5;’;5) —Gﬂ dz dy (12b)

The total magnetic and kinetic energy
Eeoi(t) = AEy(t) + AEK(t) + Eno + Eko (12¢)

where Epro and Eg are the initial magnetic and kinetic energies stored in the equilibrium

shear flow and magnetic field. Because of resistive and viscous dissipation Ei satisfies

dEtot /ym‘“‘ /‘“ [_._(J F) - ; (w—G’)} “wie(13a)

where J = —V% is the nonequlhbrxum current in z- dlrectlon and w = —V?¢is the nonequi-

librium vorticity. The resistive d1ss1patlon of the magnetlc hehclty is given by
Ymax Tmax | Tmax |
/ bdedy = / / J dz dy © (13b)
Ymin Ymi
is also of interest. Equations (13) are valid for the periodic x and zero y boundary conditions
and are used as a means of estimating the quality of the numerical solutions by comparing
the calculated values of the r.h.s and the L.h.s of the equations. Equation (13a) is also used
to estimate the effective viscous dissipation that arises in the numerical solution of the MHD

equations.

III. Method of Solution

We initiate the nonlinear computations with the solutions of the linearized version of Egs. (6)

and (7) (see, Ofman et al., 1991). The amplitude factors of the linearized growing solutions




are chosen so that the nonlinear t.erms as calculated from the linear ¢ and 1, are important.
This procedux;e insures that the nonlinear code is initiated at an amplitude Whefe the subse-
quent evolution of the mode is in the nonlinear regime (Steinolfson and Van Hoven, 1984).
In this study the normalized spatial wavenumber o = 2r /X was 0.5, which implies that
the size of the longest wavelength X in the z-direction is 47 in units of ay. An alternating
direction implicit (ADI) finite-difference technique was used to obtain the nonlinear evolu-
tion. The solutions are first advanced one half time step in the z-direction using the initial
linear solutions. Next, the solutions are advanced another half time step in the y-direction
using the finite difference results in the z-direction from the previous half time step. This
procedure for a single time step is repeated until the full temporal evolution is obtained. In

the z-direction the finite difference form of Eqs. (6) and (7) is given by the following:

2 n+1/2 n+1/2 n+1/2 n+1/2 n n+1/2 2 n 1
E%b +G6athy; = Fiba 7 80 by @7 — 8yl — 8,7 6,417 = A ViiTg Jij
(14a)

At 7;+1/2 (5 o+ G—’) 1nj+1/2 (G”— Fy w”) 5 ¢n+1/2 (5 0 +F) 5. Jn+1/2
2

(B = 6 3) i =

Wi + 5_ (62 + 82) wr; (14b)

where
== (+8)vn, wly=—(2+6)¢,.
The grid spacing in the z-direction is uniform, thus the finite differences are given by

6" = ?+1,J' — 77b?—l,j 5§27, = ?+1; 2¢1] + ¢1_1]
T T oA 0 VT (Az)? !

while in the y-direction
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The variable grid spacing Ay; = ;44 — y; expands from a minimum of Ay, = 1072 at the

tearing layer to Aymay = 0.5 near the computational boundaries according to the prescription

. ) (fmax—7)/(max—1)

AYrmin
ij = Ayma.x (A’g
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where jmax denotes the boundary grid point. Up to 200 grid points in the y-direction, and up
to 64 grid points'in the z-direction were used. Constant grid spécing in y-direction was also
used for low S values. Fourth order smoothing (Strauss, 1978) was applied to the solutions

away from the téaring layer. Equatibns (14) are written in tridiégonai form

1

-~ UL+ Br U - cr U = Dy (15)

where A, B, C are 2 by 2 matrices, and U ,and D are fwo-dimensional vectors. Equatibn (15)
is solved for U using Gaussian elimination. For the next half time step n — n 4+ 1/2 and
n+1/2 — n+1 in the above Egs. (15), and the soiutions are advanced one time step. The
boundary conditions are ¥(y = £¥max) = 0, (¥ = TYmax) = 0 where Ymax is the distance
to the boundary from the tearing layer, and both % and ¢ are periodic in the z-direction. |
Due to the presence of the symmetry breaking equilibrium shear flow one cannot. use the
simplifying symmetry assumptions that enable the solutioﬁs of the MHD equatiéﬁé to be
computed in one quarter of the present domain (Steinolfson and VaJn.Hoven,_1984). Alsb, the
imposing of the periodic boundary conditions requires one to pass through the mesh three
times for each integration in the z-direction (Schnack, 1977). Only two passes through the
mesh are necessary in the non periodic y-direction. _

For a fully implicit scheme the time step At is limited to the size of Az; i.e., At < Az
(Pritchett et al., 1980). In our case the terms higher than second order are treated explicitly,
and it has been found that the relation At < Az/2 gives satisfactory results. When non
constant grid spacing is used, Ag is one or several orders of magnitude larger than Ay across
the tearing layer. Reasonable computation times on Cray II for S as large as 10® are possible

with this technique. A typical run with S = 10* takes about 30 nﬁnutés of CPU time.




IV. Numerical Results

In Figs. 2-12 we examine the spatial structure and the temporal evolution of the nonlinear
tearing mode with flow. In these runs the parameters were S = 10%,104,10%, R = 0.73,a =
0.5, and the flow parameter was V = 0, 0.1, 0.2, 0.3, 0.5 for the tanh profile, while V = 0.1,0.5
for the sech flow profile.

The épatial variations of 4,4, ¥, ®, and the current J;r = J — F' after two resistive
times, normalized to their respective maximal values are shown in Figs. 2-6. In Fig. 2 the
equilibrium shear flow is the tanh velocity profile, with V = 0.1 and V = 0.2, In Fig. 3
the equilibrium shear flow is the sech velocity profile with V = 0.1 and V = 0.5. The other
parameters are S = 10%, R = 0.73, and o = 0.5. When V = 0, ¢ is symmetric with respect
to the z and y axes, while ¢ is anti-symmetric in both the linear and nonlinear regimes.
When flow is present this symmetry is broken and the perturbations align themselves with
the equilibrium flow, namely, in Fig. 2, 1 and ¢ deform in opposite directions with respect to
the z axis and the distortion away from the tearing layer increases with V. Similar alignment
with the flow occurs for sech equilibrium in Fig. 3, but for larger V' the values of % and ¢
are distorted more near the tearing layer (where the shear is zero) than away from it, in
agreement with the stabilizing effect of higher shear regions (see, Fig. 1b) as expected from
the linear theory (see, Chen and Morrison, 1990).

The contour lines of the total flux and stream functions for the tanh flow profile at
t = 20074, with V = 0.5 and S = 100 are shown in Fig. 4. The velocity and the magnetic field
lines are parallel to the contours of ¥ and ®. The magnetic field lines exhibit the saturated
island structure, where the island width is an order of magnitude larger than the tearing
layer width e. Similar island structures appear in the contour plot of ®. The appearance
of the stream function is different from the standard FKR case due to the preseﬁce of the

equilibrium shear flow. Note that the x-point in the center of contour plot of ® is distorted
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in agreement with the structure of ¢ in Fig. 2b and small distortion of the magnetic x-point
appears in the contour plot of ¥. We present the low resistivity solutions with 5 = 104,
V = 0.1, and the sech flow profile at ¢ = 20007, in Fig. 5. In Fig. 5a contours of ¥ and ® are
shown, while in Fig. 5b displays the contours of ¢ and ¢. The saturated magnetic island
étructure is evident in the contours of ¥ . The width of the islands is an order of magnitude
larger than the width of the tearing layer. For S = 10* both the tearing layer width and
the island width are smaller than for S = 10% as expected from the linear € scaling with
resistivity. The appearance of sharp features alc;ng the y axis indicates the narrow tearing
layer. It is interesting to compare the contours of ¥ in Fig. 5b to the contours of ¢ in Fig. 3a.
In both figures similar sharp features form along the y axis, indicating that the teariné layer
is narrow corﬁpared to the high resistivity, low shear flow cases. In Fig. 5b this is due to the
low resistivity (S = 10* with V = 0.1), while in Fig. 3a this is due to the high shear flow
(V = 0.5 with § = 10%). For the sechbproﬁle the flow near the y axis is small corﬁpared to
the flow away from the y axis, and ‘thus the contour of ® shows a relatively flat région of
width a, along the y axis, where ¢ and its vortices are dominant. The effect of the narrow -
boundary layer is clearly seen in Fig. 5b.

The current Jr for V. = 0 and V = 0.3 (tanh velocity proﬁle) is shown in Fig. 6.
When V = 0 the current is symmetric with respect to the = and y axes and its maximum
Jmeloccurs near the center of the slab and poiﬁts in the negative z-direction. When
V = 0.3 the current has a more complicated two-dimensional structure, again aligned with

the equilibrium flow. Additional regions of significant current appear far from the tearing
layer, around y = 2.5 with |Jr(z,2.5)/JTmax| ~ 0.2, thus the flow generates significant
currents in the external regions of the tearing mode.

‘We initiate the nonlinear evolution with a single linear ﬁode in the z-direction. Its
wavelength, and hence the size of the computational domain in the z-direction, is determined

by the value of . In Fig. 7 the solutions zb and ¢ for the tanh profile with V' = 0.3 are plotted
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as functions of z for y = 0.5. A single mode corresponding t0 & = 0.5(Tmax = 27/a = 4r)
is present, and the phase shift between ¥ and ¢ is caused by the equilibrium flow. Detailed
treatments of the linear tearing mode with flow are given in Einaudi and Rubini, 1990, and
Ofman et al., 1991.

Figure 8 depicts the temporal evolution of the growth rate, the reconnected flux and the
perturbed magnetic, kinetic, and total energies for 8 resistive times (8007;) with V = 0.1, the
tanh flow profile, and S = 102. In Fig. 8a we present the temporal evolution of the growth
rate (curve A) and the reconnected flux (curve B). Initially the growth rate calculated from
Eq. (11) corresponds to the linear growth calculated directly from the exponential growth of
the solutions (Ofman et al., 1991), and the reconnected flux grows exponentially with time.
After 107, the growth rate drops considerably and the reconnected flux grows linearly with
time as expected in Rutherford regime (Rutherford, 1973). After another 1007, the growth
of the reconnected flux slows to less than the linear rate and after 4007, the mode saturates
completely and the amount of the reconnected flux remains practically constant with time.
The growth rate continues to decrease at an exponential rate.

In Fig. 8b curve A represents the change of the magnetic energy in the z component,
of the magnetic field AEpy,, (defined by setting 0y /dz = 0 in Eq. (12a)) while curve
B represents the change of the magnetic energy in the y component, AEyr, (defined by
AEy = AEy, + AEpry). Curve C corresponds to the total change of the magnetic and
kinetic energies AFE,,, = AE,, + AFEy. All these quantities are presented on a log scale, thus
their absolute 'Values are shown — AE), and AE,,, are negative for most of the evolution
time indicating energy loss. The changes of sign of AE,, and AEy, appear as sharp
minima at ¢t & 5 and ¢ &~ 30, respectively. Most of the transfer of energy occurs from the z
component of the magnetic field to the y component (curve B) and to resistive dissipation.
A small fraction of AEyy, is transferred to the kinetic energies (see Table I). The change

of the kinetic energies AEy in Fig. 8¢ is initially comparable in magnitude (but opposite
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in sign) to AEjs, but after abou‘; one resistive time AFEg, saturates at values an order of
magnitude ‘sm-aller than AEs, and the transition from exponential to linear gréwth occurs
in a time t < 1007, when AFEk, is an order of magnitude smaller than AFEk,.

In Fig. 9 we compare the change in the magnetic and total energies for the cases V' = 0.2
and V = 0.3 with § = 102 For V = 0.3 the rate of change of the energies is initially
(t < 10074) lower than for V' = 0.2, but after the growth saturates the changes occur at
similar rates. The initial wiggling of the total energy is due to transient éffects that arise
when the nonlinear code is initiated with the linear solutions. The total energy release of the
tearing mode with V = 0.3 is only 60% of the energy released when V' = 0.2. This decrease
of energy release with increasing V is a trend seen in all runs as evidenced in Table I..

The case where S = 10%, V = 0.5, with the tanh equilibrium flow profile is presented
in Fig. 9 up to a time 20007,. The temporal behavior of the S = 10* case is similar to
the S = 107 case, but as expected from the lower resistivity, proceeds on a longer time
scale. The absolute values of the magnetic and total energy changes are shown in Fig. 10a.
Note, that the change of sign of E;y; (curve C) occurs at ~ 7007, that is about an order of
magnitude smaller than for § = 10%2. This is consistent with the linear growth rate scaling
of S~1/2 for the tearing mode with flow. In Fig. 10b total energy dissipation (curve A)
is compared to the resistive dissipation (curve B). Due to an imitial transient instability
the total energy dissipation exhibits rapid oscillations that decay within several hundred
Alfvén times, and the evolution proceeds with the resistive dissipation being significantly
larger than the dissipation due to numerical viscosity. The quantities AEg, and AFEkg,
are shown in Fig. 10c. The initial exponential growth slows down after only 5007, and the
nonlinear saturation is evident. The change in the kinetic energies after 10007, is an order
of magnitude lower than the change in-the magnetic energies in Fig. 102.1,, thus the energy
release is dominated by reéistivé effects. Nonlinear saturation of the growth rate (curve A)

and the reconnected flux (curve B) are presented in Fig. 10d. The growth rate defined in
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Eq. (11) decreases by a factor of 2 after 20007, and the slower than exponenfial growth of
the reconnected flux is evident after 5007,. This is consistent w‘ith the nonlinear saturation
of the energies in Figs. 10a and 10b.

In Fig. 11 we present the temporal evolution of the energies for S = 10%, V = 0.5 and
the tanh flow profile. The initial AE)s, is 1.5 times larger than AFE)s, in the case where
S = 10% and it becomes negative after ~ 14007,. Its slower evolution is consistent with
the S=/2 linear growth rate scaling, and due to the large resistive time the nonlinear effects
are still not significant after 20007, or 0.027,. The kinetic energies in Fig. 11b evolve with
the corresponding linear growth rate. From the previous results for S = 10? and S = 104
it is evident that the nonlinear saturation becomes significant on a time scale of 0.17, that
corresponds to 1047, for S = 105.

Figures 12a and 12b are devoted to the calculation of the conservation relations of
Egs. (13). As a test of the overall behavior of the numerical code we calculated the temporal
change in the total energy, and the magnetic helicity for V' = 0.3 with the tanh profile,
and compared it to the resistive dissipation according to Eq. (13a) and (13b). After an
initial transit period of ~ 207, a very good agreement is seen between the calculated energy
dissipation and the resistive dissipation. The initial (S 3073) energy discrepancy is due to
transient numerical solutions excited initially in the nonlinear code. Values of the actual
viscosity S, in the code were estimated using the energy conservation relation (Egs. (13))
and were found to be 10% — 10°. The obtained values of S, were found to depend strongly
on the amount of the numerical fourth order smoothing applied to the solutions. In the
case of helicity the conservation was two order of magnitude better than the resistive energy
dissipation. |

The final distribution of energies for several values of V with the tanh and sech equilibrium
flow, and with S = 102, 10* is summarized in Table L. The calculated distribution of energies

for the cases with V = 0 agrees with the results obtained by Steinolfson and Van Hoven,
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1984. When S = 10? (as noted above) the change in the magnetic energy decreases with V,
while the change in the kinetic energy increases with V. When V' = 0.3 the release of the the
magnetic energy is a,pproximatel:y 3 times lower, and the change in total energy AFEyq is 6
times lower than foer = 0. At the same time AEk, increased by 50% and A Ek, increased
by a factor of ~ 3. When S = 10* and V = 0.5 the release of fhe magnetic energy is 47%

of AEj, when V = 0.1, and less than a quater of energy released without ed_uilibrium flow. |
When V = 0.5 the change in the kinetic energies is an order of magnitude smaller than the
change in the magnetic energy, and when V = 0.1, AEk is two orders of magnitude smaller

than AEys. The kinetic energy is even less significant when V = 0.

V. Summary

We have investigated the effect of equilibrium shear flow on the evolution of the nonlinear
tearing mode via numerical solution of incompressible resistive MHD equations, with V
ranging up to 0.5V, and‘;S' up to 105. The perﬁurbed flow and stream functions loose fhe
symmetries of the V' = 0 tearing mode and are found.to distort in the direction of the
equilibrium shear flow. Their mode structure in the :c-direction, determined initially by the
linear wavenumber « is not greatly affected during the the nonlinear evolution. Additional
currents are generated far from the tearing layer by the presence of relatively small shear flow,
in agreement with the linear result that flow has a significant affect on the external region
of the tearing mode. The amount of the released magnetic energy decreased with V, for
both low resistivity (S = 10*) and high resistivity (S = 10?) tearing. Exponential decrease
of the growth rate, and the éorresponding saturation of the reconnected flux occurred in all
the calculated cases; its time scale was primarily determined by the resistivity and the shear
flow. Nonlinear saturation of the energies was foﬁnd to o(:cuf after 0.1 7.. The change in
the kinetic energy was seen to be two orders of magnitude lower than the magnetic energy

release for small V, and one order of magnitude lower for large V = 0.5. The total energy
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and helicity dissipation were calculated and found to agree with that predicted by theory.
One potential application of the present results is to flaring loops, a phenomenon that
occurs when magnetic flux tubes rise through the sheared magnetic fields of solar active
regions. The loops often have flows parallel to their axis (Priest, 1981) and, hence, most
1ikely parallel to the magnetic field. It is well known that the growth of the usual tearing
mode without flow and with classical dissipation is an order of magnitude too slow to explain
the rapid energy release in such loops (Sturrock, 1980). The growth rate can be increased,
of course, if the dissipative effects are somehow increased by nonclassical effects, such as
turbulence. However, no generally accepted theory has been developed for such enhanced
dissipation. Therefore, at least for classical dissipation, the present results predict that the

tearing mode is even less likely to play a role in the energy release in flaring loops with flows.
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Figure Captions
1. The initial équilibrium magnetic field and flow.
(a) The tanh dependence on y for B;o and'V .
(b) Equilibrium flow profiles G(y) and their derivatives used in the present work.

2. Spatial dependence of the flux and stream functions with S = 10%, and tanh equilibrium

flow profile |
(a) The flux function ¢ withV = 0.1 (top figure) and V = 0.2 (bottom figure).
(b) The stream function ¢ with V .=> 0.1 (top figure), and V = 0.2 (bottom figure).
3. Spatial dependence of the flux and stream functions with S = 10%, and sech équi'librium
flow pfoﬁle
(a) The flux function ¢ with V = 0.1 (top figure) and V = 0.5 (Bottém figure).
(b) The stream function ¢ with V = 0.1 (top figure) and V = 0.5 (bottom ﬁgure).

4. The total flux function ¥ and the total stream function ® with V' = 0.5, S = 10%, and

the tanh flow profile.

5. Countour plot of the flux and stream functions with V = 0.1, § = 10%, and the sech

flow profile.

(a) ¥ and @
(b) ¢ and ¢

6. Contour plot of the current J = —V2¢ with V = 0.0 (top figure), and V = 0.3 (bottom
figure) and the tanh flow profile for § = 10.

19




7. The mode structure of 1 and ¢ with V = 0.3 and the tanh equilibrium flow profile for

10.

11.

S =10%

The temporal evolution for the case where S = 10%, V = 0.1 with the tanh equilibrium
flow profile.

(a) The growth rate p (curve A) and the reconnected flux A® (curve B).

(b) The change in the z component (curve A), and in the y component (curve B) of

the magnetic energy. The change in the total energy (curve C).

(c) The change in the z component (curve A), and in the y component (curve B) of
the kinetic energy.

As in Fig. 9a but with V' = 0.2 (top figure), and V = 0.3 (bottom figure).

The nonlinear evolution of the S = 10*, V = 0.5 tearing mode with the tanh equilib-
rium flow profile.

(a) The change in the z component (curve A), and in the y component (curve B) of

the magnetic energy. The change in the total energy (curve C).

(b) The total energy dissipation dF/dt (curve A), and the resistive dissipation (curve
B).

(c) The change in the z component (curve A), and in the y component (curve B) of
the kinetic energy.

(d) The temporal evolution of the growth rate (curve A) and the reconnected flux

(curve B).

The nonlinear evolution for the case where S = 10°, V' = 0.5 with the tanh equilibrium

flow profile.
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12.

(a) The change in the z component (curve A), and in the y component {curve B) of

the magnetic energy.- The change in the total energy (curve C).

(b) The change in the z component (cu}rve A), and in the y component (curve B) of
the kinetic energy.

Numerical test of the energy and helicity conservation relations with S = 102.

(a) The energy dissipation as calculated from the Lh.s. of Eq. (13a) (curve A), and the

r.h.s. of Eq. (13a) (curve B).

(b) The magnetic helicity dissipation as calculated from Lh.s. of Eq. (13b) (curve A),
and the r.h.s. of Eq. (13b) (curve B).
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Table I: The change in the magnetic, kinetic, and total energies.

Vv AEp, AEny, AFk, AEk, AFE;y
S =10%t = 2007,
0.0 —0.792 0.488 0.94-10"%2 0.73-1073 —0.294
tanh flow profile
0.1 —0.482 0.305 1.24-107% 2.71-1073 —0.162
0.2 —0.296 0.189 1.76-10"% 5.71-107® —8.37-1072
0.3 —-0.237 0.153 2.58-1072 9.86-10"% —4.83.10"?
S =10% t = 20007,
0.0 —-9.11-1072 4.38-10"% 1.44-10~°% 4.74-10"7 —4.73-10"2
tanh flow profile
0.1 —446-10"%2 2.12-10"* 0.22-10~% 0.16-10"® —2.30-10"2
0.5 —2.08-10"2 0.88-10"%2 2.02-10"® 1.51-10"® —8.47-1073
sech flow profile
0.1 -325-10"2 1.53-10"%2 5.50-10% 2.45-107°% —1.72.10"2
0.5 -115-10"* 543-10~* 4.07-10"* 9.64-10"° —5.59-10"3
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